当前位置:文档之家› 模式识别综述

模式识别综述

模式识别综述
模式识别综述

模式识别综述

摘要:介绍了模式识别系统的组成及各组成部分包含的内容。就统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等模式识别的基本方法进行简单介绍,并分析了其优缺点。最后列举了模式识别在各领域的应用,针对其应用前景作了相应分析。

关键字:模式识别系统、统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别

背景

随着现代科学技术的发展,特别是计算机技术的发展,对事物认识的要求越来越高,根据实际需求,形成了一种模拟人的各种识别能力(主要是视觉和听觉)和认识方法的学科,这个就是模式识别,它是属于一种自动判别和分类的理论。这一理论孕育于20世纪60年代,随着科学技术的发展,特别是20世纪70年代遥感技术的发展和地球资源卫星的发射,人们通过遥感从卫星取得的巨量信息,需要进行空前规模的处理、识别和应用,在此推动下,模式识别技术便得以迅速发展[1]。发展到现在,应用领域已经非常广阔,包括文本分类、语音识别、视频识别、信息检索和数据挖掘等。模式识别技术在生物医学、航空航天、工业生产、交通安全等许多领域发挥着重要的作用[2]。

基本概念

什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称之为模式。但模式所指的不是事物本身,而是我们从事物获取的信息。因此模式往往表现为具有时间或空间分布的信息[3]。

人们在观察各种事物的时候,一般是从一些具体的个别事物或者很小一部分开始的,然后经过长期的积累,随着对观察到的事物或者现象的数量不断增加,就开始在人的大脑中形成一些概念,而这些概念是反映事物或者现象之间的不同或者相似之处,这些特征或者属性使人们对事物自然而然的进行分类。从而窥豹一斑,对于一些事物或者现象,不需要了解全过程,只需要根据事物或者现象的一些特征就能对事物进行认识。人脑的这种思维能力视为“模式”的概念。

模式识别就是识别出特定事物,然后得出这些事物的特征。识别能力是人类和其他生物的一种基本属性,根据被识别的客体的性质可以将识别活动分为具体的客体与抽象的客体两类。诸如字符、图像、音乐、声音等是具体的客体,他们刺激感官,从而被识别。而思想、信仰、言论等则是抽象的客体,这些属于政治、哲学的范畴。我们研究的主要是一些具体客体的识别,而且仅限于研究用机器完

成识别任务有关的基本理论和实用技术[4]。

模式识别的目的就是利用计算机实现人的类识别能力,是对两个不同层次的识别能力的模拟。对信息的理解往往含有推理过程,需要专家系统,知识工程等相关学科的支持。

模式识别系统

一个典型的模式识别系统如图1所示,由数据获取、预处理、特征提取、分类决策及分类器设计五部分组成。一般分为上下两部分:上部分完成未知类别模式的分类;下半部分属于分类器设计的训练过程,利用样品进行训练,确定分类器的具体参数,完成分类器的设计。而分类决策在识别过程中起作用,对待识别的样品进行分类决策[5]。数据获取预处理特征提取分类决策分类结果未知类别模式的分类

图1模式识别系统及识别过程

训练样本输入预处理特征选择确定判别函数

改进判别函数分类器设计

误差检验

模式识别系统组成单元功能如下。

(1)数据获取

用计算机可以运算的符号来表示所研究的对象,一般获取的数据类型有一下几种。

1

二维图像:文字、指纹、地图、照片等。2

一维波形:脑电图、心电图、季节震动波形等。3物理参量和逻辑值:体温、化验数据、参量正常与否的描述。

(2)预处理

对输入测量仪器或其他因素所造成的退化现象进行复原、去噪声,提取有用信息。

(3)特征提取和选择

对原始数据进行变换,得到最能反映分类本质的特征。将维数较高的测量空间(原始数据组成的空间)转变为维数较低的特征空间(分类识别赖以进行的空

间)。

(4)分类决策

在特征空间中用模式识别方法把被识别对象归为某一类别。

(5)分类器设计

基本做法是在样品训练基础上确定判别函数,改进判别函数和误差检验。模式识别的方法

1.统计模式识别

统计模式识别是对模式的统计分类方法,即结合统计概率论的贝叶斯决策系统进行模式识别的技术,又称为决策理论识别方法。识别是从模式中提取一组特性的度量,构成特征向量来表示,然后通过划分特征空间的方式进行分类。利用模式与子模式分层结构的树状信息所完成的模式识别工作,就是结构模式识别或句法模式识别。

统计模式识别主要是利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。

在统计模式识别中,贝叶斯决策规则从理论上解决了分类器的设计问题,但贝叶斯方法计算条件概率函数是非常困难的,因为在实际中条件概率一般是未知的,必须从数据样本中估计出来,然而在估算条件概率的时候,受制于样本的数量。样本太少,不能够表征要研究的某类问题,样本太多,给数据采集会造成一定的麻烦,而且计算量也增大了。为此人们提出了各种解决方法:

