当前位置:文档之家› 电子排布式与轨道表示式

电子排布式与轨道表示式

电子排布式与轨道表示式
电子排布式与轨道表示式

[1]H氢

1s1

[2]He氦

1s2

[3]Li锂

1s22s1

[4]Be铍

1s22s2

[5]B硼

1s22s22p1

[6]C碳

1s22s22p2

[7]N氮

1s22s22p3

[8]O氧

1s22s22p4

[9]F氟

1s22s22p5 [10]Ne氖

1s22s22p6 [11]Na钠

1s22s22p63s1 [12]Mg镁

1s22s22p63s2

[13]Al铝

1s22s22p63s23p1 [14]Si硅

1s22s22p63s23p2 [15]P磷

1s22s22p63s23p3 [16]S硫

1s22s22p63s23p4 [17]Cl氯

1s22s22p63s23p5 [18]Ar氩

1s22s22p63s23p6 [19]K钾

1s22s22p63s23p64s1 [20]Ca钙

1s22s22p63s23p64s2 [21]Sc钪

1s22s22p63s23p63d14s2 [22]Ti钛

1s22s22p63s23p63d24s2 [23]V钒

1s22s22p63s23p63d34s2 [24]Cr铬

1s22s22p63s23p63d54s1 [25]Mn锰

1s22s22p63s23p63d54s2 [26]Fe铁

1s22s22p63s23p63d64s2

[27]Co钴

1s22s22p63s23p63d74s2 [28]Ni镍

1s22s22p63s23p63d84s2 [29]Cu铜

1s22s22p63s23p63d104s1 [30]Zn锌

1s22s22p63s23p63d104s2 [31]Ga镓

1s22s22p63s23p63d104s24p1 [32]Ge锗

1s22s22p63s23p63d104s24p2 [33]As砷

1s22s22p63s23p63d104s24p3 [34]Se硒

1s22s22p63s23p63d104s24p4 [35]Br溴

1s22s22p63s23p63d104s24p5 [36]Kr氪

1s22s22p63s23p63d104s24p6

核外电子的排布规律

核外电子的排布规律 一、能量最低原理 所谓能量最低原理是,原子核外的电子,总是尽先占有能量最低的原子轨道,只有当能量较低的原子轨道被占满后,电子才依次进入能量较高的轨道,以使原子处于能量最低的稳定状态。 原子轨道能量的高低为: 1.当n相同,l不同时,轨道的能量次序为s<p<d<f。例如, E 3S <E 3P <E 3d 。 2.当n不同,l相同时,n愈大,各相应的轨道能量愈高。例如, E 2S <E 3S <E 4S 。 3.当n和l都不相同时,轨道能量有交错现象。即(n-1)d轨 道能量大于ns轨道的能量,(n-1)f轨道的能量大于np轨道的能量。在同一周期中,各元素随着原子序数递增核外电子的填充次序为ns,(n-2)f,(n-1)d,np。 核外电子填充次序如图1所示。 图1 电子填充的次序

图2 多电子原子电子所处的能级示意图 最外层最多能容纳8电子,次外层最多能容纳18电子。 每个电子层最多容纳的电子数为2n2个(n为电子层数的数值)如: 各个电子层中电子的最大容纳量 从表可以看出,每个电子层可能有的最多轨道数为n2,而每个轨道又只能容纳2个电子,因此,各电子层可能容纳的电子总数就是2n2。

二、鲍利(Pauli)不相容原理 鲍利不相容原理的内容是:在同一原子中没有四个量子数完全相同的电子,或者说在同一原子中没有运动状态完全相同的电子。例如,氦原子的1s轨道中有两个电子,描述其中一个原子中没有运动状态的一组量子数(n,l,m,ms)为1,0,0,+1/2,另一个电子的一组量子数必然是1,0,0,-1/2,即两个电子的其他状态相同但自旋方向相反。根据鲍利不相容原理可以得出这样的结论,在每一个原子轨道中,最多只能容纳自旋方向相反的两个电子。于是,不难推算出各电子层最多容纳的电子数为2n2个。例如,n=2时,电子可以处于四个量子数不同组合的8种状态,即n=2时,最多可容纳8个电子,见下表。 在等价轨道中,电子尽可能分占不同的轨道,且自旋方向相同,这就叫洪特规则。

原子轨道能级和核外电子排布

原子轨道能级与核外电子排布 薛万川叶其纲蒋栋成 (广西师范大学,桂林)(高等教育出版社,北京) 原子结构理论是现代化学的基础理论之 一。但仍有许多问题,诸如:原子轨道和轨道 能的概念、轨道能级高低次序、轨道的“填实孙顺序和电离顺序、原子基态时核外电子排布及其 与元素周期系的关系等,在化学教学中是经常 遇到的。 一、轨道近似与原子轨道能级 对于多电子原子轨道能级高低次序目前有 许多不同说法,这些说法的依据除去L. Paining 建议的近似能级之外,主要是Hartree-Fock SCF 轨道能、Thomas-Fermi轨道能和Slater轨道 能。这三种轨道能都是从多电子原子薛定愕方 程的轨道近似法求解后得到的。 采用玻恩一奥本海默定核近似时,含有N个电子(N>2)原子序数为Z的原子体系非相对 论性哈密顿算符为

