当前位置:文档之家› 变速器设计详细过程

变速器设计详细过程

变速器设计详细过程
变速器设计详细过程

第三章变速器及驱动桥

第一节变速器选型及基本参数的确定

变速器用于转变发动机曲轴的转矩及转速,以适应汽车在起步、加速、行驶以及克服各种道路障碍等不同行驶条件下对驱动车轮牵引力及车速的不同要求的需要。

为保证变速器具有良好的工作性能,对变速器应提出如下设计要求:

1)变速器的档位数和传动比,使之与发动机参数优化匹配,以保证汽车具有良好的动力性与经济性;

2)设置空档以保证汽车在必要时能将发动机与传动系长时间分离;设置倒档使汽车可以倒退行驶;

3)操纵简单、方便、迅速、省力;

4)传动效率高,工作平稳、无噪声;

5)体小、质轻、承载能力强,工作可靠;

6)制造容易、成本低廉、维修方便、使用寿命长;

7)贯彻零件标准化、部件通用化及总成系列化等设计要求,遵守有关标准规定;

8)需要时应设置动力输出装置。

1.1 变速器选型

有级变速器与无级的相比,其结构简单、造价低廉,因此在各种类型的汽车上均得到了广泛的应用。其中两轴式和三轴式变速器得到了最广泛的应用。

三轴式变速器的其第一轴的常啮合齿轮与第二轴的各档齿轮分别与中间轴的相应齿轮相啮合,且第一、二轴同心。将第一、二轴直接连接起来传递转矩则称为直接档。此时,齿轮、轴承及中间轴均不承载,而第一、二轴也仅传递转矩.因此,直接档的传动效率高,磨损及噪声也最小,这是三轴式变速器的主要优点。其他前进档需依次经过两对齿轮传递转矩。因此,在齿轮中心距(影响变速器尺寸的重要参数)较小的情况下仍然可以获得大的一档传动比,这是三轴式变速器的另一优点。其缺点是:除直接档外其他各档的传动效率有所降低。

两轴式变速器与三轴式变速器相比,其结构简单、紧凑且除最高档外其他各档的传动效率高、噪声低。轿车多采用前置发动机前轮驱动的布置,因为这种布置使汽车的动力——传动系统紧凑、操纵性好且可使汽车质量减少6%~l0%。两轴式变速器则方便于这种布置且使转动系的结构简单。两轴式变速器的第二轴<即输出轴)与主减速器主动齿轮做成一体,当发动机纵置时,主减速器可用螺旋锥齿轮或双曲面齿轮;当发动机横置时则可用圆柱齿轮,从而简化了制造工艺、降低了成本。除倒档常用滑动齿轮(直齿圆柱齿轮)外,其他档位均采用常啮合齿轮(斜齿圆柱齿轮)传动;各档的同步器多装在第二轴上,这是因为一档的主动齿轮尺寸小,装同步器有困难;而高档的同步器也可以装在第一轴的后端。

两轴式变速器没有直接档,因此在高档工作时,齿轮和轴承均承载,因而噪声较大,也增加了磨损,这是它的缺点。另外,低档传动比取值的上限(i g1=4.0~4.5)也受到较大限制,但这一缺点可通过减小各高档传动比同时增大主减速比来消除。

前置副变速器用于分割主变速器相邻档位之间的间隔,并获得两倍于主变速器档位数的档位。组合后的多档变速器也只有两对齿轮同时进人啮合,因此传动效率不变。利用已有的基本型变速器与前置副变速器组合的多档变速器,通用化程度高是其基本优点,通常用于需要提高车速时(例如对柴油机汽车)或用于需要不大地提高车轮的牵引力时(在主变速器可以承受的范围内)。副变速器有两个档,即直接档和非直接档。后者根据需要可为超速档,其

传动比取1/s;亦可为降速档,取s。其中s为组合式多档变速器各档传动比公比的平均值;q为主变速器各档传动比公比的平均值。当前置副变速器采用具有较大传动比的降速档时,要求主变速器有相对较大的中心距,以便能承受增大了的低档输出转矩,这是它的主要缺点。

后置副变速器的组合方案用于需要显著地提高驱动车轮的牵引力时。它有两种结构方案。其中,固定轴线式后置副变速器相当干一个两档变速器,即由第一轴、中间轴、第二轴及两对常啮合齿轮组成。第一、二轴连接后构成直接档;否则,经过两对常啮合齿轮传动则为降速档或称低档。与行星齿轮式后置副变速器相比较,固定轴线式的结构较简单但质量较大。行星齿轮式的结构较复杂但尺寸紧凑,质量小且能获得较大的低档传动比,也具有直接档和低档两个档。后置副变速器的低档传动比取值应根据与主变速器组合时传动比的搭配方式确定。组合后的传动比范围也与搭配方式有关,例如分段式搭配可使传动比范围扩大一倍使总传动比范围达12~13或更高,而插入式搭配则扩大不多。

多档变速器的传动比的搭配方式有三种:

(1)插入式

当主变速器传动比间隔较大时,副变速器的传动比可均匀地插入其间,共同组成1个连续的传动比序列,使两者交替换档,例如:主变速器的传动比为1~s2~s4~s6~s8个档;前置副变速器的传动比为1/s~1。其中,s为多档变速器的传动比公比,则构成的10档变速器的传动比为1/s~1~s~s2~s3~s4~s5~s6~s7~s8。如果前置副变速器具有降速档,传动比为1~s,则构成的10档变速器的传动比为1~s~s2~s3~s4~s5~s6~s7~s8~s9。

(2)分段式

当主变速器的传动比公比较小时,具有大的低档传动比的后置副变速器的高、低档传动比与主变速器各档搭配成高、低传动比两段范围。例如,设主变速器的传动比为1~s~s2~s3~s4,后置副变速器的传动比为1~s5,则总传动比序列为1~s~s2~s3~s4~s5~s6~s7~s8~s9。这种方式换档简便。

(3)综合式

是插入式与分段式的综合,使传动比范围进一步扩大。例如主变速器的传动比为1~s2~s4~s6;前置副变速器的传动比为1/s~1,与主变速eS作插入式组合;后置副变速器的传动比为1~s8,作分段式组合,则构成16个档的总传动比序列为1/s~1~s~s2~s3~s4~s5~s6~s7~s8~s9~s10~s11~s12~s13~s14。

1.2 变速器零部件的结构分析与型式选择

(1)齿轮型式

斜齿圆柱齿轮虽然工作时有轴向力且加工稍复杂些,但仍以其运转平稳、噪声低、寿命长的突出优点而得到变速器的普遍采用。直齿圆柱齿轮仅用于一些变速器的一档和倒档。

(2)轴的结构分析

变速器轴在工作时承受转矩及弯矩,轴的明显变形将影响齿轮正常啮合,产生较大的噪声,降低使用寿命。轴的结构形状除应保证其强度与刚度外,还应考虑齿轮、同步器及轴承等的安装、固定,它与加工工艺也有密切关系。