1.1最大似然估计和贝叶斯估计

这两种方法的前提条件是各类别的条件概率密度的形式已知,而参数类未知。在此情况下,对现有的样本进行参数估计。参数估计在统计学中是很经典的算法,而最大似然估计和贝叶斯估计也是参数估计中常用的方法。最大似然估计是把待估参数看作确定性的量,只是其取值未知,最大似然估计方法所寻找的是能最好解释训练样本的那个参数值;贝叶斯估计把待估参数看作是符合某种先验概率分布的随机变量,而训练样本的作用就是把先验概率转化为后验概率[6]。实际生活中,用的更多的还是最大似然估计,因为此方法更容易实现,而且样本数据充足的情况下,得到的分类器效果比较好。

1.2监督参数统计法

1)KNN法及其衍生法

KNN法也成为K最近领域法,是模式识别的标准算法之一。其基本原理是先将已经分好类别的训练样本点记入到多维空间,然后将待分类的未知样本也记入空间。考察未知样本的K个近邻,弱近邻中某一个类样本最多,则可以将未

知样本也判为该类。

2)Fisher判别分析法

Fisher判别分析法的基本原理是将多维空间样本点分布的图像投影到二维或者一维,投影方向选择的原则是使两类样本点尽可能分开。求投影方向得到两

类点分开的最佳方向也次方向,由这两个方向张成二维平面,可使投影形成二维分类图;垂直于分界线的法线代表使样本向一类或者二类转化的方向。

此外统计模式识别还有判别函数法(包括线性判别函数法和非线性判别函数法)、特征分析法、主因子分析法等。

统计模式识别的优点:由于其基本方法是基于对模式的统计,统计的方法及处理等由于发展的早,比较成熟,在处理中能考虑干扰、噪声等影响,识别模式基元的能力强。

统计模式识别的缺点:由于统计的模式其数量要求大,对结构复杂的模式抽取特征困难。若数据量小则不能反映模式的结构特征,难以归纳模式的性质,难

以从整体角度考虑识别问题。

2.结构模式识别

对于较复杂的模式,对其描述需要很多数值特征,从而增加了复杂度。结构模式识别通过采用一些比较简单的子模式组成多级结构来描述一个复杂的模式。基本思路是先将模式分为若干个子模式,子模式再分解成简单的子模式,然后子模式再分解,直到根据研究的需要不再需要细分的程度。最后一级最简单的子模式称为模式基元[7]。

结构模式识别的优点:由于采用模式分为若干子模式,子模式再分解到基元,这样其识别方便,可以从简单的基元开始,逐步推理,由简至繁。它能反映模式的结构特性,对模式的性质能很好的描述出来,对图像畸变的抗干扰能力较强。

结构模式识别的缺点:当存在干扰及噪声时,对基元的影响很大,抽取基元

困难,且容易将噪声一块儿抽取,造成失误。

3.模糊模式识别

模糊模式识别是以模糊理论和模糊集合数学为支撑的一种识别方法。模糊集合是指没有明确的边界的集合。例如:“水很烫”,“枇杷很大”,“某学生考试成绩一般”,“这件衣服很贵”等,这些都是模糊集合。但是虽然模糊,缺可以通过一些方法表征出来,因此也可以说这个是清晰的。模糊集合理论是通过隶属度来描述元素的集合程度,主要用于解决不确定性问题。在平常的事物中,由于噪声、扰动、测量误差等因素影响,使得不同模式类的边界不明确,然而这些不明确有模糊集合的性质,因此在模式识别中可以把模式类当做模糊集合,利用模糊理论的方法对模式进行分类,从而解决问题。

模糊模式识别的优点:由于采用了模糊推理的方法,用隶属函数作为样本和模板的度量,故能反映模式的整体特征,针对样品中的干扰和畸变,有很强的剔除能力。

模糊模式识别的缺点:模糊规则往往是根据经验的来的,准确合理的隶属函数往往难以建立,从而也限制了它的应用。

4.神经网络模式识别

人工神经网络是由大量简单的处理单元广泛互连而成的复杂网络,起源于对生物神经系统的研究。它将若干处理单元(即神经元)通过一定的互连模型连结成一个网络,这个网络通过一定的机制(如BP 网络)可以模仿人的神经系统的动作过程,以达到识别分类的目的。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。神经网络侧重于模拟和实现人认知过程中的感知觉过程、形象思维、分布式记忆、自学习和自组织过程,与符号处理是一种互补的关系。但神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习的能力,特别适用于处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题[8]

神经网络模式识别的优点:由于其是由模式的基元互连而成,能够反映局部信息,可以处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题。针对样品有较大的缺损或畸变,它能很好的纠正。