其定态薛定厄方程为 原子结构理论的重要内容之一是掌握原子中单个电子运动状态的信息。轨道近似理论假设方程(2)的解—体系多电子波函数梦可用 单电子函数的乘积或其组合近似表示, 轨道近似假设要求(i)式中的[H〕用单电子算符【h;]的和近似表示, 经过对电子间库仑排斥势能项1/r“的简化处理使其变成只与电子i的坐标有关,则单电子算符具有下述一般形式 式中Y(r;)是在中心力场近似下核和其余 (N - 1)个电子对电子‘的平均相互作用势 能。于是原子薛定i}方程(2)分离变最后得到

单电子本征值方程 确定势能函数V(r;)的不同处理方法: Hartree-Fock SCF法、Thomas-Fermi原子统计 位能法和Slater半经验法代表不同的轨道近似 理论。不同的方法有不同的势能函数,代人单 电子方程求解得到不同类型的轨道能。Thomas- Fermi法和Slater法计算结果〔,,2,表明这两种类型的轨道能级均随原子序数增大而变化(能级 交叉情况有所不同)。Pilar}3,根据V}'achters}'} 的Hartree-Fock计算结果提出第四周期元素 ‘:总是高于,3a的说法。最近潘道皑等的Hartree-Fock计算结果指出:钾钙的e,.低于 e3d (Wachters在论文中没有报导钾钙的e3d数据),而杭钦的。;.高于e3d。原子Hariree-Fock SCF从头计算较为复杂,采用不同的基函数集 合以及计算方法上采用不同的近似处理得到的Hartree-Fock轨道能不尽相同。从目前文献报 导的各种轨道能和能级图来看,在轨道能级高 低次序以及轨道能级与原子序数的关系等问题 上尚未取得一致的意见。正如尹敬执、申淬文 在书中所指出的:中性原子中原子轨道的实际

电子填入轨道的顺序

电子填入轨道的顺序 如图所示,第一层只有s型轨道,第2和7层有s、p型轨道,第3和6层有是s、p、d型轨道,第4和5层有s、p、d、f型轨道‘ s型轨道呈球形(球形是对称的,所以s轨道只有一个)’ p轨道呈纺锤形(p轨道在空间里有xyz三个伸长方向,即px,py,pz,所以p轨道有3个)如图所示

图上第一行是球形s轨道,第二行是纺锤形p轨道 d轨道有5个伸长方向(5个轨道) f轨道有7个伸长方向(7个轨道) 每个轨道最多只能容纳2个自旋状态不同电子(泡利不相容原理),自旋是电子的状态,不像地球自转 s最多容纳2个电子(1个轨道*2=2个), p是最多容纳6个电子(3个轨道*2=6个) d是最多容纳10个电子(5个轨道*2=10个) f是最多容纳14个电子(7个轨道*2=14个) 举例; He是第二号元素,核外有2个电子,所以He的电子排布式是1s2,意思是:第1层的s 轨道上有2个电子 Na元素是2,8,1排布,即1s2,2s2,2p6,3s1。1s2意思是:第1层s轨道上有2个电子,所以第1层共有2个电子,2s2是第2层s轨道上有2个电子,2p6是第2层的p轨道上有6个电子,所以第2层共有2+6个电子,3s1是第3层的s轨道上有1个电子,所以第三层是1个

电子。 1s2,2s2,2p6,3s2,3p6,3d5,4s2意思是:第1层s轨道上有2个电子,第2层的s 轨道上有2个电子,第2层的p轨道上有6个电子,第3层的s轨道上有2个电子,第3层的p 轨道上有6个电子,第4层的s轨道上有2个电子。所以第一层共有2个电子,第二层共有2+6=8个电子,第三层共有2+6+5=13个电子,第四层共有2个电子,排布是2,8,13,2。 字母前的数字代表第几层,字母表示轨道类型,字母后的数字是该类型的轨道上共有多少个电子,1s表示第一层的s类型轨道,1s2表示第一层的s类型轨道共有2个电子。2s表示第二层的s类型轨道,2s1表示第二层的s类型轨道上共有1个电子,5f表示第5层的f轨道,5f9表示第五层的f类型轨道上共有9个电子,3p表示第三层的p类型的轨道,3p2表示第三层的p类型的轨道上共有2个电子