第一轴通常与齿轮做成一体,其长度决定于离合器总成的轴向尺寸。第一轴的花健尺寸与离合器从动盘毂的内花键统一考虑,目前一般都采用齿侧定心的矩形花健,键齿之间为动配合。

第二轴制成阶梯式的以便于齿轮安装,从受力及合理利用材料来看,也是需要的。各截面尺寸不应相差悬殊,轴上供磨削用的砂轮越程槽处的应力集中会引起轴断裂。用弹性挡圈定位各档齿轮虽简单,但拆装不方便,且与旋转件端面有滑摩,同时弹性档圈也不能承受大

的轴向力,故这种结构仅用于轻型及以下的汽车变速器上。第二轴安装同步器齿座的花键采用渐开线花键且以大径定心更宜。渐开线花键固定连接的精度要求比矩形花键低,但定位性能好,承载能力大,且键齿高较小使小径相应增大,可增强轴的刚度。当一档、倒档采用滑动齿轮挂档时,第二轴的相应花键则采用矩形花键及动配合,这时不仅要求磨削定心的外径,一般也要磨削键齿侧,而矩形花键的齿侧磨削要比渐开线花键容易。

变速器中间轴分为旋转式及固定式两种。

旋转式中间轴支承在前后两个滚动轴承上。其上的一档齿轮常与轴做成一体,而高档齿轮则用键或过盈配合与轴连接以便于更换。如结构尺寸允许,应尽量采用旋转式中间轴。

固定式中间轴为仅起支承作用的光轴,与壳体呈轻压配合并用锁片等作轴向定位。刚度主要由支承于其上的连体齿轮(宝塔齿轮)的结构保证。仅用于当壳体上无足够位置设置滚动轴承和轴承盖时。

(3)轴承型式

变速器多采用滚动轴承,即向心球轴承、向心短圆柱滚子轴承、滚针轴承以及圆锥滚子轴承。通常是根据变速器的结构选定,再验算其寿命。

第一轴前轴承(安装在发动机飞轮内腔中)采用向心球轴承:后轴承为外圈带止动槽的向心球轴承,因为它不仅受径向负荷而且承受向外的轴向负荷。为便于第一轴的拆装,后轴承的座孔直径应大于第一轴齿轮的齿顶圆直径。

第二轴前端多采用滚针轴承或短圆柱滚子轴承;后端采用带止动槽的单列向心球轴承,因为它也要承受向外的轴向力。某些轿车往往在加长的第二轴后端设置辅助支承,并选择向心球轴承。

旋转式中间轴前端多采用向心短圆柱滚子轴承,此轴承不承受轴向力,因为在该处布置轴承盖困难;后轴承为带止动槽的向心球轴承。中间轴的轴向力应力求相互抵销,未抵销部分由后轴承承受。中间轴轴承的径向尺寸常受中心距尺寸限制,故有时采用无内圈的短圆柱滚子轴承。

固定式中间轴采用滚针轴承或圆柱滚子轴承支承着连体齿轮(塔轮,宝塔齿轮)。

变速器第二轴的常啮合齿轮与二轴之间多采用滚针轴承,也有用滑动轴套的。前者与后者相比,具有定位精度高有利于齿轮啮合,传动效率高且飞溅润滑即能满足要求等一系列优点,但对配合处的尺寸精度、表面粗糙度及硬度都要求很严,且配合要适宜。

为适应汽车变速器向着增大其单位质量的传递功率、增强其承载能力、具有更高的可靠性、更长的寿命和更好的性能等方向发展,变速器采用圆锥滚子轴承的日益增多。因为与其他轴承相比,圆锥滚子轴承的直径小、宽度大、接触线长,因而容量大,可以承受高负荷;在承受同样载荷的情况下其径向尺寸可以减小,从而缩小中心距,减小变速器的尺寸和质量;锥体、外圈及滚子间基本的几何关系使滚子能正确对中,确保轴承的可靠性及长寿命;接触线长加之锥角和配合选择适当,则可提高轴的刚度,使齿轮正确啮合、降低噪声,减少自动脱档的可能并提高其寿命;圆锥滚子轴承可通过预紧消除轴向间隙和轴向窜动。由于上述优点,圆锥滚子轴承已在国外一些轿车、客车和载货汽车及重型汽车的变速器上得到应用。

变速器采用圆锥滚子轴承时,为了便于装配和轴承预紧,通常将壳体设计成沿变速器轴中心线所在平面垂直分开或水平分开。

1.3 基本参数的确定

1.3.1 变速器的档位数和传动比

不同类型汽车的变速器,其档位数也不尽相同。轿车变速器传动比变化范围较小(约为3~4),过去常用3个或4个前进档,但近年来为了提高其动力性尤其是燃料经济性,多已

采用5个前进档。轻型货车变速器的传动比变化范围约为5~6,其他货车为7以上,其中总质量在3.5t 以下者多用四档变速器,为了降低油耗亦趋向于增加1个超速档;总质量为

3.5~l0t 多用五档变速器;大于l0t 的多用6个前进档或更多的档位。

选择最低档传动比时,应根据汽车最大爬坡度、驱动车轮与路面的附着力、汽车的最低稳定车速以及主减速比和驱动车轮的滚动半径等来综合考虑、确定。

(1)根据汽车最大爬坡度确定

汽车爬陡坡时车速不高,空气阻力可忽略,则最大驱动力用于克服轮胎与路面间的滚动阻力及爬坡阻力。故有

)sin cos (max max 01max ααη+≥f mg r i i T r t

g e

则由最大爬坡度要求的变速器1档传动比为

t

e r g i T

f mgr i ηαα0max max max 1)sin cos (+≥ 式中m ——汽车总质量;

g ——重力加速度;

f ——道路阻力系数;

max α——最大爬坡要求;

r r ——驱动车轮的滚动半径;

max e T ——发动机最大转矩;

0i ——主减速比;

t η——汽车传动系的传动效率。

(2)根据驱动车轮与路面的附着条件确定

?η201max G r i i T r t

g e ≤

求得的变速器1档传动比为:

t

e r g i T r G i η?0max 21≤ 式中2G ——汽车满载静止于水平路面时驱动桥给地面的载荷;

?——道路的附着系数,计算时取?=0.5~0.6。

变速器的1档传动比应根据上述条件确定。变速器的最高档一般为直接档,有时用超速档。中间档的传动比理论上按公比为11-=

n gn g i i q (其中n 为档位数)的几何级数排列,

实际上与理论值略有出入,因齿数为整数且常用档位间的公比宜小些,另外还要考虑与发动机参数的合理匹配。

1.3.2 中心距

中心距对变速器的尺寸及质量有直接影响,所选的中心距应能保证齿轮的强度。三轴式变速器的中心距A (mm )可根据对已有变速器的统计而得出的经验公式初选:

3max 1T K A A =

式中A K ——中心距系数。对轿车取8.9~9.3;对货车取8.6~9.6;对多档主变速器,取9.5~11;

max 1T ——变速器处于1档时的输出转矩,g g e i T T η1max max 1=;

max e T ——发动机最大转矩,N ?m ;

1g i ——变速器的1档传动比;

g η——变速器的传动效率,取0.96。

初选中心距也可以由发动机最大转矩按下式直接求出:

3max e Ae T K A =

式中Ae K ——按发动机最大转矩直接求中心距时的中心距系数,对轿车取14.5~16.0,对货车取17.0~19.5。

轿车变速器的中心距约在65~80mm 范围内变化。

1.3.3 变速器的轴向尺寸

变速器的轴向尺寸与档位数、齿轮型式、换档机构的结构型式等都有直接关系,设计初可根据中心距A 的尺寸参用下列关系初选。

货车变速器壳体的轴向尺寸:

四档 (2.4~2.8)A

五档 (2.7~3.0)A

六档 (3.2~3.5)A

轿车变速器壳体的轴向尺寸:

四档 (3.0~3.4)A

变速器壳体的轴向尺寸最后应由变速器总图的结构尺寸链确定。

1.3.4 齿轮参数

(1)齿轮模数

齿轮模数由轮齿的弯曲疲劳强度或最大载荷作用下的静强度所决定。选择模数时应考虑到当增大齿宽而减小模数时将降低变速器的噪声,而为了减小变速器的质量,则应增大模数并减小齿宽和中心距。降低噪声水平对轿车很重要,而对载货汽车则应重视减小质量。

根据圆柱齿轮强度的简化计算方法,可列出齿轮模数m 与弯曲应力w σ之间有如下关

系:

直齿轮模数

32w c f

j y zK K K T m σπσ=

式中j T ——计算载荷,N?mm ;

σK ——应力集中系数,直齿齿轮取1.65;

f K ——摩擦力影响系数,主动齿轮取1.1,被动齿轮取0.9;

z ——齿轮齿数;

c K ——齿宽系数,直齿齿轮取4.4~7.0; y ——齿形系数,见图6-21。齿高系数f 相同、节点处压力角不同时:205.1479.0y y ≈,205.1789.0y y ≈,205.221.1y y ≈,202523.1y y ≈;压力角相同、齿高系数为0.8时,18.014.1==≈f f y y ;

w σ——轮齿弯曲应力,当max e j T T =时,直齿齿轮的许用应力850~400][=w σMPa 。

斜齿齿轮法向模数

3cos 2w c j n y K zK K T m σπβ

εσ=

式中σK ——应力集中系数,斜齿齿轮取1. 5;

β——斜齿齿轮螺旋角;

c K ——齿宽系数,斜齿齿轮取7.0~8.6;

εK ——重合度影响系数,取2; y ——齿形系数,按当量齿数β3cos /z z n =查询;

w σ——轮齿弯曲应力,轿车变速器斜齿齿轮取350~180][=w σMPa ,货车变速器斜齿齿轮取250~100][=w σMPa 。

汽车变速器齿轮法向模数取值范围如下:

微型、轻型轿车,2.25~2.75;

中型轿车,2.75~3;

中型货车,3.50~4.5;

重型货车,4.50~6。

同步器和啮合套的接合齿多采用渐开线齿,取值范围为:

轿车及轻型、中型货车为2~3.5;

重型货车为3.5~5。

出于工艺考虑,模数应尽量统一。

(2)齿形、压力角和螺旋角

汽车变速器都采用渐开线齿形。斜齿齿轮的螺旋角选择应使中间轴上的轴向力相互抵消,应满足条件: 2121tan tan r r =ββ

式中1β,2β——中间轴上两工作齿轮的螺旋角;

1r ,2r ——两工作齿轮的节圆半径。

(3)齿宽

齿宽的选择既要考虑变速器的质量小、轴向尺寸紧凑,又要保证齿轮强度和工作平稳性。通常是根据齿轮模数来确定齿宽b : n c m K b =

式中c K ——齿宽系数,直齿齿轮取4.4~7.0,斜齿轮取7.0~8.6;

n m ——法面模数。

第一轴常啮合齿轮副的齿宽系数可取大些,以提高传动的平稳性和齿轮寿命。

同步器和啮合套的接合齿的工作宽度初选时可取(2~4)m 。

(4)齿顶高系数

一般齿轮的齿顶高系数0f =1.0,为一般汽车变速器齿轮所采用。现代轿车变速器多采用齿顶高系数大于1的“高齿齿轮”(或相对于短齿齿轮而言而称为长齿齿轮),因为它不仅可使重合度增大,而且在强度、噪声、动载荷和振动等方面均比正常齿高的齿轮有显著改善,但存在相对滑动速度大、易发生轮齿根切或齿顶变尖(齿顶厚小于0.3m )等问题。

(5)齿轮修正

为了改善齿轮传动的某些性能,常对齿轮进行修正。修正方法有三种:加工时改变刀具与齿轮毛坯的相对位置,又称变位;改变刀具的原始齿廓参数;改变齿轮齿廓的局部渐开线,

又称修形。

变位齿轮的主要优点是不用改变加工标准齿轮所用刀具的参数,只需改变刀具与工件的相对位置及相应地改变毛坯的外径。加工出的齿轮与未变位的标准齿轮比较,齿廓仍为同一基圆的渐开线,仅选取了不同的部位而已。

为了避免齿轮产生根切、干涉,为了配凑中心距以及满足各档齿轮在弯曲强度、接触强度、耐磨损、抗胶合和运转平稳性等方面的不同要求,提高齿轮的寿命,故汽车变速器均采用变位齿轮。在选择变位种类及其变位系数时,应对该齿轮在其使用条件下的破坏形式及原因作具体分析。若实际中心距为已定中心距,则应采用高度变位。若需配凑中心距,则应采用角度变位。角度变位还能获得良好的啮合性能及传动质量指标,故变速器设计多采用之。变速器齿轮的主要损坏形式是齿面剥落和疲劳断裂,故变位系数主要应按提高接触强度、弯曲强度和耐磨性来选择。对于常用的高档齿轮,应按保证其接触强度、抗胶合及耐磨损能力的要求去选择变位及变位系数。为提高接触强度,应使两齿轮的齿廓渐开线离基圆较远,以增大齿廓曲率半径,减小接触应力,因此两齿轮均应选择正变位且变位系数尽量取大些。对于低档齿轮,由于传递的载荷较大而小齿轮的齿根较弱小齿轮齿根弯曲断裂是主要破坏形式,故应加强小齿轮而采用正变位。为提高抗胶合能力及耐磨性,应通过选择变位系数降低两啮合轮齿的相对滑动系数并使之趋于齐平。

现代轿车采用的齿顶高系数大于1的高齿齿轮属于改变高度参数的齿轮修正,压力角不等于20度的齿轮属于改变角度参数的齿轮修正,两者都属于改变刀具原始齿廓参数的齿轮修正。为了改善传动性能,对齿廓局部渐开线做些改变的齿轮修形也得到广泛应用。通常是对齿廓顶部(又称修缘)或根部进行修形,鼓形齿则是沿齿长方向进行修形以改善由于轴变形引起的齿轮偏载。

1.3.5 各档齿轮齿数的分配

在初选变速器的档位数、传动比、中心距、轴向尺寸及齿轮模数和螺旋角并绘出变速器的结构方案简图后,即可对各档齿轮的齿数进行分配。下面以下图所示的四档变速器的结构方案为例来说明。