神经网络模式识别的缺点:模型在不断丰富与完善,目前能识别的程式类还不够多。5.多分类器融合

多分类器融合,也称为多分类器集成,就是融合多个分类器提供的信息,得到更加精确的分类结果[7]。多分类器融合常见的结构有三种:并行结构、串行结构、串并行结构。输入

分类器1输出

集成输出分类器3分类器2分类器N

图3多分类器集成的串并行结构

分类器1分类器N 输出

集成

分类器2分类器3输入图2多分类器集成的并行结构

分类器1分类器2分类器N 输入

输出输出

输出

图4多分类器集成的串行

图2所示的并行结构中,各分类器是独立进行设计的,他们之间没有关联。图3所示的串并行结构是串行结构中某一级的分类器由多个并行结构的分类器组成,从而有串行结构和并行结构的特点。图4所示的串行结构中,前一级分类器为后一级分类器提供信息,它们之间有一定的关联。

模式识别的应用

经过几十年的迅速发展,如今模式识别已经广泛应用于各个领域,这些领域包括农业、工业、医学、自然科学和社会科学等。

在农业中,模式识别用于分析农产品的收成;分析土壤成分,以决定种植何种作物,或者种植某种作物需要的养料是否充足,最终达到增产的目的;在作物生长的过程中,对作物的施肥、浇水等进行智能控制。

工业生产中,模式识别的应用可谓种类繁多,枚不胜举,有文字识别、过程控制(根据图像控制一些机械等)、语音分析、地下探测、签名分析、图像处理、冶金和建材等。

医学中主要有药物作用研究、心电图与向量心电图分析、脑电图描绘与神经生物信号处理、放射性同位素检查、显微观察与生物医学数据分析、基因染色体研究等[4]。

自然科学中,模式识别在天文、地球和行星探测、地质、卫星数据分析、遥远星球生命探测等方面应用广泛。

以上的种种应用都是随着问题的出现而出现的解决方法,至今模式识别还没有发展成统一的、有效的可以应用于所有模式识别的理论。当前有一个普遍的看法是:不存在对所有的模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的是一个工具袋,我们所要做的是结合具体问题把模式识别方法结合起来,把模式识别与人工智能中的启发式搜索结合起来,把人工神经网络、不确定方法、智能技术结合起来,深入掌握各种工具的效能和应用的可能性,互相取长补短,开创模式识别应用的新局面[5]。

模式识别的发展前景

模式识别是人工只能的一部分,在未来是信息化、智能化、网络化的时代,模式识别将得到更大的发展,具有广阔的应用前景。类人机器人作为今后研究的主流,要让其具有人类的听觉、视觉、感知等能力,这些都能用模式识别来实现。第六代计算机,也称生物计算机,借助于生物工程研发,具有自学习自组织能力,相关问题也能用到模式识别的知识。如今智能监控系统(如安防、智能交通、智

能小区、智能家居等)的需求也越来越强烈。图像检索、视频检索等,也是互联网开发中的重点研究方向。智能终端,智能手机、智能电视等产品的应用开发。这些都离不开模式识别,而且目前的模式识别技术还不够成熟,有待于更进一步的研究,一些高校针对研究生也开设了与模式识别相关的专业,所以在今后的社会需求和科学研究中,模式识别将会有更加广阔的舞台。

参考文献

[1]舒宁马洪超孙和利.模式识别理论与方法[M]武汉:武汉大学出版社2004.12

[2]张芳肖志涛韩晓军吴骏刘丽杰.模式识别课程教学改革思考[J]计算机教育第四期,2012.5

[3]边肇祺张学工等编著.模式识别(第二版)[M]北京:清华大学出版社,1999.12

[4]盛立东.模式识别导论北京:北京邮电大学出版社,2010.8

[5]杨淑莹.模式识别与智能计算:Matlab技术实现(第二版).北京:电子工业出版社,2011.8

[6]接标刘冠晓冯乔生.统计模式识别的研究[J]云南师范大学学报,2005.11

[7]李弼程邵美珍黄洁.模式识别原理与应用[M]西安:西安电子科技大学出版社,2008.2

[8]宋佳.模式识别综述及汉字识别的原理[J]China Academic Journal Electronic Publishing House,2007.9

北邮模式识别课堂作业答案(参考)

第一次课堂作业 1.人在识别事物时是否可以避免错识 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅 到的到底是真是的,还是虚假的 3.如果不是,那么你依靠的是什么呢用学术语言该如何表示。 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率 评价分类器性能。如果不采用统计学,你是否能想到还有什么合理地分类 器性能评价指标来替代错误率 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算 . 从不同事物所具有的不同属性为出发点认识事物. 一种是对事物的属性进行度量,属于定量的表示方法(向量表示法 )。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题,如”天气预报”),说明: 先验概率、后验概率和类条件概率 按照最小错误率如何决策 按照最小风险如何决策 ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率: 指根据以往经验和分析得到的该老师点名的概率,即为先验概率 P(ωi ) 后验概率: 在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