《原子核外电子的排布》教学设计

《原子核外电子的排布》教学设计 一、教材分析 本章《物质结构元素周期律》是高中必修二第一章的内容,是在九年级化学上册第四单元《物质构成的奥秘》的理论基础上进一步的深入学习,而本节内容——原子核外电子的排布又是本章的核心内容,是后面学习元素周期律的基础。 二、学生分析 学生初中时已经学习了原子的构成和元素,对核外电子是分层排布这一知识点也做了初步了解,所以在此节内容的学习之前学生就已经具备了一些原子的相关基础知识。同时也具备一定的数学基础,能够对一些数据进行分析处理。 三、教学目标 (一)知识与技能目标 1.了解原子核外电子运动的特征。 2.了解元素原子核外电子排布的基本规律,能用原子(离子)结构示意图表示常见原子(离子)的核外电子排布。 (二)过程与方法目标 培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 四、教学重难点 重点:原子核外电子分层排布、原子核外电子的排布及其规律。 难点:原子核外电子排布规律间相互制约关系。 五、教学过程 【引入】大家好,这节课我们进入到新课的学习:

【板书】原子核外电子的排布 【提问】在进入新课内容之前,我们先来复习一下以前学习的内容。初中的时候在《物质构成的奥秘》这一章当中我们就学习了原子的相关知识,下面我们来回顾一下,什么是原子?原子由什么微粒构成? 【学生回顾】…… 【板书】 外电子数 核电荷数=质子数=核的负电荷核外电子:带一个单位 中子:不带电 个单位的正电荷质子:带原子核原子????????1 【教师】原子由原子核和核外电子构成,而原子核又由质子和中子构成,其中质子带一个单位的正电荷,中子不带电。核外电子则带一个单位的负电荷。 【提问】那么为什么原子对外显电中性呢? 【学生】质子所带的正电荷数等于核外电子所带的负电荷数,所以原子不显电性。 【教师】很好,其中我们还学习到了一个重要的等式关系:核电荷数=质子数=核外电子数。所以质子所带的正电荷与核外电子所带的负电荷相互抵消,导致原子不显电性。 【过渡】好,我们都知道了原子的结构。现在我们来研究一下电子在原子核外究竟是怎么运动的。 【教师】大家来看ppt 上这张熟悉的原子结构图。我们可以看到原子核外有一圈圈的层状区域,由里往外分为好几个圈层,这就是我们以前初三所学习到的电子层——核外电子的运动有自己的特点,它不像行星绕太阳旋转有固定的轨道,但却有经常出现的区域,科学家把这些区域称为电子层。而核外电子就是在这样不同的电子层内运动,我们把这种现象称为核外电子的分层排布。这些都是同学们初中已经学习过的内容。 【过渡】那么,大家知道了核外电子的分层排布之后,是不是产生了这样的疑问:核外电子究竟是怎么分层排布的呢?好,接下来我们一起来共同解决同学们的疑问——我们来探究核外电子的排布规律。 【板书】核外电子的排布规律 【提问】我们来看这个原子结构,从黄色最里一层原子层到蓝色最外一层原子层,

核外电子排布规律和表示方法及其强化练习

核外电子排布规律和表示方法 一、能层、能级与轨道 总规律:元素的原子核外电子按照能量由低到高的顺序依次排布在不同的能级中。 1、核外电子的能量主要取决于电子层和电子亚层。电子层又叫能层,它决定电子的能量高低和离核远近;同一电子层还可以分成一个或几个电子亚层,电子亚层决定同一电子层的电子的能量差异和电子云的形状。s 亚层呈球形,p 亚层呈哑铃形,d 亚层成四瓣花瓣形,f 亚层形状更复杂。能级就由能层和电子亚层共同构造。 2、能层用n 表示,按能量由低到高的顺序依次表示为1、2、 3、 4、 5、 6、7,依次对应K 、L 、M 、N 、O 、P 、Q 层。 电子亚层 s 、p 、d 、f 表示。各电子层最多容纳的电子亚层是n 种。K 层只有s 一种亚层,L 层有s 、p 2种亚层,M 层有s 、p 、d 3种亚层,N 层有s 、p 、d 、f 4种亚层,O 层有 5种亚层,P 层有6种亚层,Q 层有7种亚层。 能层用电子层和电子亚层共同表示,在电子亚层符号的前面加上能层序号就是能级符号。 例如:1s 、2s 、2p 、3s 、3p 、3d 、4s 、4p 、4d 、4f 、5s 、5p 、5d 、5f 、6s 、6p 、6d 、6f 、7s 、7p 、7d 、7f 、 3、同一电子亚层形状相同但伸展方向不同,可以构成不同轨道。s 有1个轨道,p 有3个轨道,d 有5个轨道,f 有7个轨道,可用方框来表示。 s 轨道 p 轨道 f 轨道 4、能量关系:①相同能层的原子轨道能量高低:ns < np < nd < nf ; ②形状相同的原子轨道能量高低:1s < 2s< 3s< 4s ; 同一电子亚层形状相同但伸展方向不同的原子轨道能量相同。2p x =2p y =2p z 51、能量最低原理:原子的核外电子排布遵循构造原理,使整个原子的能量处于最低状态。 也即:原子的核外电子排布总是尽先排布在能量最低的轨道中,然后按能量由低到高的顺序依次排入。 构造原理:即能级顺序:1s 、2s 、2p 、3s 、3p 、4s 、3d 、4p 、5s 、4d 、5p 、6s 、4f 、5d 、6p 、7s 、5f 、6d 、7p 。记忆方法:1,22,33,434,545,6456,7567。 2、泡利原理:一个原子轨道里最多容纳2个电子,而且它们的自旋状态相反。 3、洪特规则:电子排布在同一能级的不同轨道时,基态原子的电子总是优先单独占据一个轨道,而且自旋状态相同。 当能量相同的原子轨道在全满(p 6、d 10、f 14)、半满(p 3、d 5、f 7)、全空(p 0、d 0、f 0)状态时,体系能量最低。这个可以看成洪特规则的特列。 这三个排布规律解释了各电子层最多容纳的电子数为2n 2个,解释了最外层电子数不超