(1)确定1档齿轮的齿数

已知1档传动比1g i ,且

8

1721z z z z i g ??= z 7、z 8的齿数和为:

直齿齿轮

m A z /2=∑ 斜齿齿轮 n m A z /cos 278β=∑

轿车三轴式变速器的传动比为 3.5~3.8

时,z 8可在15~17范围选择。Z 8应尽可能小,

使得z 7/z 8传动比尽可能大,z 2/z 1可小些,以

使第一轴常啮合齿轮可分配到较多齿数,以便在其内腔设置第二轴的前轴承。应注意最好不使相配齿轮的齿数有共约数,否则会引起齿面的不均匀磨损。

(2)修正中心距A

若计算所得的z 7、z 8不是整数,则取为整数后需按该式反算中心距A ,修正后的中心距则是各档齿轮齿数分配的依据。

(3)确定常啮合传动齿轮副的齿数

确定了z 7、z 8,用以下联立方程求解z 1、z 2:

???

????=+=n g m A z z z z i z z 12

2178112cos 2)(β 取整后,核算1档传动比。如与给定的传动比相差较大,则需调整齿数。确定后代人上式算出齿、齿轮2精确的螺旋角,此值应在表1给出的范围内。

(4)确定其他档位的齿轮齿数

例如对Ⅱ档齿轮副,则有

????

?????===+??=62625612566561522//tan tan /cos 2z z r r m A z z z z z z i n g βββ

但求解较麻烦,采用试凑法求解较方便。先选定56β,求得z 5、z 6。再代入式检查是否满足或接近轴向力的平衡,若相差太大则调整。上述方法亦可确定其他档位的齿轮齿数。

(5)确定倒档齿轮副的齿数

通常1档与倒档选用同一模数,且通常倒档齿轮齿数z 10=21~23。则中间轴与倒挡轴之间的中心距为

2/)('108z z m A +=

为了避免干涉,齿轮8与齿轮9的齿顶圆之间应有不小于0.5mm 的间隙,则

5.0'2/2/98-=+A d d 求出d 9后,选择齿数,取整并变位,使满足上式。最后计算倒档与第二轴的中心距。

1.3.6 齿轮强度的校核

(1)接触强度

齿轮的接触应力按下式计算:

)11(418.02

1ρρσ+=b FE 式中F ——法向内基圆周切向力即齿面法向力,N ;

βαcos cos t F F =

F t ——端面内分度圆切向力即圆周力,N ;

d T F j t 2=

T j ——计算载荷,N·mm ;

d ——节圆直径,mm ;

α——节点处压力角;

β——螺旋角;

E ——齿轮材料的弹性模量,钢取2.1×105MPa ;当一对齿轮的材料不同时,则 2

1212E E E E E +=

b ——齿轮接触的实际宽度,斜齿齿轮为b/cos β代替,mm ; 21,ρρ——主、被动齿轮节点处的齿廓曲率半径,mm ;直齿齿轮:αρsin 11r =,αρsin 22r =;斜齿齿轮:βαρ211cos /sin r =,βαρ222cos /sin r =;

r 1,r 2——分别为主、被动齿轮的节圆半径,mm 。

当计算载荷为max 5.0e j T T =许用接触应力为 一档及倒挡:渗碳齿轮1900~2000MPa ,氰化齿轮950~1000MPa ;

常啮合及高档:渗碳齿轮1300~1400MPa ,氰化齿轮650~700MPa 。

(2)弯曲强度

直齿齿轮弯曲应力w σ:

y zK m K K T c f j w πσσ3

2=

式中j T ——计算载荷,N?mm ;

σK ——应力集中系数,直齿齿轮取1.65;

f K ——摩擦力影响系数,主动齿轮取1.1,被动齿轮取0.9;

m ——齿轮模数;

z ——齿轮齿数;

c K ——齿宽系数,直齿齿轮取4.4~7.0;

y ——齿形系数,见图6-21。齿高系数f 相同、节点处压力角不同时:205.1479.0y y ≈,

205.1789.0y y ≈,205.221.1y y ≈,202523.1y y ≈;压力角相同、齿高系数为0.8时,18.014.1==≈f f y y ;

w σ——轮齿弯曲应力,当max e j T T =时,直齿齿轮的许用应力850~400][=w σMPa 。

斜齿齿轮弯曲应力

y K zK m K T c n j w εσπβσ3

cos 2=

式中σK ——应力集中系数,斜齿齿轮取1. 5;

β——斜齿齿轮螺旋角;

n m ——斜齿齿轮法向模数;

c K ——齿宽系数,斜齿齿轮取7.0~8.6;

εK ——重合度影响系数,取2; y ——齿形系数,按当量齿数β3cos /z z n =查询;

w σ——轮齿弯曲应力,轿车变速器斜齿齿轮取350~180][=w σMPa ,货车变速器斜齿齿轮取250~100][=w σMPa 。

1.3.7 变速器轴

变速器轴在工作中承受着转矩及来自齿轮啮合的圆周力、径向力和斜齿轮的轴向力引起的弯矩。刚度不足会产生弯曲变形,破坏齿轮的正确啮合,产生过大的噪声,降低齿轮的强度、耐磨性及寿命。

(1)直径

轴的径向及轴向尺寸对其刚度影响很大,且轴长与轴径应协调。变速器轴的最大直径d 与支承间的距离l 可按下列关系式初选:

对第一轴及中间轴:

18.0~16.0=l d 对第二轴:21.0~18.0=l

d 三轴式变速器的第二轴与中间轴的最大直径d 可根据中心距A (mm)按下式初选: A d )60.0~45.0(≈

第一轴花键部分直径可根据发动机最大转矩T emax (N ·m)按下式初选:

3m a x )6.4~4(e T d ?=

初选的轴径还需根据变速器的结构布置和轴承与花键、弹性档圈等标准以及轴的刚度与强度验算结果进行修正。

(2)强度校核

齿轮啮合的圆周力F t 、径向力F r 、及轴向力F a 可按下式求出

?????===d i T F d i T F d i T F e a

e r e t /tan 2)cos /(tan 2/2max max max ββα

式中i ——至计算齿轮的传动比;

d ——计算齿轮的节圆直径,mm ;

α——节点处压力角;

β——螺旋角;

max e T ——发动机最大转矩,N ·mm 。

在弯矩和转矩联合作用下的轴应力σ(MPa )为

][323σπσ≤==d

M W M 222j s c T M M M ++=

式中W ——弯曲截面系数,mm 3;

d ——轴在计算断面处的直径,花键处取内径,mm ;

M c ——在计算断面处轴的垂向弯矩,N ·mm ;

M s ——在计算断面处轴的水平弯矩,N ·mm ;

[σ]——许用应力,在低档工作时取400MPa 。

变速器在工作中产生的齿轮啮合力、轴支承反力以及轴的挠度和断面转角等见图6-25。 在垂直面内第一轴的挠度及断面转角 (见图6—25)分别为

101111111121'116)32(3)()(EJ r b a b F EJ b a b B F f a c

r ?+?-++= 1

011111111'113)3(6)32()(EJ r b a F EJ b a b B F a c r ?+-++=γ 在垂直面内第二轴的挠度4f 及断面转角4γ分别为