模式识别研究进展-刘成林and谭铁牛

模式识别研究进展 刘成林,谭铁牛 中国科学院自动化研究所 模式识别国家重点实验室 北京中关村东路95号 摘要 自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,是人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt的感知机[1]和Nilsson的学习机[2]就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20世纪80年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。 模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain等人的综述[3]已经全面介绍了2000年以前模式分类方面的进展,本文侧重于2000年以后的研究进展。

统计模式识别方法

统计模式识别方法 在嗅觉模拟技术领域中,模式识别问题就是由气敏传感器阵列的测量空间向被测对象的的分类或分级空间转化的问题。由于这种模式空间的变化对识别或鉴别结果有着较大的影响,因此模式识别算法的研究和讨论始终较为活跃,各种模式识别方法层出不穷,有力推动了嗅觉模拟技术的应用进程。下面介绍几种常用的统计模式识别方法。 1统计模式识别概述 统计方法,是发展较早也比较成熟的一种方法。被识别对象首先数字化,变换为适于计算机处理的数字信息。一个模式常常要用很大的信息量来表示。许多模式识别系统在数字化环节之后还进行预处理,用于除去混入的干扰信息并减少某些变形和失真。随后是进行特征抽取,即从数字化后或预处理后的输入模式中抽取一组特征。所谓特征是选定的一种度量,它对于一般的变形和失真保持不变或几乎不变,并且只含尽可能少的冗余信息。特征抽取过程将输入模式从对象空间映射到特征空间。这时,模式可用特征空间中的一个点或一个特征矢量表示。这种映射不仅压缩了信息量,而且易于分类。在决策理论方法中,特征抽取占有重要的地位,但尚无通用的理论指导,只能通过分析具体识别对象决定选取何种特征。特征抽取后可进行分类,即从特征空间再映射到决策空间。为此而引入鉴别函数,由特征矢量计算出相应于各类别的鉴别函数值,通过鉴别函数值的比较实行分类。 统计模式识别的技术理论较完善,方法也很多,通常较为有效,现已形成了一个完整的体系。尽管方法很多,但从根本上讲,都是利用各类的分布特征,即直接利用各类的概率密度函数、后验概率等,或隐含地利用上述概念进行识别。其中基本的技术为聚类分析法、判别类域代数界面法、统计决策法、最邻近法等。在聚类分析中,利用待分类模式之间的“相似性”进行分类,较相似的作为一类,较不相似的作为另外一类。在分类过程中不断地计算所划分的各类的中心,一个待分类模式与各类中心的距离作为对其分类的依据。这实际上在某些设定下隐含地利用了概率分布概念,因常见的概率密度函数中,距期望值较近的点概密值较大。该类方法的另一种技术是根据待分类模式和已指判出类别的模式的距离来确定其判别,这实际上也是在一定程度上利用了有关的概念。判别类域界面法中,用已知类别的训练样本产生判别函数,这相当于学习或训练。根据待分类模式

北邮模式识别课堂作业答案(参考)

第一次课堂作业 ? 1.人在识别事物时是否可以避免错识? ? 2.如果错识不可避免,那么你是否怀疑你所看到的、听到的、嗅到的到底 是真是的,还是虚假的? ? 3.如果不是,那么你依靠的是什么呢?用学术语言该如何表示。 ? 4.我们是以统计学为基础分析模式识别问题,采用的是错误概率评价分类 器性能。如果不采用统计学,你是否能想到还有什么合理地分类器性能评价指标来替代错误率? 1.知觉的特性为选择性、整体性、理解性、恒常性。错觉是错误的知觉,是在特定条件下产生的对客观事物歪曲的知觉。认知是一个过程,需要大脑的参与.人的认知并不神秘,也符合一定的规律,也会产生错误 2.不是 3.辨别事物的最基本方法是计算.从不同事物所具有的不同属性为出发点认识事物.一种是对事物的属性进行度量,属于定量的表示方法(向量表示法)。另一种则是对事务所包含的成分进行分析,称为定性的描述(结构性描述方法)。 4.风险 第二次课堂作业 ?作为学生,你需要判断今天的课是否点名。结合该问题(或者其它你熟悉的识别问题, 如”天气预报”),说明: ?先验概率、后验概率和类条件概率? ?按照最小错误率如何决策? ?按照最小风险如何决策? ωi为老师点名的事件,x为判断老师点名的概率 1.先验概率:指根据以往经验和分析得到的该老师点名的概率,即为先验概率P(ωi ) 后验概率:在收到某个消息之后,接收端所了解到的该消息发送的概率称为后验概率。 在上过课之后,了解到的老师点名的概率为后验概率P(ωi|x) 类条件概率:在老师点名这个事件发生的条件下,学生判断老师点名的概率p(x| ωi ) 2. 如果P(ω1|X)>P(ω2|X),则X归为ω1类别 如果P(ω1|X)≤P(ω2|X),则X归为ω2类别 3.1)计算出后验概率 已知P(ωi)和P(X|ωi),i=1,…,c,获得观测到的特征向量X 根据贝叶斯公式计算 j=1,…,x 2)计算条件风险