元素电子排布规律

洪特规则 德国人洪特(F.Hund)根据大量光谱实验数据总结出一个规律,即分子分布到能量简并的原子轨道时,优先以自旋相同的方式分别占据不同的轨道,因为这种排布方式原子的总能量最低。所以在能量相等的轨道上,电子尽可能自旋平行地多占不同的轨道。例如碳原子核外有6个电子,按能量最低原理和泡利不相容原理,首先有2个电子排布到第一层的1s轨道中,另外2个电子填入第二层的2s轨道中,剩余2个电子排布在2个p 轨道上,具有相同的自旋方向,而不是两个电子集中在一个p轨道,自旋方向相反。1适用范围 该定则只适用于LS 耦合的情况。有少数例外是由于组态相互作用或偏离LS 耦合引起的。该定则可用量子力学理论和泡利不相容原理来解释。该定则对确定自由原子或离子的基态十分有用。

2洪特规则前提 洪特规则前提:对于基态原子来说 在能量相等的轨道上,自旋平行的电子数目最多时,原子的能量最低。所以在能量相等的轨道上,电子尽可能自旋平行地多占不同的轨道。例如碳原子核外有6个电子,按能量最低原理和泡利不相容原理,首先有2个电子排布到第一层的1s轨道中,另外2个电子填入第二层的2s轨道中,剩余2个电子排布在2个不同的2p轨道上,具有相同的自旋方向,而不是两个电子集中在一个p 轨道,自旋方向相反。作为洪特规则的补充,能量相等的轨道全充满、半满或全空的状态比较稳定。 根据以上原则,电子在原子轨道中填充排布的顺序为1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d…。3详细信息 具体内容:对于特定电子排布,不同组态的LS耦合,洪特规则确定了能量排列顺序:(1)总自旋S越大,能量越低 (2)S相等情况下,总轨道角动量L越大,能量越低

电子排布式与轨道表示式

电子排布式与轨道表示式 This manuscript was revised on November 28, 2020

[1]H氢 1s1 [2]He氦 1s2 [3]Li锂 1s22s1 [4]Be铍 1s22s2 [5]B硼 1s22s22p1 [6]C碳 1s22s22p2 [7]N氮 1s22s22p3 [8]O氧 1s22s22p4 [9]F氟 1s22s22p5 [10]Ne氖 1s22s22p6 [11]Na钠 1s22s22p63s1 [12]Mg镁 1s22s22p63s2 [13]Al铝 1s22s22p63s23p1 [14]Si硅 1s22s22p63s23p2 [15]P磷 1s22s22p63s23p3 [16]S硫 1s22s22p63s23p4 [17]Cl氯 1s22s22p63s23p5 [18]Ar氩 1s22s22p63s23p6 [19]K钾 1s22s22p63s23p64s1 [20]Ca钙 1s22s22p63s23p64s2 [21]Sc钪 1s22s22p63s23p63d14s2 [22]Ti钛 1s22s22p63s23p63d24s2 [23]V钒 1s22s22p63s23p63d34s2 [24]Cr铬 1s22s22p63s23p63d54s1 [25]Mn锰 1s22s22p63s23p63d54s2 [26]Fe铁 1s22s22p63s23p63d64s2 [27]Co钴 1s22s22p63s23p63d74s2 [28]Ni镍 1s22s22p63s23p63d84s2 [29]Cu铜 1s22s22p63s23p63d104s1 [30]Zn锌 1s22s22p63s23p63d104s2 [31]Ga镓 1s22s22p63s23p63d104s24p1 [32]Ge锗 1s22s22p63s23p63d104s24p2 [33]As砷 1s22s22p63s23p63d104s24p3 [34]Se硒 1s22s22p63s23p63d104s24p4 [35]Br溴 1s22s22p63s23p63d104s24p5 [36]Kr氪 1s22s22p63s23p63d104s24p6