4

440444444444242444)(3)()(3EJ b a r a b b a F EJ b a b a F f a r +?-?-+?= 4

44042444244444444441)(3)()(3)(EJ b a r b b a a F EJ b a a b b a F f a r +?+--+-= 式中r 01,r 04——相应齿轮的节圆半径;

J 1,J 4——相应处轴断面的惯性矩。

在上述计算中,花健轴的计算直径可取为其花键内径的1.1倍。轴断面的转角不应大于

0.002rad(弧度)。轴的垂向挠度的容许值[f c ]=0.05~0.10mm ;轴的水平挠度的容许值[f s ]=0.10~0.15mm 。

轴的合成挠度应小于0.20mm 。

长的轴应进行扭转刚度的验算,使轴的扭转角不超过许用值。每米长轴扭转角的许用值为[?]=0.250~0.350度。在转矩T 的作用下,长为L 的轴的扭转角为 p

GJ TL

3.57=?

式中T ——转矩,N ·mm ;

L ——轴长,mm ;

J p ——轴横截面的极惯性矩,mm 4:对实心轴324

d J p π=;

对空心轴])(1[3244d d d J i

p -=π

G ——轴材料的剪切弹性模量,对于钢材G=8×104MPa 。

变速器设计课程设计说明书

变速器设计说明书 课程名称: 基于整车匹配的变速器总体及整车动力性计算院(部):机电学院 专业:车辆工程 班级:车辆101 学生姓名: 学号: 指导老师: 设计时限:2013.7.1-2013.7.21

目录 1概述 (1) 2基于整车性能匹配的变速器的设计 (2) 2.1变速器总体尺寸的确定及变速器机构形式的选择 (2) 2.2变速器档位及各档传动比等各项参数的总体设计 (2) 2.3在满足中心距,传动比,轴向力平衡的条件下确定个档位齿轮的参数 (3) 2.3.1确定第一档齿轮传动比 (3) 2.3.3确定常啮合齿轮传动比 (4) 2.3.4确定第二档 (5) 2.3.5确定第三档 (6) 2.3.6确定第四档 (6) 2.3.7确定第五档 (7) 2.3.8确定倒挡 (7) 3 对整车的动力性进行计算 (9) 3.1计算最高车速 (9) 3.2最大爬坡度 (9) 3.3最大加速度 (9) 4 采用面向对象的程序设计语言进行程序设计 (10) 4.1程序框图 (10) 4.2程序运行图 (11) 4.3发动机外特性曲线 (12) 4.4驱动力与行驶阻力图 (13) 4.5动力特性图 (14) 4.6加速度曲线图 (15) 4.7爬坡度图 (16) 4.8 加速度倒数曲线 (17) 5 总结 (18) 6 参考文献 (19)

1概述 本课程设计是在完成基础课和大部分专业课学习后的一个集中实践教学环节,是应用已学到的理论知识来解决实际工程问题的一次训练,并为毕业设计奠定基础。 本设计将会使用到《汽车构造》,《汽车理论》,《汽车设计》等参考文献,在整个过程中将要定位变速器的结构,齿轮的布置以及各项齿轮的参数,如齿数,轴距等参数。 第二个阶段就是用vb编程带入计算值绘制汽车行驶力与阻力平衡图,动力特性图,加速度倒数曲线。 1:培养具有汽车初步设计能力。通过思想,原则和方法体现出来的。 2:复习汽车构造,汽车理论,汽车设计以及相关课程进行必要的复习。 3:学习使用vb编程软件。 4:处理各齿轮相互之间轴向力平衡的问题。 5:要求熟练操作office等办公软件,处理排版,字体等内容。

汽车变速器设计汇总

前言 汽车的诞生,车的发展,在历史的长河中给我们留下了点点滴滴。汽车自上个世纪末诞生以来,已经走过了风风雨雨的一百多年。从卡尔.本茨造出的第一辆三轮汽车以每小时18公里的速度,跑到现在,竟然诞生了从速度为零到加速到100公里/小时只需要三秒钟多一点的超级跑车。这一百年,汽车发展的速度是如此惊人!同时,汽车工业也造就了多位巨人,他们一手创建了通用、福特、丰田、本田这样一些在各国经济中举足轻重的著名公司。这篇资写着许多有趣的故事,在中国已经成为世界五大汽车强国之际,让我们一起来回望汽车的发展历史,体会汽车给我们带来的种种欢乐与梦想…… 中国汽车工业发展进入新阶段中国汽车工业发展我认为大致可以分成三个阶段:第一个阶段:中国汽车工业1953诞生到1978年改革开放前。初步奠定了汽车工业发展的基础。汽车产品从无到有。第二个阶段,1978年到20世纪末。中国汽车工业获得了长足的发展,形成了完整的汽车工业体系。从载重汽车到轿车,开始全面发展。这一阶段是我国汽车工业由计划经济体制向市场经济体制转变的转型期。这一时期的特点是:商用汽车发展迅速,商用汽车产品系列逐步完整,生产能力逐步提高。具有了一定的自主开发能力。重型汽车、轻型汽车的不足得到改变。轿车生产奠定了基本格局和基础。我国汽车工业生产体系进一步得到完善。随着市场经济体制的建立,政府经济管理体制的改革,企业自主发展、自主经营,大企业集团对汽车工业发展的影响越来越大。汽车工业企业逐步摆脱了计划经济体制下存在的严重的行政管理的束缚。政府通过产业政策对汽车工业进行宏观管理。通过引进技术、合资经营,使中国汽车工业产品水平有了较大提高。摸索了对外合作、合资的经验。第三个阶段,进入21世纪以后。中国汽车工业在中国加入WTO后,进入了一个市场规模、生产规模迅速扩大;全面融入世界汽车工业体。 变速器作为汽车的一个重要组成部分,是用来改变发动机传到驱动轮上的转矩和转速,目的是在原地起步、爬坡、转弯、加速等各种行驶工况下

轻型客车四档中间轴式变速器设计

汽车设计课程设计计算说明书题目:轻型客车四档中间轴式变速器设计院别:xxxxxx 专业:xxxxx 班级:xxxxxxxx 姓名:xxxxxxxxxxx 学号:xxxxxxxxxxxxxxxxx 指导教师:xxxxxxxxxxxxxx 二零一五年一月十九日