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

模式识别作业2

作业一: 在一个10类的模式识别问题中,有3类单独满足多类情况1,其余的类别满足多类情况2。问该模式识别问题所需判别函数的最少数目是多少? 答案:将10类问题可看作4类满足多类情况1的问题,可将3类单独满足多类情况1的类找出来,剩下的7类全部划到4类中剩下的一个子类中。再在此子类中,运用多类情况2的判别法则进行分类,此时需要7*(7-1)/2=21个判别函数。故共需要4+21=25个判别函数。 作业二: 一个三类问题,其判别函数如下: d1(x)=-x1, d2(x)=x1+x2-1, d3(x)=x1-x2-1 1.设这些函数是在多类情况1条件下确定的,绘出其判别界 面和每一个模式类别的区域。 2.设为多类情况2,并使:d12(x)= d1(x), d13(x)= d2(x), d23(x)= d3(x)。绘出其判别界面和多类情况2的区域。 3. 设d1(x), d2(x)和d3(x)是在多类情况3的条件下确定的,绘 出其判别界面和每类的区域。 答案: 1

2

3 作业三: 两类模式,每类包括5个3维不同的模式,且良好分布。如果它们是线性可分的,问权向量至少需要几个系数分量?假如要建立二次的多项式判别函数,又至少需要几个系数分量?(设模式的良好分布不因模式变化而改变。) 答案:如果它们是线性可分的,则至少需要4个系数分量;如果要建立二次的多项式判别函数,则至少需要10 25 C 个系数分量。 作业四: 用感知器算法求下列模式分类的解向量w :

ω1: {(0 0 0)T, (1 0 0)T, (1 0 1)T, (1 1 0)T} ω2: {(0 0 1)T, (0 1 1)T, (0 1 0)T, (1 1 1)T} 答案:将属于ω2的训练样本乘以(-1),并写成增广向量的形式。 x①=(0 0 0 1)T,x②=(1 0 0 1)T,x③=(1 0 1 1)T,x④=(1 1 0 1)T x⑤=(0 0 -1 -1)T,x⑥=(0 -1 -1 -1)T,x⑦=(0 -1 0 -1)T,x⑧=(-1 -1 -1 -1)T 第一轮迭代:取C=1,w(1)=(0 0 0 0)T 因w T(1)x①=(0 0 0 0)(0 0 0 1)T=0≯0,故w(2)=w(1)+x①=(0 0 0 1) 因w T(2)x②=(0 0 0 1)(1 0 0 1)T =1>0,故w(3)=w(2)=(0 0 0 1)T 因w T(3)x③=(0 0 0 1)(1 0 1 1)T=1>0,故w(4)=w(3)=(0 0 0 1)T 因w T(4)x④=(0 0 0 1)(1 1 0 1)T=1>0,故w(5)=w(4)=(0 0 0 1)T 因w T(5)x⑤=(0 0 0 1)(0 0 -1 -1)T=-1≯0,故w(6)=w(5)+x⑤=(0 0 -1 0)T 因w T(6)x⑥=(0 0 -1 0)(0 -1 -1 -1)T=1>0,故w(7)=w(6)=(0 0 -1 0)T 因w T(7)x⑦=(0 0 -1 0)(0 -1 0 -1)T=0≯0,故w(8)=w(7)+x⑦=(0 -1 -1 -1)T 因w T(8)x⑧=(0 -1 -1 -1)(-1 -1 -1 -1)T=3>0,故w(9)=w(8)=(0 -1 -1 -1)T 因为只有对全部模式都能正确判别的权向量才是正确的解,因此需进行第二轮迭代。 第二轮迭代:

模式识别课程设计

模式识别课程设计 聚类图像分割 一.图像分割概述 图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。这些部分常称为目标或前景(其他部分称为背景)。它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。 图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图象分割应用在许多方面,例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结果很大程度上

依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果,原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。 二.常用的图像分割方法 1.基于阈值的分割方法 包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。

模式识别大作业02125128(修改版)

模式识别大作业 班级 021252 姓名 谭红光 学号 02125128 1.线性投影与Fisher 准则函数 各类在d 维特征空间里的样本均值向量: ∑∈= i k X x k i i x n M 1 ,2,1=i (1) 通过变换w 映射到一维特征空间后,各类的平均值为: ∑∈= i k Y y k i i y n m 1,2,1=i (2) 映射后,各类样本“类内离散度”定义为: 22 ()k i i k i y Y S y m ∈= -∑,2,1=i (3) 显然,我们希望在映射之后,两类的平均值之间的距离越大越好,而各类的样本类内离 散度越小越好。因此,定义Fisher 准则函数: 2 1222 12||()F m m J w s s -= + (4) 使F J 最大的解* w 就是最佳解向量,也就是Fisher 的线性判别式. 从 )(w J F 的表达式可知,它并非w 的显函数,必须进一步变换。 已知: ∑∈= i k Y y k i i y n m 1,2,1=i , 依次代入上两式,有: i T X x k i T k X x T i i M w x n w x w n m i k i k === ∑∑∈∈)1 (1 ,2,1=i (5) 所以:2 21221221||)(||||||||M M w M w M w m m T T T -=-=- w S w w M M M M w b T T T =--=))((2121 (6)