电子排布式与轨道表示式

[1]H氢 1s1 [2]He氦 1s2 [3]Li锂 1s22s1 [4]Be铍 1s22s2 [5]B硼 1s22s22p1 [6]C碳 1s22s22p2 [7]N氮 1s22s22p3 [8]O氧 1s22s22p4 [9]F氟 1s22s22p5 [10]Ne氖 1s22s22p6 [11]Na钠 1s22s22p63s1 [12]Mg镁 1s22s22p63s2 [13]Al铝 1s22s22p63s23p1 [14]Si硅 1s22s22p63s23p2 [15]P磷 1s22s22p63s23p3 [16]S硫 1s22s22p63s23p4 [17]Cl氯 1s22s22p63s23p5 [18]Ar氩 1s22s22p63s23p6 [19]K钾 1s22s22p63s23p64s1 [20]Ca钙 1s22s22p63s23p64s2 [21]Sc钪 1s22s22p63s23p63d14s2 [22]Ti钛 1s22s22p63s23p63d24s2 [23]V钒 1s22s22p63s23p63d34s2 [24]Cr铬 1s22s22p63s23p63d54s1 [25]Mn锰 1s22s22p63s23p63d54s2 [26]Fe铁 1s22s22p63s23p63d64s2 页脚

[27]Co钴 1s22s22p63s23p63d74s2 [28]Ni镍 1s22s22p63s23p63d84s2 [29]Cu铜 1s22s22p63s23p63d104s1 [30]Zn锌 1s22s22p63s23p63d104s2 [31]Ga镓 1s22s22p63s23p63d104s24p1 [32]Ge锗 1s22s22p63s23p63d104s24p2 [33]As砷 1s22s22p63s23p63d104s24p3 [34]Se硒 1s22s22p63s23p63d104s24p4 [35]Br溴 1s22s22p63s23p63d104s24p5 [36]Kr氪 1s22s22p63s23p63d104s24p6 页脚

1--36号元素电子排布式与轨道表示式(完美版)

1--36号元素电子排布式与轨道表示式电子排布式电子排布简式价电子排布式轨道表示式 氢H :1s1 1s1 1s1 氦He:1s2 [He]1s2 锂Li :1s22s1 [He]2s1 2s1 铍Be:1s22s2[He]2s2 2s2 硼B :1s22s22p1 [He]2s22p1 2s22p1 碳C :1s22s22p2[He]2s22p2 2s22p2 氮N :1s22s22p3[He]2s22p3 2s22p3 氧O :1s22s22p4 [He]2s22p4 2s22p4

氟F :1s22s22p5 [He]2s22p5 2s22p5 氖Ne:1s22s22p6 [Ne] 2s22p6 钠Na:1s22s22p63s1 [Ne]3s1 3s1 镁Mg:1s22s22p63s2 [Ne]3s2 3s2 铝Al :1s22s22p63s23p1 [Ne]3s23p1 3s23p1 硅Si :1s22s22p63s23p2[Ne]3s23p2 3s23p2 磷P :1s22s22p63s23p3[Ne]3s23p3 3s23p3 硫S :1s22s22p63s23p4[Ne]3s23p43s23p4氯Cl:1s22s22p63s23p5[Ne]3s23p5 3s23p5 氩Ar:1s22s22p63s23p6[Ar] 3s23p6

钾K :1s22s22p63s23p64s1[Ar] 4s1 4s1 钙Ca:1s22s22p63s23p64s2 [Ar] 4s2 4s2 钪Sc:1s22s22p63s23p63d14s2[Ar] 3d14s2 3d14s2 钛Ti :1s22s22p63s23p63d24s2[Ar] 3d24s2 3d24s2 矾V :1s22s22p63s23p63d34s2[Ar] 3d34s23d34s2 铬Cr:1s22s22p63s23p63d54s1[Ar] 3d54s13d54s1 锰Mn:1s22s22p63s23p63d54s2[Ar] 3d54s2 3d54s2 铁Fe:1s22s22p63s23p63d64s2 [Ar] 3d64s23d64s2 钴Co:1s22s22p63s23p63d74s2[Ar] 3d74s2 3d74s2 镍Ni:1s22s22p63s23p63d84s2[Ar] 3d84s2 3d84s2

原子核外电子的排布

【学习目标】 1. 认识原子核外电子排布的轨道能量顺序图; 2. 学会用电子排布式、轨道表示式表示原子结构; 3. 运用能量最低原理、泡利不相容原理、洪特规则书写1~36号元素原子核外电子排布式和轨道表示式。 【学习重、难点】 能量最低原理、泡利不相容原理、洪特规则 【学习方法】自学讨论法、探究总结法 【课时安排】2课时 【教学过程】 一、鲍林近似能级图 多电子原子中各原子轨道能量的高低顺序如下规律: 1.相同电子层上原子轨道能量的高低:ns

b、角量子数l(角量子数l确定原子轨道的形状,并和主量子数n一起决定电子的能级) 角量子数l 0、 1、 2、 3 、4… 相应原子轨道 s、 p、 d、 f 、g… c、磁量子数(磁量子数m决定原子轨道在空间的取向) 磁量子数m = 0,±1,±2… 我国化学家徐光宪总结归纳出能级的相对高低与主量子数n和角量子数l的关系为: 规律:(n+0.7l)愈大则能级愈高 (n+0.7l)第一位数字相同的,能量相近,合并为同一能级组 能级组的划分是导致周期表中化学元素划分为周期的原因 [过渡]描述原子核外电子运动状态涉及电子层、原子轨道和电子自旋。 二、原子核外电子排布所遵循的原理 1.能量最低原理 _____________________________________________________________________________ _____________________________________________________________________________(原子轨道能量高低顺序见上) 2.泡利不相容原理 _____________________________________________________________________________ _____________________________________________________________________________指出:同一原子中,不可能有两个电子处于完全相同的状态。