一、变速器的功用与组成 ----------------------------------------------------------------- - 4 - 1.变速器的组成------------------------------------------------------------------------ - 4 - 二、变速器的设计要求与任务 ----------------------------------------------------------- - 5 - 1.变速器的设计要求 ----------------------------------------------------------------- - 5 - 2.变速器的设计任务 ----------------------------------------------------------------- - 5 - 三、变速器齿轮的设计 -------------------------------------------------------------------- - 6 - 1.确定一挡传动比 -------------------------------------------------------------------- - 6 - 2.各挡传动比的确定 ----------------------------------------------------------------- - 7 - 3.确定中心距--------------------------------------------------------------------------- - 8 - 4.初选齿轮参数------------------------------------------------------------------------ - 9 - 5.各挡齿数分配----------------------------------------------------------------------- - 11 - 四、变速器的设计计算 ------------------------------------------------------------------- - 16 - 1.轮齿强度的计算 ------------------------------------------------------------------- - 16 - 2中间轴的强度校核 ------------------------------------------------------------------- 20- 五、结论-------------------------------------------------------------------------------------- - 27 - 参考文献-------------------------------------------------------------------------------------- - 28 - 摘要 现代汽车除了装有性能优良的发动机外还应该有性能优异的传动系与之匹配才能将汽车的性能淋漓尽致的发挥出来,因此汽车变速器的设计显得尤为重要。变速器在发动机和汽车之间主要起着匹配作用,通过改变变速器的传动比,可以使发动机在最有利的工况范围内工作。 本次设计的是轻型客车变速器设计。它的布置方案采用四档中间轴式、同步器换挡,并对倒挡齿轮和拨叉进行合理布置,前进挡采用圆柱斜齿轮、倒档采用圆柱直齿轮。两轴式布置形式缩短了变速器轴向尺寸,在保证挡数不变的情况下,减少齿轮数目,从而使变速器结构更加紧凑。 首先利用已知参数确定变速器各挡传动比、中心矩,然后确定齿轮的模数、压力角、齿宽等参数。由中心矩确定箱体的长度、高度和中间轴及二轴的轴径,然后对中间轴和各挡齿轮进行校核,验证各部件选取的可靠性。最后绘制装配图及零件图。

汽车变速器设计

汽车变速器设计 ----------外文翻译 我们知道,汽车发动机在一定的转速下能够达到最好的状态,此时发出的功率比较大,燃油经济性也比较好。因此,我们希望发动机总是在最好的状态下工作。但是,汽车在使用的时候需要有不同的速度,这样就产生了矛盾。这个矛盾要通过变速器来解决。 汽车变速器的作用用一句话概括,就叫做变速变扭,即增速减扭或减速增扭。为什么减速可以增扭,而增速又要减扭呢?设发动机输出的功率不变,功率可以表示为 N = w T,其中w是转动的角速度,T是扭距。当N固定的时候,w与T是成反比的。所以增速必减扭,减速必增扭。汽车变速器齿轮传动就根据变速变扭的原理,分成各个档位对应不同的传动比,以适应不同的运行状况。 一般的手动变速器内设置输入轴、中间轴和输出轴,又称三轴式,另外还有倒档轴。三轴式是变速器的主体结构,输入轴的转速也就是发动机的转速,输出轴转速则是中间轴与输出轴之间不同齿轮啮合所产生的转速。不同的齿轮啮合就有不同的传动比,也就有了不同的转速。例如郑州日产ZN6481W2G型SUV车手动变速器,它的传动比分别是:1档3.704:1;2档2.202:1;3档1.414:1;4档1:1;5档(超速档)0.802:1。 当汽车启动司机选择1档时,拨叉将1/2档同步器向后接合1档齿轮并将它锁定输出轴上,动力经输入轴、中间轴和输出轴上的1档齿轮,1档齿轮带动输出轴,输出轴将动力传递到传动轴上(红色箭头)。典型1档变速齿轮传动比是3:1,也就是说输入轴转3圈,输出轴转1圈。 当汽车增速司机选择2档时,拨叉将1/2档同步器与1档分离后接合2档齿轮并锁定输出轴上,动力传递路线相似,所不同的是输出轴上的1档齿轮换成2档齿轮带动输出轴。典型2档变速齿轮传动比是2.2:1,输入轴转2.2圈,输出轴转1圈,比1档转速增加,扭矩降低。

变速器换挡叉的工艺设计

课程设计说明书题目变速器换挡叉的工艺设计 目录 机械自造工艺及夹具课程设计任务书 (3) 序言 (4) 零件的分析 (4)

零件的工艺分析 (4) 确定生产类型 (4) 确定毛坯 (5) 工艺规程设计 (5) 选择定位基准 (5) 制定工艺路线 (5) 机械加工余量、工序尺寸及公差的确定 (6) 夹具设计 (16) 问题提出 (16) 夹具设计 (16) 参考文献 (17) 机械制造工艺及夹具课程设计任务书

设计题目:制定变速器换挡叉的加工工艺,设计钻φ15 及2-M6孔的钻床夹具 设计要求:中批量生产手动夹紧通用工艺装备 设计时间:2009.6 设计内容:1、熟悉零件图; 2、绘制零件图(一张); 3、绘制毛坯图(一张); 4、编写工艺过程卡片和工序卡片; 5、绘制夹具总装图; 6、绘制夹具零件图; 7、说明书 2009年06月 序言 机械制造装备设计课程设计是我们在学完了大学的全部基础课,专业基础课以及专业课后进行的。这是我们在进行毕业设计之前对所学的各科课程一次深入的综合性总复习,也是一次理论联系实际的训练。因此,他在我们的大学四年生活中占有重要的地位。 就我个人而言,我希望通过这次课程设计对自己未来将从事的工作进一步适应性的训练,希望自己在设计中能锻炼自己的分析问题、解决问题、查资料的能力,为以后的工作打下良好的基础。

由于能力有限,设计尚有很多不足之处,希望各位老师给予指导。 零件的分析 题目所给的零件是变速器换档叉。它位于汽车的变速机构上,主要起换档作用。一.零件的工艺分析 零件的材料为35钢,,为此以下是变速器换档叉需要加工的表面以及加工表面之间的位置要求: 1、孔Φ15.8以及与此孔相通的、M10螺纹孔。 2、上下U型口及其两端面 3、换档叉底面、下U型口两端面与孔Φ15.8中心线的垂直度误差为0.15mm。 由上面分析可知,可以粗加工Φ15的孔,然后以此作为基准采用专用夹具进行加工,并且保证位置精度要求。再根据各加工方法的经济精度及机床所能达到的位置精度,选择以孔为基准加工的面作为孔加工的精基准。最后,以精加工的孔为基准加工其他所有的面。此变速器换档叉零件没有复杂的加工曲面,所以根据上述技术要求采用常规的加工工艺均可保证。 二、确定生产类型 已知此换档叉零件的生产纲领为5000件/年,零件的质量是2.26Kg/个,查《机械制造工艺设计简明手册》第2页表1.1-2,可确定该换档叉生产类型为中批生产,所以初步确定工艺安排为:加工过程划分阶段;工序适当集中;加工设备以通用设备为主,大量采用专用工装。 三、确定毛坯 1、确定毛坯种类: 零件材料为35钢。考虑零件在机床运行过程中所受冲击不大,零件结构又比较简单,生产类型为中批生产,故采用模锻件作为毛坯。查《机械制造工艺设计简明手册》第41页表2.2-5,选用锻件尺寸公差等级为CT-12。 工艺规程设计 (一)选择定位基准: 1 粗基准的选择:以零件的圆柱面为主要的定位粗基准 2 精基准的选择:考虑要保证零件的加工精度和装夹准确方便,依据“基准重合”原 则和“基准统一”原则,以

