当前位置:文档之家› SM8513恒流恒压方案

SM8513恒流恒压方案

SM8513恒流恒压方案
SM8513恒流恒压方案

恒流恒压电路方案

LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。用市电驱动大功率LED 需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。 1 基本工作原理 采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。电路的总体框图如图1所示。 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。LED路灯装在户外更要加强浪涌防护。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。 三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED路灯需要的直流电源。 PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。由于使

用了PFC器件使模块的功率因数达到0.95。

CL1112 12W恒压-恒流LED电源驱动器

12W High Precision CC/CV Primary-Side PWM Driver FEATURES ◆ 5% Constant Voltage Regulation, 5%Constant Current Regulation at Universal AC input ◆ Primary-side Sensing and Regulation Without TL431 and Opto-coupler ◆ Low Start-up Current: 5μA (Typical) ◆ Low Operating Current: 2mA (Typical) ◆ Programmable CV and CC Regulation ◆ Adjustable Constant Current and Output Power Setting ◆ Built-in Secondary Constant Current Control with Primary Side Feedback ◆ Peak-Current-Mode Control ◆ Compensates for transformer inductance tolerances ◆ Compensates for cable voltage drop ◆ Fixed PWM Frequency at 60kHz with Frequency Hopping to Solve EMI Problems ◆ Power on Soft-start ◆ Built-in Leading Edge Blanking (LEB) ◆ Cycle-by-Cycle Current Limiting ◆ VDD Under-Voltage lockout (UVLO) ◆ VDD Over-Voltage Protection(OVP) APPLICATIONS below 12W AC/DC offline SMPS for ◆ Cell Phone Charger ◆ Digital Cameras Charger ◆ Small Power Adapter ◆ Auxiliary Power for PC, TV etc. ◆ Linear Regulator/RCC Replacement CL1112 is offered in SOP-8 and DIP-8 package. TYPICAL APPLICATIONS Pin Configuration The pin map is shown as below for SOP8/DIP8 CL1112

电压控制恒流充电电路设计讲解

《电子技术》课程设计报告 课题:电压控制恒流充电电路设计 班级学号 学生姓名 专业 系别 指导教师 淮阴工学院 电子信息工程系 2013年12月

一、设计目的 电子技术课程设计是模拟电子技术、数字电子技术课程结束后进行的教学环节。其目的是: 1、培养理论联系实际的正确设计思想,训练综合运用已经学过的理论和生产实际知识去分析和解决工程实际问题的能力。 2、学习较复杂的电子系统设计的一般方法,提高基于模拟、数字电路等知识解决电子信息方面常见实际问题的能力,由学生自行设计、自行制作和自行调试。 3、进行基本技能训练,如基本仪器仪表的使用,常用元器件的识别、测量、熟练运用的能力,掌握设计资料、手册、标准和规范以及使用仿真软件、实验设备进行调试和数据处理等。 4、培养学生的创新能力。 二、设计要求 1、充电电流为100mA; 2、控制电压为4.5V和6.5V,当充电电压上升到6.5V时自动断电,当用电电 压下降到4.5V时自动通电; 3、由交流220V市电供电; 4、主要单元电路和元器件参数计算、选择; 5、画出总体电路图; 6、安装自己设计的电路图,按照自己设计的电路图,在通用版上焊接。焊 接完毕后,应对照电路仔细检查,看是否有错接、漏接、虚焊的现象; 7、调试电路; 8、电路性能指标测试; 提交格式上符合要求,内容完整的设计报告。 三、总体设计

(1)在恒流源部分,我们通过利用9012NP硅管其发射级-基极导通电压0.7V 和6,8Ω电阻输出100mA电流。 (2)在充电电路的控制电压部分,接入12V电压,调节Rw1,大约调到4K 左右,经过10k电阻的分压以后,在上部电路中的电位比较器的正向输入端的电压为 4.5V。同理,调节Rw2的大小,使下部电位比较器的反向输入端电压为6.5V。当电压在0-6.5V之间时,上部电路中的电位比较器输出为高电平,下部电路中的电位比较器输出为低电平,电源电压为U0=12V>>1.4V,晶闸管导通,继电器的线圈J1中有电流流过,由电磁感应,常断开关触点导通电源开始给电池充电。当电压增加到超过6.5V时,上面的电压比较器输出低电平,三极管导通,所以J2中有电流流过,常闭开关触点断开,导致晶闸管下端断开,截止工作,J1的常断触点打开,电源停止给电池充电。用电容和电阻组成的充放电回路消耗电压,使电压低于6.5V,但在电压低于4.5V时,上部电路的电位比较器输出为低电平,继电器的触点接在J1-2和J2-2上,电路又处在充电状态,如此循环,这样就实现了电压控制恒流充电了。