电子排布式

电子排布式 表示原子核外电子排布的图式之一。有七个电子层,分别用1、2、3、4、5、6、7等数字表示K、L、M、N、O、P、Q等电子层,用s、p、d、f等符号分别表示各电子亚层,并在这些符号右上角用数字表示各亚层上电子的数目。如氧原子的电子排布式为1s2 2s2 2p4。迄今为止,只发现了7个电子层! 定义 用能级的符号及能级中容纳电子数值表达核外电子运动的状态 原理简介 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守泡利不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。 Electronic arrangement type。 排布原理 能量最低原理 电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、4s、3d、4p、5s…… 原子轨道能量的高低(也称能级)主要由主量子数n和角量子数l决定。当l相同时,n越大,原子轨道能量E越高,例如E1s

原子核外电子排布的原理

原子核外电子排布的原理 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前36号元素里,没有例外的情况发生。 核外电子排布原理一——能量最低原理 电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、3d、4s、4p…… 原子轨道能量的高低(也称能级)主要由主量子数n和角量子数l决定。当l相同时,n越大,原子轨道能量E越高,例如E1s<E2s<E3s;E2p<E3p <E4p。当n相同时,l越大,能级也越高,如E3s<E3p<E3d。当n和l 都不同时,情况比较复杂,必须同时考虑原子核对电子的吸引及电子之间的相互排斥力。由于其他电子的存在往往减弱了原子核对外层电子的吸引力,从而使多电子原子的能级产生交错现象,如E4s<E3d,E5s<E4d。Pauling根据光谱实验数据以及理论计算结果,提出了多电子原子轨道的近似能级图。用小圆圈代表原子轨道,按能量高低顺序排列起来,将轨道能量相近的放在同一个方框中组成一个能级组,共有7个能级组。电子可按这种能级图从低至高顺序填入。

核外电子排布规律总结.

原子核外电子排布规律 ①能量最低原理:电子层划分为K

无机化学电子排布式的写法

元素的电子是由元素核电荷数决定的。 现在发现的都在7层内。而每层一般有4个亚层,即s p d f四个亚层,s有1条轨道,p有3条轨道,d有5条轨道,f有7条轨道,每条轨道中最多容纳两个向相反方向旋转的电子。但是第一层没有p d f层,第二层没有d f层,第三层没有f 层,第四层后四个亚层都有。 电子层从内到外依次是s p d f层,其中s层最多2个电子,p层最多6个电子,d层最多10个电子,而f层最多14个电子。例如氢原子的电子排布是1s1,锂原子电子排布是1s22s1,氧的是1s2 2s2 2p4,而钠的是1s2 2s2 2p6 3s1,等等。 基本介绍 表示原子核外电子排布的图式之一。有七个电子层,分别用1、2、3、4、5、6、7等数字表示K、L、M、N、O、P、Q等电子层,用s、p、d、f等符号分别表示各电子亚层,并在这些符号右上角用数字表示各亚层上电子的数目。如氧原子的电子排布式为1s22s22p4。迄今为止,只发现了7个电子层! 原子核外电子排布的原理 处于稳定状态的原子,核外电子将尽可能地按能量最低原理排布,另外,由于电子不可能都挤在一起,它们还要遵守保里不相容原理和洪特规则,一般而言,在这三条规则的指导下,可以推导出元素原子的核外电子排布情况,在中学阶段要求的前3 6号元素里,没有例外的情况发生。 核外电子排布原理一——最低能量原理 电子在原子核外排布时,要尽可能使电子的能量最低。怎样才能使电子的能量最低呢?比方说,我们站在地面上,不会觉得有什么危险;如果我们站在20层楼的顶上,再往下看时我们心理感到害怕。这是因为物体在越高处具有的势能越高,物体总有从高处往低处的一种趋势,就像自由落体一样,我们从来没有见过物体会自动从地面上升到空中,物体要从地面到空中,必须要有外加力的作用。电子本身就是一种物质,也具有同样的性质,即它在一般情况下总想处于一种较为安全(或稳定)的一种状态(基态),也就是能量最低时的状态。当有外加作用时,电子也是可以吸收能量到能量较高的状态(激发态),但是它总有时时刻刻想回到基态的趋势。一般来说,离核较近的电子具有较低的能量,随着电子层数的增加,电子的能量越来越大;同一层中,各亚层的能量是按s、p、d、f的次序增高的。这两种作用的总结果可以得出电子在原子核外排布时遵守下列次序:1s、2s、2p、3s、3p、3d、4s、4p…… 原子轨道能量的高低(也称能级)主要由主量子数n和角量子数l决定。当l相同时,n越大,原子轨道能量E越高,例如E1s<E2s<E3s;E2p<E3p<E4p。当n相同时,l越大,能级也越高,如E3s<E3p<E3d。当n和l都不同时,情况比较复杂,必须同时考虑原子核对电子的吸引及电子之间的相互排斥力。由于其他电子的存在往往减弱了原子核对外层电子的吸引力,从而使多电子原子的能级产生交错现象,如E