变速器设计说明书

电动汽车变速器课程 设计 说 明 书 学院名称:机电工程学院 专业班级:机械XXXX班 学号: 0806XXXXXX 学生姓名: XXXXXX 指导老师:陈敏

电动汽车变速器设计---课程设计任务书 电动汽车变速器是有效改善牵引电动机扭矩范围的重要传动部件,通过加设变速器,可实现高转速电机和减速器的有机结合,使电动机保持在高效率工作范围类,减轻电动机和动力电池组的负荷,实现电动汽车的轻量化设计。电动汽车机械变速机构类型有多种,如轮毂电机减速器,驱动桥变速差速器等。本课程设计的变速器要求是一单级变速器,并具有空挡和倒档机制。要求通过学习掌握电动汽车变速器的原理,结构和设计知识,用所给的基本设计参数确定变速器的传动比,并进行电动汽车变速器的结构设计,绘制主要的零部件图纸,写出内容详细的设计说明书。 设计时间: 2010年秋季学期的19-20周。 1.基本设计参数: 1.电动机额定转速:2500r/min 2.电动机恒转矩区转矩: 200 Nm 3.车辆主减速比:1.0 4.电动机额定转速时车辆速度:60 km/h 5.车轮规格:205/55 R16 2.设计计算要求: 1.根据基本设计参数进行电动汽车变速器主要参数的选择与计算; 2.进行电动汽车变速器的结构设计与计算。 3.完成内容: 1.装配图1张; 2.零件图2张; 3.设计计算说明书1份。 1) 封面; 2) 课程设计任务书; 3) 目录; 4) 中英文摘要; 5) 正文; 6 ) 参考文献。 4.主要参考文献: [1]陈家瑞.汽车构造(第三版下)[M].北京:机械工业出版社,2009,6. [2]刘惟信.汽车设计[M].北京:清华大学出版社,2001,7. [3]康龙云.新能源汽车与电力电子技术[M].北京:机械工业出版社,2010,10.

中间轴式变速器课程设计

第一章变速器传动机构布置方案 1.1变速器传动方案的选择与分析 机械式变速器具有结构简单、传动效率高、制造成本底和工作可靠等优点,故在不同形式的汽车上得到广泛应用。变速器传动方案分析与选择机械式变速器传动机构布置方案主要有两种:两轴式变速器和中间轴式变速器。 其中两轴式变速器多用于发动机前置前轮驱动的汽车上。与中间轴式变速器相比,它具有轴和轴承数少,结构简单、轮廓尺寸小、易布置等优点。此外,各中间档因只经一对齿轮传递动,故传动效率高,同时噪声小。但两轴式变速器不能设置直接档,所以在工作时齿轮和轴承均承载,工作噪声增大且易损坏,受结构限制其一档速比不能设计的很大。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时直接输出动力。 而中间轴式变速器多用于发动机前置后轮驱动汽车和发动机后置后轮驱动的汽车上。其特点是:变速器一轴后端与常啮合齿轮做成一体绝大多数方案的第二轴与一轴在同一条直线上,经啮合套将它们连接后可得到直接档,使用直接档变速器齿轮和轴承及中间轴不承载,此时噪声低,齿轮、轴承的磨损减少。 对不同类型的汽车,具有不同的传动系档位数,其原因在于它们的使用条件不同、对整车性能要求不同、汽车本身的比功率不同[5]。而传动系的档位数与汽车的动力性、燃油经济性有着密切的联系。就动力性而言,档位数多,增加了发动机发挥最大功率附近高功率的机会,提高了汽车的加速和爬坡能力。就燃油经济性而言,档位数多,增加了发动机在低燃油消耗率区下作的能力,降低了油耗。从而能提高汽车生产率,降低运输成木。不过,增加档数会使变速器机构复杂和质量增加,轴向尺寸增大、成本提高、操纵复杂。 综上所述,由于此次设计的汽车为:中间轴式五档(五档为直接档)商用车 1.2 倒档方案的确定 倒档布置选择方案适用于全部齿轮均为常啮合的齿轮,换挡轻便。如下图

课程设计货车变速器zxx

课程设计-货车变速器-zxx

————————————————————————————————作者:————————————————————————————————日期:

设计说明书 题目:货车机械变速器 学号: 姓名:

变速器的设计计算 1.1 变速器的选择 变速器的种类很多,按前进档位的不同可分为三、四、五和多档变速器,根据轴的型式的不同,又有固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又有两轴式、中间轴式、双中间轴式和多中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。 2-1-1 中间轴式变速器 从结构外形看中间轴式变速器有三根轴:一轴和二轴在一条中心线上。将它们连接即为直接档,此时,齿轮、轴承不承受载荷而只传递转矩,故而传动效率高,而且摩损小,寿命长,噪音也较小。而在其他档位上,经过两对连续齿轮传动,传动效率稍低。由于本设计中的汽车为重型货车,且档位多,传动比大,故本设计采用这种型式。 2-1-2 变速器齿轮型式 变速器中的齿轮一般只有两种:直尺圆柱齿轮和斜齿圆柱齿轮。直齿圆柱齿轮多用为滑动式,故使用在一档和倒档的较多,它们的结构简单,制造容易。但是在换档时齿轮端部产生冲击,噪声很大,从而加剧端部磨损,使齿轮的寿命降低,而且由于噪声大,容易造成驾驶员的疲劳。斜齿圆柱齿轮传动平稳,噪声很小,磨损小,寿命长。唯一的缺点是工作时有轴向力的产生,而且结构复杂,这个缺点可以在进行轴的载荷计算时予以平衡。 通过比较两种型式齿轮的优缺点,本设计中,倒档采用直齿圆柱齿轮,这是考虑到倒档的使用率较低,综合衡量经济性和便利性而定的,其余各档全部采用斜齿圆柱齿轮传动,这样充分发挥其传动平稳,噪声小等优点。 2-1-3变速器的换档结构 变速器的换档机构形式有以下几种:直齿滑动齿轮、啮合套和同步器换档。 (1) 直齿滑动齿轮换档该结构形式制造容易,结构简单。但缺点较多:汽车行驶时各档齿轮有不同的角速度,因此用轴向滑动直齿齿轮的方式换档,会在轮齿端面产生冲击,并伴随有噪声。这使齿轮端部磨损加剧并过早损坏,造成汽车