恒压与恒功率变量泵要点

PCY14-1B:斜盘式恒压变量柱塞泵-----结构剖视 PCY14-1B:斜盘式恒压变量柱塞泵-----工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 这种变量型式的泵,输出压力小于调定恒压力时,全排量输出压力油,即定量输出,在输出油液的压力达到调定压力时,就自动地调节泵流量,以保证恒压力,满足系统的要求。泵的输出恒压值,根据需要,在调压范围内可以无级调定,泵的结构见图6,该结构将输出的压力油同时通至变量活塞下腔和和恒压阀的控制油入口,当输出压力小于调定恒压力时,作用在恒压阀芯上的油压推力小于调定弹簧力,恒压阀处于开启状态,压力油进入变量活塞上腔,变量活塞压在最低位置,泵全排量输出压力油;当泵在调定恒压力工作时,作用在恒压阀芯上的油压推力等于调定弹簧力,恒压阀的进排油口同时处于开启状态,使变量活塞上下腔的油压推力相等,变量活塞平衡在某一位置工作,若液压阻尼(负载)加大,油压瞬时升高,恒压阀排油口开大、进油口关小,变量活塞上腔比较下腔压力降低、变量活塞向上移动,泵的流量减小,直至压力下降到调定恒压力,这时变量活塞在新的平衡位置工作。反之,若液压阻尼(负载)减小,油压瞬时下降,恒压阀进油口开大,排油口关小,变量活塞上腔比较下腔油压升高,变量活塞向下移动,泵的流量增大,直至压力上升至调定恒压力。

YCY14-1B:斜盘式压力补偿变量(恒功率)柱塞泵/马达-----结构剖视 YCY14-1B:斜盘式压力补偿变量柱塞泵/马达-----工作原理 主体部分(参见结构剖)由传动轴带动缸体旋转,使均匀分布在缸体上的七个柱塞绕传动轴中心线转动,通过中心弹簧将柱滑组件中的滑靴压在变量头(或斜盘)上。这样,柱塞随着缸体的旋转而作往复运动,完成吸油和压油动作。 压力补偿变量泵的出口流量随出口压力的大小近似地在一定范围内按恒功率曲线变化。当来自主体部分的高压油通过通道(a、(b、(c进入变量壳体下腔(d)后,油液经通道(e)分别进入通道(f)和(h),当弹簧的作用力大于由油道(f)进入伺服活塞下端环形面积上的液压推力时,则油液经(h)到上腔(g),

LM358恒流恒压原理

LM358恒流恒压原理 图是由LM358放大器与精密电压调整器TL431构成的恒压、恒流控制电路。 变压器绕组N2感应电压经VD2整流,C2、L1、C3组成的π滤波电路,在C3上得到直流输出电压。 设置N1绕组的目的是当输出短路时IC1也能正常工作,以保证电路的安全。 恒压电路工作原理:U2、ICIB、R6、R7、VD4、R10、U1组成电压控制环路。U2(TL431)是精密电压调整器,阴极K与控制极R直接短路构成精密的2.5V基准电压。R4是U2的限流电阻。2.5V基准电压由电阻R5送到ICIB反相输入端(6脚);而同相输入端(5脚)则由R6、R7的分压比来设定。若输出电压上升,则UR7电压也上升,该电压与反相端2.5V基准电压比较,7脚输出误差信号,再通过VD4和RIO变成电流信号,流入光耦中的LED,进而通过反馈控制网络控制一次侧PWM输出占空比,使输出电压工作在恒 压状态。 恒流电路工作原理:U2、IC1A、R1、R2、VD3、R10、U1组成电流控制环路。R1是输出电流取样电阻, 输出电流在R1上产生R1/IOUT的电压 降。该电压直接送到ICA的同相输入端(3脚),而2.5V基准电压则由R2、R3组成的分压电路,再 将分压电压送到反相输入端(2脚),输出电 流在R1上的电压降与2.5V基准电压分压电压进行比较,1脚输出误差信号,再通过VD3和RIO变成电流信号,改变光耦LED中的电流,进而通过反馈控制网络控制一次侧PWM输出占空比,使输出特性呈显恒流特图性。R8、C4、R9、C5分别是IC1A、ICIB的相位补偿元件。 采用由放大器组成的恒压、恒流控制电路,可实现很高的恒压与恒流精度。因图电路采用放大器形式,因此R1的电阻值可选为mΩ级,对电路转换效率基本无影响。

手机充电器电路设计[1]