核外电子的排布规律

核外电子的排布规律之一 首先,各电子层最多容纳的电子数目是2n2。 其次,最外层电子数目不超过8个(K层为最外层时不超过2个)。 第三,次外层电子数目不超过18个,倒数第三层电子数目不超过32个。 核外电子总是尽先排布在能量最低的电子层里,然后再由里往外依次排布在能量逐步升高的电子层里。 以上几点是互相联系的,不能孤立地理解。 核外电子的排布规律之二 核外电子排布遵循泡利不相容原理、能量最低原理和洪特规则。能量最低原理就是在不违背泡利不相容原理的前提下,核外电子总是尽先占有能量最低的轨道,只有当能量最低的轨道占满后,电子才依次进入能量较高的轨道。也就是尽可能使体系能量最低。洪特规则是在等价轨道(相同电子层、电子亚层上的各个轨道)上排布的电子将尽可能分占不同的轨道,且自旋方向相同。后来量子力学证明,电子这样排布可使能量最低,所以洪特规则可以包括在能量最低原理中,作为能量最低原理的一个补充。 在同一个原子中,离核越近、n越小的电子层能量越低。在同一电子层中,各亚层的能量按s、p、d、f的次序增高的。因此,E1s<E2s<E3s……;E4s<E4p <E4d……。 在多电子的原子里的各个电子之间存在相互作用,研究某个外层电子的运动状态时,必须同时考虑到核及其它电子对它的作用。由于其它电子的存在,往往减弱了原子核对外层电子的作用力,从而使多电子原子的电子能级产生交错现象 核外电子的排布规律之三 (1)泡利不相容原理 泡利不相容原理是奥地利物理学家泡利提出来的。他指出,在同一个原子中,不可能有运动状态完全相同的两个电子存在。或者说,运动状态完全相同的电子在同一原子里是不能并存的、是互不相容的。如果同一原子中的电子前三种运动状态完全一样,那么处于同一轨道上的电子其第四种运动状态——自旋方向必然不同。由此,可以推论:同一原子中每一个轨道上只能容纳两个自旋方向相反的电子。 根据泡利不相容原理可推算出各个电子层可能容纳的电子数为2n2个。 (2)能量最低原理 能量最低原理是容易理解的,象水往低处流以处于势能较低的稳定状态一样,核外电子总是尽先占有能量最低的轨道,只当能量最低的轨道占满后,电子才依次进入能量较高的轨道。这是宇宙间从宏观到微观普遍存在的法则——能量越低越稳定。 ①电子排布时,按电子亚层能量高低排布。在同一电子层上,各亚层的能量顺序

核外电子排布规律总结

原子核外电子排布规律 ①能量最低原理:电子层划分为KvLvMvOvPv对应电子层能量增大;原子核外电子排布按照能量较低者低优先排布原则. ②每个电子层最多只能容纳2n2个电子。 ③最外层最多只能容纳8个电子(K层为最外层时不能超过2个)次外层最多只能容纳18个电子(K 层为次外层时不能超过2个倒数第三层最多只能容纳32个电子 注意:多条规律必须同时兼顾。 简单例子的结构特点: (1)离子的电子排布:主族元素阳离子跟上一周期稀有气体的电子层排布相同,如钠离子、镁离子、铝离子和氖的核外电子排布是相同的。 阴离子更同一周期稀有气体的电子排布相同:负氧离子,氟离子和氖的核外电子排布是相同的。(2)等电子粒子(注意主要元素在周期表中的相对位置) ①10 电子粒子:CH4、N3、NH2、NH、NH4、O2、OH、巴O H3O、F、HF、Ne Na、 Mg2、Al 3等。 ②18 电子粒子:SiH4、P3、Pli、S2、HS、H2S、Cl 、HCI、Ar、K、Ca2、PU 等。特殊情况: F2、H2O2、C2H6、CI^OH '③核外电子总数及质子总数均相同的阳离子有:Na、NH、H3O等;阴离子有:F、OH、 NH,;HS 、CI 等。 前18号元素原子结构的特殊性: (1)原子核中无中子的原子:1H (2)最外层有1个电子的元素:H、Li、Na;最外层有2个电子的元素:Be、Mg He (3)最外层电子总数等于次外层电子数的元素:Be Ar (4)最外层电子数等于次外层电子数2倍的元素:C ;是次外层电子数3倍的元素:O ;是次外层电子数4倍的元素:Ne (5)最外层电子数是内层电子数一半的元素:Li、P (6)电子层数与最外层电子数相等的元素:H、Be Al (7)电子总数为最外层电子数2倍的元素:Be (8)次外层电子数是最外层电子数2倍的元素:Li、Si 元素周期表的规律: (1)最外层电子数大于或等于3而又小于8的元素一定是主族元素,最外层电子数为1或2 的元素可能是主族、副族或0族元素,最外层电子数为8的元素是稀有气体(He例外) (2)在元素周期表中,同周期的U A、川A族元素的原子序数差别有:①第2、3周期(短周