其中:T b M M M M S ))((2121--= (7) b S 是原d 维特征空间里的样本类内离散度矩阵,表示两类均值向量之间的离散度大 小,因此,b S 越大越容易区分。 将(4.5-6) i T i M w m =和(4.5-2) ∑∈= i k X x k i i x n M 1代入(4.5-4)2i S 式中: ∑∈-= i k X x i T k T i M w x w S 22)( ∑∈?--? =i k X x T i k i k T w M x M x w ))(( w S w i T = (8) 其中:T i X x k i k i M x M x S i k ))((--= ∑=,2,1=i (9) 因此:w S w w S S w S S w T T =+=+)(212221 (10) 显然: 21S S S w += (11) w S 称为原d 维特征空间里,样本“类内离散度”矩阵。 w S 是样本“类内总离散度”矩阵。 为了便于分类,显然 i S 越小越好,也就是 w S 越小越好。

基于聚类的图像分割方法综述

信息疼术2018年第6期文章编号=1009 -2552 (2018)06 -0092 -03 DOI:10.13274/https://www.doczj.com/doc/6212143186.html,ki.hdzj.2018. 06.019 基于聚类的图像分割方法综述 赵祥宇\陈沫涵2 (1.上海理工大学光电信息与计算机学院,上海200093; 2.上海西南位育中学,上海200093) 摘要:图像分割是图像识别和机器视觉领域中关键的预处理操作。分割理论算法众多,文中 具体介绍基于聚类的分割算法的思想和原理,并将包含的典型算法的优缺点进行介绍和分析。经过比较后,归纳了在具体应用中如何对图像分割算法的抉择问题。近年来传统分割算法不断 被科研工作者优化和组合,相信会有更多的分割新算法井喷而出。 关键词:聚类算法;图像分割;分类 中图分类号:TP391.41 文献标识码:A A survey of image segmentation based on clustering ZHAO Xiang-yu1,CHEN Mo-han2 (1.School of Optical Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Southwest Weiyu Middle School,Shanghai200093,China) Abstract:Image segmentation is a key preprocessing operation in image recognition and machine vision. There are many existing theoretical methods,and this paper introduces the working principle ol image segmentation algorithm based on clustering.Firstly,the advantages and disadvantages ol several typical algorithms are introduced and analyzed.Alter comparison,the paper summarizes the problem ol the selection ol image segmentation algorithm in practical work.In recent years,the traditional segmentation algorithms were improved and combined by the researchers,it believes that more new algorithms are blown out. Key words:clustering algorithm;image segmentation;classilication 0引百 近年来科学技术的不断发展,计算机视觉和图像 识别发挥着至关重要的作用。在实际应用和科学研 究中图像处理必不可少,进行图像处理必然用到图像 分割方法,根据检测图像中像素不重叠子区域,将感 兴趣目标区域分离出来。传统的图像分割方法:阈值 法[1]、区域法[2]、边缘法[3]等。近年来传统分割算法 不断被研究人员改进和结合,出现了基于超像素的分 割方法[4],本文主要介绍超像素方法中基于聚类的经 典方法,如Mean Shift算法、K-m eans 算法、Fuzzy C-mean算法、Medoidshilt算法、Turbopixels算法和 SLIC 算法。简要分析各算法的基本思想和分割效果。 1聚类算法 1.1 Mean Shil't算法 1975年,Fukunaga[5]提出一种快速统计迭代算法,即Mean Shilt算法(均值漂移算法)。直到1995 年,Cheng[6]对其进行改进,定义了核函数和权值系 数,在全局优化和聚类等方面的应用,扩大了 Mean shil't算法适用范围。1997至2003年间,Co-maniciu[7-9]提出了基于核密度梯度估计的迭代式 搜索算法,并将该方法应用在图像平滑、分割和视频 跟踪等领域。均值漂移算法的基本思想是通过反复 迭代计算当前点的偏移均值,并挪动被计算点,经过 反复迭代计算和多次挪动,循环判断是否满足条件, 达到后则终止迭代过程[10]。Mean shil't的基本形 式为: 收稿日期:2017-06 -13 基金项目:国家自然科学基金资助项目(81101116) 作者简介:赵祥宇(1992-),男,硕士研究生,研究方向为数字图像处理。 —92 —