手机充电器电路设计 摘要:通过对课程的学习设计。了解手机充电器的工作原理及设计流程,确定相关参数和电路图。 关键字:隔离变压器频率绝缘电阻绝缘强度可燃性自由跌落湿热试验工作原理工作流程 1 前言(李洋) 1 电路设计思想 从手机锂离子二次电池的恒流/恒压充电控制出发,用220V 交流电通过配置的内置储能锂电池对手机锂离子电池充电。电路的具体工作流程如图1所示。 图1 工作流程图 2 电路设计方案 充电芯片选用美信半导体公司的锂电池充电芯片,这款充电芯片具

有很强的充电控制特性,可外接限流型充电电源和P沟道场效应管,能对单节锂电池进行安全有效的快充。其最大特点是在不使用电感的情况下仍能做到很低的功率耗散,且充电控制精度达0.75%;可以实现预充电;具有过压保护和温度保护功能,其浮充方式能够充至最大电池容量。当充电电源和电池在正常的工作温度范围内时,接通电源将启动一次充电过程。充电结束的条件是平均的脉冲充电电流达到快充电流的1%,或时间超出片上预置的充电时间。所选用的充电芯片能够自动检测充电电源,在没有电源时自动关断以减少电池的漏电。启动快充后打开外接的P型场效应管,当检测到电池电压达到设定的门限时进入脉冲充电方式,充电结束时,外接LED指示灯将会进行闪烁提示。 电路工作原理 内置储能电池的充电及其保护电路其中包括:LED显示、热敏电阻,电流反向保护。ADJ引脚通过10kΩ的电阻与内部1.4V的精密基准源相连接,当ADJ对地没有连接电阻时,电池充电电压阈值为缺省值:VBR =4.2V;当需要自行设置充电阈值时,可在ADJ引脚与GND间接一精度为1%的电阻RADJ,阻值由式(1)确定:RADJ=10kΩ/(VBR/VBRC-1) (1) 由图3可知,充电阈值为4.1V,可得RADJ=410k 做手机充电器电路设计,需先对其工作环境进行分析,了解其工作原理。

LED恒流、恒压供电的利与弊

LED恒流、恒压供电的利与弊 现在有关这个问题有很多各种不同似是而非的说法,有人说:在LED的伏安特性上,电压定了,电流也就定了。所以采用恒压和恒流效果是一样的。有人说LED并联时就应该采用恒压电源供电,而LED串联时就应该采用恒流电源供电;有 人说,因为LED是恒流器件,所以要用恒流源供电;有人说,采用市电供电时就应该采用恒压电源供电,采用蓄电池供电时,就应该采用恒流电源供电。至于为什么这样要求,似乎谁也说不明白。 那么,到底是应该采用恒压电源,还是恒流电源供电呢? 首先来看一下LED到底是什么样的器件。因为LED的亮度是和它的正向电流成正比,而且一些LED的结构决定了它的散热也就是功耗。所以大多数LED会给出额定电流,例如Φ5为20mA,1W 的为350mA…等,但这并不等于LED只能 工作于这些额定电流,更不意味着LED就是一个恒流器件。例如Cree的1 瓦LED和3瓦LED是同一型号,电流从350mA 加大到700mA,功率就从1W 加大成3W,所以这个LED可以工作在350-700mA之间的任意值。 要深入了解这个问题首先要知道LED的伏安特性。 1. LED 的伏安特性 LED 的中文名字就是发光二极管,所以它本身就是一个二极管。它的伏安特性和一般的二极管伏安特性非常相似。只不过通常曲线很陡。例如一个20mA的草帽LED的伏安特性如图1所示。 图1. 小功率LED的伏安特性 假如用干电池或蓄电池供电,那么因为LED伏安特性的非线性,很小的电压变化就会引起很大的电流变化,上图中电源电压在3.3V时正向电流为20mA的LED,如果用3节干电池供电,新的电池电压超过1.5V,3节就是4.5V,LED 的电流就会超过100mA,很快就会烧坏。对于1W的大功率LED也是如此,图2是某公司1W的LED伏安特性,而一个