教案《原子核外电子的排布》

二、原子核外电子的排布 [教学目标] 1、知识与技能目标 (1)了解元素原子核外电子排布的基本规律,能用原子(离子)结构示意图表示原子(离子)的核外电子排布 (2)了解原子核外电子的排布规律,元素的金属性和非金属性,元素的化合价、原子半径等随元素核电核数呈周期性变化的规律,认识元素周期率。 2、过程与方法目标 培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。3.情感、态度与价值观 (1)初步体会物质构成的奥秘,培养学生的抽象思维能力、想像力和分析推理能力; (2)树立“结构决定性质”、“物质的粒子性”等辩证唯物主义观点。 [教学重、难点] 构成原子的微粒间的关系和核外电子排布规律。培养分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。了解假说、模型等科学研究方法和科学研究的历程。 [教学过程] [复习提问] 1.构成原子的粒子有哪些,它们之间有何关系? 2.为什么原子不显电性? 3.为什么说原子的质量主要集中原子核上? [引言]我们已经知道,原子是由原子核和电子构成的,原子核的体积很小,仅占原子体积的几千亿分之一,电子在原子内有“广阔”的运动空间。在这“广阔”的空间里,核外电子是怎样运动的呢? [板书]原子核外电子的排布 [交流与讨论1]原子在核外是怎样运动的? [打开书P78页,阅读教材,核外电子是怎么排布的?用两个字概括。 【讲解】原子中的核外电子运动虽然没有固定的轨道(太阳系中的地球等有运动轨道),但却有经常出现的区域,这些区域叫做电子层。 【过渡】电子究竟是怎样分层排布的呢? 【投影】讲解:核外电子最少的有1层,最多的有7层,最靠近原子核的是第一层(K 层)……第一层的能量最低,第七层能量最高。[归纳]按能量高低分层排布。(能量由低到高) K L M N O P Q ……

原子核外电子排布教学设计

一、教学目标 (一)知识与技能目标 引导学生了解原子核外电子的排布规律,使他们能画出1~18号元素的原子结构示意图;了解原子的最外层电子排布与元素的原子得、失电子能力和化合价的关系。 (二)过程与方法目标 通过对原子核外电子的排布规律问题的探讨,培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 (三)情感态度与价值观目标 培养他们的科学态度和科学精神,体验科学研究的艰辛与喜悦。 二、教学重点、难点 (一)知识上重点、难点:核外电子排布规律。 (二)方法上重点、难点:培养分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 三、教学过程 【引言】 首先,请同学们观看一段视频

——这是著名的α粒子散射实验,卢瑟福就是通过这个实验,提出了原子是由原子核和电子构成的核式结构模型的。视频中还介绍了原子核的体积很小,核外有着非常广阔的相对空间,电子就是在这非常“广阔”的空间里作高速的绕核运动。那么电子的绕核运动还有着哪些特征?这些运动的电子在核外又是怎样排布的?这就是本节课我们所要研究的内容。 【板书】二、核外电子排布 【讲述】同学们请看,屏幕上展示的是核外电子的运动特征,我们共同看一下。 (1)质量很小(9.109×10-31kg)。 (2)运动速度快(接近光速)。 (3)运动空间范围小(直径约10-10m)。 【过渡】根据核外电子的运动特征,请同学们充分发挥想象力,电子在核外的运动到底是一个什么样的情形? 【设想猜测】电子在核外的运动到底是一个什么样的情形? 【学生活动】略。 【质疑一】电子的绕核运动有没有固定的轨迹? 【质疑二】电子的绕核运动没有固定的轨迹,是不是说电子绕核运动就没有规律? 【讲述并投影】电子在原子核外的这个极小的空间内作高速运动,时而出现在离核远处,时而出现在离核近处,我们不能同时测定出电子在某一时刻的位置和速度,但是能从理论上统计出它在原子核外某一范围内出现的机会的多少——这就是我们将要在《物质结构与性质》选修教材中加以学习的电子云。 【过渡】同学们太伟大了!我们研究分析原子结构中电子的运动情况,用了不到10 分钟的时间,而科学家们却用去了一个多世纪!让我们踏着科学的足迹,重温这段曲折、坎坷、震撼世人的科学探索过程! 【投影】历史回眸 1.最早提出“原子”一词的是古希腊哲学家德谟克利特,他认为万物都是由原子组成的,原子是不可分割的最小微粒。但是很可惜,由于种种原因,这一伟大的学说没有为人们所重视,被忽视了20多个世纪——这是科学界的一大憾事! 2.直到1803年英国科学家道尔顿通过对当时化学实验的现象分析,创立了近代原子学说,第一次将原子学说从推测转变为科学概念。很长一段时间,人们都认为原子就像道尔顿说得那样,是一个小得不能再小的实心球,里面再也没有什么花样了。

相关主题
文本预览
相关文档 最新文档