模式识别上机作业[1]培训课件

模式识别上机作业 队别:研究生二队 姓名:孙祥威 学号:112082

作业一: 1{(0,0),(0,1)} ω=, 2{(1,0),(1,1)} ω=。用感知器固定增量法求判别函数,设 1(1,1,1) w=,1 k ρ=。写程序上机运行,写出判别函数,打出图表。 解答: 1、程序代码如下: clc,clear w=[0 0 1; 0 1 1; -1 0 -1; -1 -1 -1]; W=[1 1 1]; rowk=1; flag=1; flagS=zeros(1,size(w,1)); k=0; while flag for i=1:size(w,1) if isempty(find(flagS==0)) flag=0; break; end k=k+1; pb=w(i,:)*W'; if pb<=0 flagS(i)=0; W=W+rowk*w(i,:); else flagS(i)=1; end end end W,k wp1=[0 0; 0 1;]; wp2=[1 0; 1 1]; plot(wp1(:,1),wp1(:,2),'o')

hold on plot(wp2(:,1),wp2(:,2),'*') hold on y=-0.2:1/100:1.2; plot(1/3*ones(1,size(y)),y,'r-') axis([-0.25 1.25 -0.25 1.25]) 2、判别函数。计算得到增广权矢量为*(3,0,1)T w =-,故判别函数表达式为: 1310x -+= 3、分类示意图: 图 1 感知器算法分类结果图 作业二: 在下列条件下,求待定样本(2,0)T x =的类别,画出分界线,编程上机。 1、二类协方差相等;2、二类协方差不等。 训练样本号k 1 2 3 1 2 3 特征1x 1 1 2 -1 -1 -2

数据挖掘中的聚类算法综述

收稿日期:2006201204;修返日期:2006203219基金项目:国家自然科学基金资助项目(60473117) 数据挖掘中的聚类算法综述 3 贺 玲,吴玲达,蔡益朝 (国防科学技术大学信息系统与管理学院,湖南长沙410073) 摘 要:聚类是数据挖掘中用来发现数据分布和隐含模式的一项重要技术。全面总结了数据挖掘中聚类算法的研究现状,分析比较了它们的性能差异和各自存在的优点及问题,并结合多媒体领域的应用需求指出了其今后的发展趋势。 关键词:数据挖掘;聚类;聚类算法 中图法分类号:TP391 文献标识码:A 文章编号:100123695(2007)0120010204 Survey of Clustering A lgorith m s in Data M ining HE L ing,WU L ing 2da,CA I Yi 2chao (College of Infor m ation Syste m &M anage m ent,N ational U niversity of D efense Technology,Changsha Hunan 410073,China ) Abstract:Clustering is an i m portant technique in Data M ining (DM )f or the discovery of data distributi on and latent data pattern .This paper p r ovides a detailed survey of current clustering algorith m s in DM at first,then it makes a comparis on a mong the m,illustrates the merits existing in the m,and identifies the p r oblem s t o be s olved and the ne w directi ons in the fu 2ture according t o the app licati on require ments in multi m edia domain .Key works:Data M ining;Clustering;Clustering A lgorith m 1 引言 随着信息技术和计算机技术的迅猛发展,人们面临着越来越多的文本、图像、视频以及音频数据,为帮助用户从这些大量数据中分析出其间所蕴涵的有价值的知识,数据挖掘(Data M ining,DM )技术应运而生。所谓数据挖掘,就是从大量无序 的数据中发现隐含的、有效的、有价值的、可理解的模式,进而发现有用的知识,并得出时间的趋向和关联,为用户提供问题求解层次的决策支持能力。与此同时,聚类作为数据挖掘的主要方法之一,也越来越引起人们的关注。 本文比较了数据挖掘中现有聚类算法的性能,分析了它们各自的优缺点并指出了其今后的发展趋势。 2 DM 中现有的聚类算法 聚类是一种常见的数据分析工具,其目的是把大量数据点的集合分成若干类,使得每个类中的数据之间最大程度地相似,而不同类中的数据最大程度地不同。在多媒体信息检索及数据挖掘的过程中,聚类处理对于建立高效的数据库索引、实现快速准确的信息检索具有重要的理论和现实意义。 本文以聚类算法所采用的基本思想为依据将它们分为五类,即层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法以及用于高维数据的聚类算法,如图1所示。 聚类 层次聚类算法 聚合聚类:Single 2L ink,Comp lete 2L ink,Average 2L ink 分解聚类 分割聚类算法基于密度的聚类基于网格的聚类 基于图论的聚类 基于平方误差的迭代重分配聚类:概率聚类、最近邻 聚类、K 2medoids 、K 2means 基于约束的聚类算法 机器学习中的聚类算法 人工神经网络方法 基于进化理论的方法:模拟退火、遗传算法用于高维数据的聚类算法 子空间聚类 联合聚类 图1 聚类算法分类示意图 211 层次聚类算法 层次聚类算法通过将数据组织成若干组并形成一个相应的树状图来进行聚类,它又可以分为两类,即自底向上的聚合层次聚类和自顶向下的分解层次聚类。聚合聚类的策略是先将每个对象各自作为一个原子聚类,然后对这些原子聚类逐层进行聚合,直至满足一定的终止条件;后者则与前者相反,它先将所有的对象都看成一个聚类,然后将其不断分解直至满足终止条件。 对于聚合聚类算法来讲,根据度量两个子类的相似度时所依据的距离不同,又可将其分为基于Single 2L ink,Comp lete 2L ink 和Average 2L ink 的聚合聚类。Single 2L ink 在这三者中应用最为广泛,它根据两个聚类中相隔最近的两个点之间的距离来评价这两个类之间的相似程度,而后两者则分别依据两类中数据点之间的最远距离和平均距离来进行相似度评价。 CURE,ROCK 和CHAME LE ON 算法是聚合聚类中最具代 表性的三个方法。 Guha 等人在1998年提出了C URE 算法 [1] 。该方法不用 单个中心或对象来代表一个聚类,而是选择数据空间中固定数目的、具有代表性的一些点共同来代表相应的类,这样就可以