恒流恒压电源

恒流恒压电源 一个直流电源有两种工作状态,一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。这种既具有恒压控制部件,又具有恒流控制部件的电源就叫做恒压恒流电源。 试举一例说明:某恒流恒压电源,通过调节面板上电压调节和电流调节两旋扭,使电源空载输出电压定在100V ,恒流值调在1A ,电源是如何随着负载电阻的变化而自动改变电源工作状态的呢?通过以上介绍,我们可以知道,当输出电流小于1A 时,电源处于恒压工作状态,努力保持输出电压为100V ,而输出电流是随着负载的大小变化而变化,而当电流值趋向大于1A 时,电源处于恒流工作状态,努力保持输出电流为1A ,而输出电压是随着负载的大小变化而变化。当输出电压为100V 时,负载电阻洽好为100 欧,输出电流洽好为1A 时,是电源两种工作状态的转折点,电源既可以说是恒压状态,亦可以说是恒流状态。为此我们可以对这一具体事例,得出下述结论: 当负载电阻R L =100 欧时, 为恒压恒流状态的转折点( 此时电压=100 伏, 电流=1A), 这一概念非常重要。 当R L >100 欧时,电源处于恒压状态(此时电压=100 伏,电流<1 安) 当R L <100 欧时,电源处于恒流工作状态(此时电压<100 伏,电流=1 安) 恒流恒压电源在恒压状态时,电压稳定,电流随着负载电阻的变化而变化,稳压控制单元工作,稳流控制单元休止。 恒流恒压电源在恒流状态时,电流稳定,电压随着负载电阻的变化而变化,稳流控制单元工作,稳压控制单元休止。

SEMICONDUCTOR 5W原边控制高精度恒压恒流控制器

SEMICONDUCTOR CL1129_CN Rev. 2.0 5W原边控制高精度恒压/恒流控制器 概述 CL1129是一款性能优异的原边反馈控制器,它集成了多种保护功能。CL1129最大程度地减少了系统元件数目并采用 SOP8封装,这些使得CL1129较好地应用于低成本的设计中。CL1129具有低电流启动功能和电流采样LEB。同时,CL1129具有过压保护功能,以防止电路在异常情况下被损坏。 特性 ◆5%以内的恒压精度, 5%以内的恒流精度。 ◆原边反馈省去TL431和光耦以降低成本。 ◆低启动电流:1μA(典型值) ◆低静态电流:300μA(典型值) ◆可调输出恒定电压、恒定电流及功率 ◆峰值电流模控制 ◆补偿变压器电感容差 ◆补偿电缆压降 ◆内置前沿消隐电路(LEB) ◆逐周期电流限制 ◆欠压保护(UVLO) ◆VDD OVP保护功能 应用范围 5W低功率的AC/DC离线开关电源应用于:◆手机/无绳电话充电器 ◆数码相机充电器 ◆小功率电源适配器 ◆电脑/电视辅助电源 ◆替代线性电源 CL1129采用SOP8封装。 典型应用 https://www.doczj.com/doc/6212342140.html,

https://www.doczj.com/doc/6212342140.html, SEMICONDUCTOR CL1129_CN Rev. 2.0 打标说明及管脚分布 SOP8 管脚图 丝印字符 丝印字符说明 左示意图 CL1129 芯片型号 Y 年号 W 周号 XXXXX 版本号 管脚描述 管脚号 管脚名 描述 1 VDD 电源端 2 VC 外接低通滤波电容,用于线损补偿 3 FB 输出电压反馈输入端 4 CS 变压器原边电流采样端 5/6 C 高压BJT 的集电极引脚。该引脚连接到变压器原边 7/8 GND 接地端

恒压供水系统(多泵)

目录 1 变频器恒压供水系统简介 (1) 1.1 变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2 恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (4) 2.1 设计任务及要求 (5) 2.2 恒压供水系统主电路设计 (6) 2.3 系统工作过程 (7) 3 器件的选型及介绍 (9) 3.1 变频器简介 (9) 3.1.1 变频器的基本结构与分类 (9) 3.1.2 变频器的控制方式 (9) 3.2 变频器选型 (10) 3.2.1 变频器的控制方式 (10) 3.2.2 变频器容量的选择 (11) 3.2.3 变频器主电路外围设备选择 (13) 3.3 可编程控制器(PLC) (15) 3.3.1 PLC的定义及特点 (15) 3.3.2 PLC的工作原理 (16) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (18) 4.1 PLC的I/O接线图 (18) 4.2 PLC程序 (18) 4.3 变频器参数的设置 (22) 4.3.1 参数复位 (22) 4.3.2 电机参数设置 (22) 总结 (23) 参考文献 (24)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1为供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

恒压恒流源

电子科技大学 第二届“NS”杯电子设计大赛报告

简易数控恒压恒流电源 摘要:本文介绍了数控直流开关电压电流源的原理和设计,整个系统以C8051单片机为控制器,以TL494来作为PWM输出芯片和IR2110作为MOS管的驱动芯片来作为系统的核心部件,我组设计并实现恒定输出10V电压,恒定输出1A,800mA ,500mA电流的要求。整个电路系统简洁高效。能够很好的完成题目所要求指标,并具有过流保护功能。 关键字:开关电源,单片机,数控,恒压恒流 Abstract:A DC numerical control current and voltage source was introduced in this paper. In this article we introduce a theory of a DC current and voltage source and how to design. The system is made up of C8051 which play a role of microcontroller, and TL494 and IR2110 which play central parts of the system. And the whole system can output 10V voltage and 1A,500mA,800mA current。This switch power supply can accomplish the requirements well. And It has the function of current-limiting and auto-resume。 Key words: Switch Power supply, C8051, Numerical –Control, Stable –Voltage and Current