模式识别综述

模式识别综述 摘要:介绍了模式识别系统的组成及各组成部分包含的内容。就统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等模式识别的基本方法进行简单介绍,并分析了其优缺点。最后列举了模式识别在各领域的应用,针对其应用前景作了相应分析。 关键字:模式识别系统、统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别 背景 随着现代科学技术的发展,特别是计算机技术的发展,对事物认识的要求越来越高,根据实际需求,形成了一种模拟人的各种识别能力(主要是视觉和听觉)和认识方法的学科,这个就是模式识别,它是属于一种自动判别和分类的理论。这一理论孕育于20世纪60年代,随着科学技术的发展,特别是20世纪70年代遥感技术的发展和地球资源卫星的发射,人们通过遥感从卫星取得的巨量信息,需要进行空前规模的处理、识别和应用,在此推动下,模式识别技术便得以迅速发展[1]。发展到现在,应用领域已经非常广阔,包括文本分类、语音识别、视频识别、信息检索和数据挖掘等。模式识别技术在生物医学、航空航天、工业生产、交通安全等许多领域发挥着重要的作用[2]。 基本概念 什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称之为模式。但模式所指的不是事物本身,而是我们从事物获取的信息。因此模式往往表现为具有时间或空间分布的信息[3]。 人们在观察各种事物的时候,一般是从一些具体的个别事物或者很小一部分开始的,然后经过长期的积累,随着对观察到的事物或者现象的数量不断增加,就开始在人的大脑中形成一些概念,而这些概念是反映事物或者现象之间的不同或者相似之处,这些特征或者属性使人们对事物自然而然的进行分类。从而窥豹一斑,对于一些事物或者现象,不需要了解全过程,只需要根据事物或者现象的一些特征就能对事物进行认识。人脑的这种思维能力视为“模式”的概念。 模式识别就是识别出特定事物,然后得出这些事物的特征。识别能力是人类和其他生物的一种基本属性,根据被识别的客体的性质可以将识别活动分为具体的客体与抽象的客体两类。诸如字符、图像、音乐、声音等是具体的客体,他们刺激感官,从而被识别。而思想、信仰、言论等则是抽象的客体,这些属于政治、哲学的范畴。我们研究的主要是一些具体客体的识别,而且仅限于研究用机器完

模式识别作业(全)

模式识别大作业 一.K均值聚类(必做,40分) 1.K均值聚类的基本思想以及K均值聚类过程的流程图; 2.利用K均值聚类对Iris数据进行分类,已知类别总数为3。给出具体的C语言代码, 并加注释。例如,对于每一个子函数,标注其主要作用,及其所用参数的意义,对程序中定义的一些主要变量,标注其意义; 3.给出函数调用关系图,并分析算法的时间复杂度; 4.给出程序运行结果,包括分类结果(只要给出相对应的数据的编号即可)以及循环 迭代的次数; 5.分析K均值聚类的优缺点。 二.贝叶斯分类(必做,40分) 1.什么是贝叶斯分类器,其分类的基本思想是什么; 2.两类情况下,贝叶斯分类器的判别函数是什么,如何计算得到其判别函数; 3.在Matlab下,利用mvnrnd()函数随机生成60个二维样本,分别属于两个类别(一 类30个样本点),将这些样本描绘在二维坐标系下,注意特征值取值控制在(-5,5)范围以内; 4.用样本的第一个特征作为分类依据将这60个样本进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志(正确分类的样本点用“O”,错误分类的样本点用“X”)画出来; 5.用样本的第二个特征作为分类依据将这60个样本再进行分类,统计正确分类的百分 比,并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 6.用样本的两个特征作为分类依据将这60个样本进行分类,统计正确分类的百分比, 并在二维坐标系下将正确分类的样本点与错误分类的样本点用不同标志画出来; 7.分析上述实验的结果。 8.60个随即样本是如何产生的的;给出上述三种情况下的两类均值、方差、协方差矩 阵以及判别函数; 三.特征选择(选作,15分) 1.经过K均值聚类后,Iris数据被分作3类。从这三类中各选择10个样本点; 2.通过特征选择将选出的30个样本点从4维降低为3维,并将它们在三维的坐标系中

相关主题
文本预览
相关文档 最新文档