什么叫恒流恒压电源

什么叫恒流恒压电源? 一个直流电源有两种工作状态,一种是恒压状态,按照恒压电源的特征在工作,一种是恒流状态,按照恒流电源的特征在工作。这种电源内部有两个控制单元,一个是稳压控制单元,在负载发生变化的情况下,努力使输出电压保持稳定,前提是输出电流必须小于预先设定的恒流值。实际上在恒压状态时,恒流控制单元处于休止状态,它不干扰输出电压和输出电流。当由于负载电阻逐步减小,使得负载电流增加到预先设定的恒流值时,恒流控制单元开始工作,它的任务是在负载电阻继续减小的情况下,努力使输出电流按预定的恒流值保持不变,为此需要使输出电压随着负载电阻的减小而随之降低,在极端情况下,负载电阻阻值降为零(短路状态),输出电压也随之降到零,以保持输出电流的恒定。这些都是恒流部件的功能,在恒流部件工作时,恒压部件亦处于休止状态,它不再干预输出电压的高低。这种既具有恒压控制部件,又具有恒流控制部件的电源就叫做恒压恒流电源。 试举一例说明:某恒流恒压电源,通过调节面板上电压调节和电流调节两旋扭,使电源空载输出电压定在100V,恒流值调在1A,电源是如何随着负载电阻的变化而自动改变电源工作状态的呢?通过以上介绍,我们可以知道,当输出电流小于1A时,电源处于恒压工作状态,努力保持输出电压为100V,而输出电流是随着负载的大小变化而变化,而当电流值趋向大于1A时,电源处于恒流工作状态,努力保持输出电流为1A,而输出电压是随着负载的大小变化而变化。当输出电压为100V时,负载电阻洽好为100欧,输出电流洽好为1A时,是电源两种工作状态的转折点,电源既可以说是恒压状态,亦可以说

是恒流状态。为此我们可以对这一具体事例,得出下述结论: ①当负载电阻RL=100欧时,为恒压恒流状态的转折点(此时电压=100伏,电流=1A),这一概念非常重要。 ②当RL>100欧时,电源处于恒压状态(此时电压=100伏,电流<1安) ③当RL<100欧时,电源处于恒流工作状态(此时电压<100伏,电流=1安) ④在恒压状态时,电压稳定,电流随着负载电阻的变化而变化,稳压控制单元工作,稳流控制单元休止。 ⑤在恒流状态时,电流稳定,电压随着负载电阻的变化而变化,稳流控制单元工作,稳压控制单元休止。

某恒压恒流电源的电路图及解释

图解电源(转贴,讲得非常好) 电源是最常用的电器,作用是把220V交流转变成需要的直流电,供各种电器使用。除了商品上各种独立的电源外,我们常见的各种适配器、充电器、机箱里用的模块化的(比如计算机用的),都可以认为是电源。对于动手一族(DIY族),电源不仅是最常用的工具,往往也是DIY的对象。也就是说,电源本身构造相对简单,往往可以DIY。 按照类别,电源可以分成线性电源和开关电源两类。线性电源是先采用工频变压器降压,然后整流滤波,再用线性调整管进行稳压的方式,性能可以做得比较好。开关电源是先整流滤波,然后高频振荡,再变压,再整流滤波。由于初始滤波电容电压比较高,因此比能量比较大所以体积比较小,更因为高频振荡频率比工频高得多,因此变压器的体积和重量大大减少,再加上可以采用PWM反馈调节的方式,使得开关电源的效率很高,因此也不需要大体积的散热片,这样,开关电源的体积、重量与同功率的线性电源比大大减少。但是,由于采用高频振荡,其谐波很可能向外发射或通过输出电源和输出电源传 到外部,对通讯设备造成干扰。 值得注意的是,这种干扰并非是全频段的,而是在一些频率上(主要是谐波)有干扰。同时,由于开关电源频率的不确定性,因此干扰频率也是不确定的,大多是变化的。因此,不能简单的用收音机或者电台检查几个频点没有发现有干扰,就能确定某开关电源对通讯设备没有干扰。正规的检查方法是要用频谱仪。 另外,有些电源是固定输出的,有些电源的电压可以在一定范围内可调,还有一些电源可以从0V起调。可调的线性电源要解决好低压输出效率低下的问题,而可调的开关电源 要解决大范围占宽比变化的问题。 大部分电源具备输出显示。一般至少有一个电压表,也有的具备电流表,也有的是电压电流可以转换。根据电压、电流表的类型,可以分成模拟显示电源和数字显示电源,前者用模拟表头显示,而后者用数字表显示。数字显示电源有的是3位显示,也有高精度一些用4位表头显示,甚至更高的位数。高分辨的数字显示电源可以很方便的测量各种电器在不同电压下和不同状态下的耗电,或者可以很方便的测量各种元器件的V-I特性曲线,比如二极管、稳压管的正反向特性,FET、VMOS管的转移特性等。 现在有很多数字电源,即不仅电流和电压表是数字的,而且输入也是数字的。当然,并非数字电源一定是开关的,二者是不相干的,因为数字电源也可以是线性的。数字电源的优势是可以精确的设置电压电流值,多组设置值可以存储起来,甚至可以程序控制(程控电源),完成自动时序输出或者自动测量功能。 还有一类电源,本身带有充电功能,而且在交流电停电后,可以自动转为电池输出,这

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计

本电路实际上是一个恒流源。核器件是集成三端可调稳压器LM317T。 LM317T在电源电压足够的情况下可以保持其+Vout端比其ADJ端电压高 1。25V。请看图中的接法,ADJ端直接与待充电池相连。但ADJ端的内阻很 大(正常情况下ADJ端的电流不会超过50μA),可近似看作开路,但它可以对电 压进行取样。LM317T将+Vout端的电压提高到比ADJ端高1.25V,那么跨 接在+Vout端与ADJ端的电阻上将有1.25V/25.5Ω=0。05A=50mA 的电流流过(25.5Ω为开关打开时,R1与R2并联后的总阻值)。这个电流便流 过电池,对电池进行了恒流充电。 公式与计算、 普通充电电池充电时间计算 一、充电常识 在这里,首先要说明的是,充电是使用充电电池的重要步骤。适当合理的充电对延长电池寿命很有好处,而野蛮胡乱充电将会对电池寿命有很大影响。上一篇曾说过,目前的锂电池基本都是根据各个产品单独封装,互不通用的,因此各个产品也提供各自的充电设备,互不通用,在使用时只要遵循各自的说明书使用即可。所以本篇对电池充电的介绍主要是指镍镉电池和镍氢电池。 对镍隔电池和镍氢电池充电有两种方式,就是我们大家所熟知的“快充”和“慢充”。快充和慢充是充电的一个重要概念,只有了解了快充和慢充才能正确掌握充电。 首先,快充和慢充是个相对的概念。有人曾问,我的充电器充电电流有200mA,是不是快充?这个答案并不绝对,应该回答对于某些电池来说,它是快充,而对于某些电池来说,它只是慢充。那我们究竟怎样来判别快充还是慢充呢? 例如一节5号镍氢电池的电容量为1200mAH,而另一节则为1600mAH。我们把一节电池的电容量称为1C,可见1C只是一个逻辑概念,同样的1C,并不相等。 在充电时,充电电流小于0.1C时,我们称为涓流充电。顾名思义,是指电流很小。一般而言,涓流充电能够把电池充的很足,而不伤害电池寿命,但用涓流充电所花的时间实在太长,因此很少单独使用,而是和其它充电方式结合使用。 充电电流在0.1C-0.2C之间时,我们称为慢速充电。充电电流大于0.2C,小于0.8C则是快速充电。而当充电电流大于0.8C时,我们称之为超高速充电。 正因为1C是个逻辑概念而非绝对值,因此根据1C折算的快充慢充也是一个相对值。前面例子中提到的200mA充电电流对于1200mAH的电池来说是慢充,而对于700mAH的电池来说就是快充。

变频恒压供水设备工作原理及原理图片

变频恒压供水设备工作原理及原理图 变频恒压供水设备工作原理这一相关知识,由兴崛供水为您全面讲述并提供工作原理图。 变频恒压供水设备工作原理:交流电动机的旋转速度与输入电的频率成正比,变频调速供水设备就是基于上述原理,采用压力传感器、可编程控制器、变频器及水泵电机构成以及设定压力为基准的闭环自动调节系统,具有控制水泵恒压供水的功能;通过压力传感器按受管网的压力信号,经微机与设定压力进行比较运算,输出调节参数送给变频器控制其频率的变化。用水量多时,频率提高,电机泵转数加快;反之频率降低,电机泵转数下降,既能保证用户用水又节省电能。 变频恒压供水设备一台变频器控制多台水泵”的多泵控制系统。在这里兴崛供水利用PLC设计一套变频调速恒压供水系统,该系统可根据管网瞬间压力变化自动调节某台水泵的转速和多台水泵的投入及退出,使管网主干管出口端保持在恒定的设定压力值,并满足用户的流量需求,使整个系统始终保持高效节能的最佳状态。可实现恒压变量、双恒压变量等控制方式,多种启停控制方式,该系统可以通过人意修改参数指令(如压力设定值、控制顺序、控制电机数量、压力上下限、PID值、加减速时间等);具有完善的电气安全保护措施,对过流、过压、欠压、过载、断水等故障均能自行诊断并报警。 兴崛变频恒压供水设备是非常理想的一种节能供水设备,节能效果好,结构紧凑,占地面积小,运行稳定可靠,使用寿命长,方案设计灵活,供水压力可调,流量可大可小,完全可以取代水塔、高位水箱及各种气压式供水设备,可彻底免除水质的二次污染。全自动变频恒压供水设备亦用于改造原有老式泵房设备,改造后同样可以达到高效节能、自动恒压供水的目的。 变频恒压供水设备组成: 变频恒压供水设备主要由水泵机组、测压稳压罐、压力传感器、变频控制柜等组成,能

恒压恒流输出式单片开关电源的设计原理

恒压/恒流输出式单片开关电源可简称为恒压/恒流源。其特点是具有两个控制环路,一个是电压控制环,另一个为电流控制环。当输出电流较小时,电压控制环起作用,具有稳压特性,它相当于恒压源;当输出电流接近或达到额定值时,通过电流控制环使IO维持恒定,它又变成恒流源。这种电源特别适用于电池充电器和特种电机驱动器。下面介绍一种低成本恒压/恒流输出式开关电源,其电流控制环是由晶体管构成的,电路简单, 成本低,易于制作。 1.恒压/恒流输出式开关电源的工作原理 7.5V、1A恒压/恒流输出式开关电源的电路如图1所示。它采用一片TOP200Y型开关电源(IC1),配PC817A型线性光耦合器(IC2)。85V~256V交流输入电压u经过EMI滤波器L2、C6)、整流桥(BR)和输入滤波电容(C1),得到大约为82V~375V的直流高压UI,再通过初级绕组接TOP200Y的漏极。由VDZ1和VD1构 成的漏极箝位保护电路,将高频变压器漏感形成的尖峰电压限定在安全范围之内。VDZ1采用BZY97 C200型瞬态电压抑制器,其箝位电压UB=200V。VD1选用UF4005型超快恢复二极管。次级电压经过VD2、C2整流滤波后,再通过L1、C3滤波,获得+7.5V输出。VD2采用3A/70V的肖特基二极管。反馈绕组的输出电压经过VD3、C4整流滤波后,得到反馈电压UFB=26V,给光敏三极管提供偏压。C5为旁路电容,兼作频率补偿电容并决定自动重启频率。R2为反馈绕组的假负载,空载时能限制反馈电压UFB不致升高。 该电源有两个控制环路。电压控制环是由1N5234B型6 2V稳压管(VDZ2)和光耦合器PC817A(IC2)构 成的。其作用是当输出电流较小时令开关电源工作在恒压输出模式,此时VDZ2上有电流通过,输出电压由VDZ2的稳压值(UZ2)和光耦中led的正向压降(UF)所确定。电流控制环则由晶体管VT1和VT2、电流检测电阻R3、光耦IC2、电阻R4~R7、电容C8构成。其中,R3专用于检测输出电流值。VT1采用2N4401型NPN 硅管,国产代用型号为3DK4C;VT2则选2N4403型PNP硅管,可用国产3DK9C代换。R6、R5分别用于设定VT1、VT2的集电极电流值IC1、IC2。R5还决定电流控制环的直流增益。C8为频率补偿电容,防止环路产生自激振荡。在刚通电或自动重新启动时,瞬态峰值电压可使VT1导通,利用R7对其发射结电流进行限制;R4的作用是将VT1的导通电流经VT2旁路掉,使之不通过R1。电流控制环的启动过程如下:随着IO的增大,当IO 接近于1A时,UR3↑→VT1导通→UR6↑→VT2导通,由VT2的集电极给光耦提供电流,迫使UO↓。由UO降低,VDZ2不能被反向击穿,其上也不再有电流通过,因此电压控制环开路,开关电源就自动转入恒流模式。C7为安全电容,能滤除由初、次级耦合电容产生的共模干扰。 该电源既可工作在7.5V稳压输出状态,又能在1A的受控电流下工作。当环境温度范围是0℃~50℃时, 恒流输出的准确度约为±8%。 该电源的输出电压-输出电流(U0-I0)特性如图2所示。由图可见,它具有以下显著特点:

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

恒流恒压电路方案

恒流恒压电路方案(总2页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

LED路灯是低电压、大电流的驱动器件,其发光的强度由流过LED的电流决定,电流过强会引起LED的衰减,电流过弱会影响LED的发光强度,因此LED 的驱动需要提供恒流电源,以保证大功率LED使用的安全性,同时达到理想的发光强度。用市电驱动大功率LED需要解决降压、隔离、PFC(功率因素校正)和恒流问题,还需有比较高的转换效率,有较小的体积,能长时间工作,易散热,低成本,抗电磁干扰,和过温、过流、短路、开路保护等。本文设计的PFC开关电源性能良好、可靠、经济实惠且效率高,在LED路灯使用过程中取得满意的效果。 1 基本工作原理 采用隔离变压器、PFC控制实现的开关电源,输出恒压恒流的电压,驱动LED路灯。电路的总体框图如图1所示。 LED抗浪涌的能力是比较差的,特别是抗反向电压能力。加强这方面的保护也很重要。LED路灯装在户外更要加强浪涌防护。由于电网负载的启甩和雷击的感应,从电网系统会侵入各种浪涌,有些浪涌会导致LED的损坏。因此LED驱动电源应具有抑制浪涌侵入,保护LED不被损坏的能力。EMI滤波电路主要防止电网上的谐波干扰串入模块,影响控制电路的正常工作。 三相交流电经过全桥整流后变成脉动的直流在滤波电容和电感的作用下,输出直流电压。主开关DC/AC电路将直流电转换为高频脉冲电压在变压器的次级输出。变压器输出的高频脉冲经过高频整流、LC滤波和EMI滤波,输出LED 路灯需要的直流电源。 PWM控制电路采用电压电流双环控制,以实现对输出电压的调整和输出电流的限制。反馈网络采用恒流恒压器件TSM101和比较器,反馈信号通过光耦送给PFC器L6561。由于使用了PFC器件使模块的功率因数达到0.95。

恒流恒压充电器的原理与设计

恒流恒压充电器的原理与设计 2009-09-22 09:26 随着高新电子技术的发展各类充电电子产品不断上升,为此云峰电子为朋友们提供些相关恒流充电器的制作与原理分析,请仔细阅读!详情咨询https://www.doczj.com/doc/6212342140.html, 第一类、lm317恒流源电路图 图1、图2分别是用78××和LM317构成的恒流充电电路,两种电路构成形式一致。对于图1的电路,输出电流Io=Vxx/R+IQ,式中Vxx是标称输出电压,IQ是从GND端流出的电流,通常IQ≤5mA。当VI、Vxx及环境温度变化时,IQ的变化较大,被充电电池电压变化也会引起IQ的变化。IQ是Io的一部分,要流过电池,IQ的值与Io相比不可忽略,因而这种电路的恒流效果比较差。对于图2的电路,输出电流Io=VREF/R+IADJ,式中VREF是基准电压,为1.25V,IADJ是从调整端ADJ流出的电流,通常IADJ≤50μA。虽然IADJ也随VI及环境条件的变化而变化,且也是Io的一部分,但由于IADJ仅为78××的IQ的1%,与Io相比,IQ可以忽略。可见LM317的恒流效果较好。 对可充电电池进行恒流充电,用三端稳压集成电路构成恒流充电电路具有元件易购、电路简单的特点。有些读者在设计电路时采用78××稳压块,如《电子报》2001年第2期第十一版刊登的《简单可靠的恒流充电器》及今年第6期第十版的《恒流充电器的改进》一文,均采用7805。78××虽然可接成恒流电路,但恒流效果不如LM317,前者是固定输出稳压IC,后者是可调输出稳压IC,两种芯片的售价又相近,采用LM317才是更为合理的改进。 LM317采用T0-3金属气密封装的耗散功率为20W,采用TO-220塑封结构的耗散功率为15W,负载电流均可达1.5A,使用时需配适当面积的散热器。由于LM317的VREF=1.25V,其最小压差为3V,因此输入电压VI达4.25V就能正常工作。但应注意输出电流Io调得较大时,输入电压VI的范围将减小,超出范围会进入安全保护区工作状态,使用时可从图3的安全工作区保护曲线上查明输入—输出压差(VI-Vo)的范围。 78××与LM317内部均有限流、过热保护功能,后者还有安全工作区保护功能。78××不允许GND端悬空,否则器件极易损坏。LM317即使ADJ端悬空,各种保护功能仍然

相关主题
文本预览
相关文档 最新文档