变速器的设计计算

变速器的设计计算 一 确定变速器的主要参数 一、各挡传动比的确定 不同类型的变速器,其挡位数也不尽相同,本设计为五挡变速器。传动比为已知:i 1=6.02,i 2=3.57, i 3=2.14,i 4=1.35,i 5=1.00, i R =5.49. 二、中心距A 的选取 初选中心距A 时,可根据下述经验公式初选: A=K 式中,A 为变速器中心距(mm);A K 为中心距系数,货车:A K =8.6-9.6;emax T 为发动机最大转矩(emax T =165 N ·m );1i 为变速器一挡传动比(i 1 =6.02);g η为变速 器传动效率,取96%。本设计中,取A K =9.0。 将数值代入公式,算得A=88.5849mm ,故初取A=89mm 。 三、变速器的轴向尺寸 影响变速器壳体轴向尺寸的因素有挡数、换挡机构形式以及齿轮形式。设计时可根据中心距A 的尺寸参照下列经验关系初选: 五挡货车变速器壳体轴向尺寸:(2.7~3.0) A=239.18mm ~265.75mm 。 选用壳体轴向尺寸为260mm 。 四、齿轮参数 (1)齿轮模数 变速器齿轮模数:货车最大总质量在1.8~14.0t 的货车为2.0~3.5mm 。齿轮模数由齿轮的弯曲疲劳强度或最大载荷下的静强度所决定。当增大尺宽而减小模数时将降低变速器的噪声,增大模数并减小尺宽和中心距将减小变速器的质量。 对于斜齿轮 m n =K m 3max e T 式中 m n ——齿轮模数 mm

K m ——为模数系数,一般K m =0.28~0.37。本设计中取K m =0.35。 将数值代入计算得 m n =1.919 mm,取m n =2。 对于直齿轮 m=K 1 m 3 1 T ? 式中 m——一挡齿轮模数 mm K 1 m ——一挡齿轮模数系数,一般K 1 m =0.28~0.37。本设计中取 K 1 m =0.30 T 1——一挡输出转矩,T 1 =T max e *i 1 i 1 ——一挡传动比 当数值代入计算得m=2.993 mm,取m=3 参考国标(GB1357-87)规定的第一系列模数: 一档和倒挡的模数: m=3mm; 二,三,四,五挡的模数:m n =2mm; (2)压力角α 齿轮压力角较小时,重合度较大并降低了轮齿刚度,为此能减少进入啮合和退出啮合时的动载荷,使传动平稳,有利于降低噪声;压力角增大时,可提高齿轮的抗弯强度和表面接触强度。本设计中采用标准压力角α=20°。 (3)螺旋角β 选取斜齿轮的螺旋角,应该注意它对齿轮工作噪声、轮齿的强度和轴向力有影响。选用大些的螺旋角时,会使齿轮啮合的重合度增加,因而工作平稳,噪声降低,齿轮的强度也相应提高。因此从提高低挡齿轮的抗弯强度出发,β不宜过大,以15°~25°为宜;而从提高高挡齿轮的接触强度和增加重合度着眼,应选用较大的螺旋角。 螺旋方向的选择:斜齿轮传递转矩时,要产生轴向力并作用在轴承上。设计时应力求中间轴上同时工作的两对齿轮的轴向力相互抵消,以减少轴荷,提高寿命。为此,中间轴上的全部齿轮一律采用右旋,而一、二轴上的斜齿轮取左旋,其轴向力经轴承盖由壳体承受。 为使工艺简便,中间轴轴向力不大时,可将螺旋角仅取为三种。

4.3汽车变速器设计理论与方法

4.3 汽车变速箱设计理论与方法 现代汽车的动力装置,几乎都采用往复活塞式内燃机。它具有相当多的优点,如体积小,质量轻,工作可靠,使用方便等。但其性能与汽车的动力性和经济性之间存在着较大的矛盾。如在坡道上行驶时,所需的牵引力往往是发动机所能提供的牵引力的数倍。而且一般发动机如果直接与车轮相连,其输出转速换算到对应的汽车车速上,将达到现代汽车极限速度的数倍。上述发动机牵引力、转速与汽车牵引力、车速要求之间的矛盾,单靠现代汽车内燃机本身是无法解决的。因此就出现了车用变速箱和主减速器。它们的共同努力使驱动轮的扭矩增大到发动机扭矩的若干倍,同时又可使其转速减小到发动机转速的几分之一。 另外,现代汽车的使用条件极为复杂,在不同场合下有不同的要求。往往要受到如载运量、道路坡度、路面好坏及交通是否通畅等条件的影响。这就要求汽车的牵引力和车速能在较大范围内变化,以适应使用的要求。在条件良好的平直

路面上要能以高速行驶,而在路面不平和有较大坡度时能提供较大的扭矩。变速箱的多档位选择就能满足这些需求。此外,发动机在不同工况下,燃油的消耗量也是不一样的。驾驶员可以根据具体情况,选择变速箱的某一档位,来减少燃油的消耗。在某些情况下,汽车还需要能倒向行驶。发动机本身是不可能倒转的,只有靠变速箱的倒档齿轮来实现。在车辆中途暂停行驶或 变速箱是由变速传动机构和操纵机构组成。根据前进档数的不同,变速箱有三、四、五和多档几种。根据轴的不同类型,分为固定轴式和旋转轴式两大类。而前者又分为两轴式、中间轴式和多中间轴式变速箱。 4.3.1 两轴式和三轴式变速箱: 现代汽车大多数都采用三轴式变速箱,而发动机前置前轮驱动的轿车,若变速箱传动比小,则常采用两轴式变速箱。在设计时,究竟采用哪一种方案,除了汽车总布置的要求外,主要考虑以下四个方面: 1.结构工艺性:

汽车变速器设计——课程设计

汽车变速器设计——课程设计

汽车设计课程设计 题目:汽车变速器设计 设计题目、要求及任务是: 金杯牌SY6474轻型客车变速器设计(4+1)档 设计参数有: =173 N·m ; 发动机: M emax 车速:V =110 Km/h ; max 额定转速:n=4000 r/min ; =0.35 m ; 车轮滚动半径:R 汽车总质量:2470 Kg ; 爬坡度:32﹪; =5.375 ; 主减速比:i 驱动轮上法向反作用力:F =1181 Kg ; Z 设计要求:采用中间轴式,全同步器换档,要进行齿轮参数设计计算,对一档齿轮的接触强度、弯曲应力进行校核计算。

目录 目录 (3) 第一章变速器的功用和要求 (4) 第二章变速器的方案论证 (5) 第一节变速器类型选择及传动方案设计 (5) 一、结构工艺性 (5) 二、变速器的径向尺寸 (5) 三、变速器齿轮的寿命 (5) 四、变速器的传动效率 (5) 第二节变速器传动机构的分析 (5) 一、换档结构形式的选择 (5) 二、倒档的形式及布置方案 (6) 第三节变速器操纵机构方案分析 (7) 一、变速器操纵机构的功用 (7) 二、设计变速器操纵机构时,应该满足以下 基本要求 (7) 三、换档位置 (8) 第三章变速器设计计算 (9) 第一节变速器主要参数的选择 (9) 一、轴的直径 (9) 二. 传动比的选择 (9)

三、中心矩A (10) 四、齿轮参数选择 (10) 第二节齿轮的强度校核 (15) 一、齿轮的损坏形式 (15) 二、齿轮强度校核 (16) 参考文献 (19) 第一章变速器的功用和要求 现代汽车上广泛采用活塞式内燃机作为动力源,其转矩和转速变化范围较小,而复杂的使用条件则要求汽车的牵引力和车速能在相当大的范围内变化。为了解决这一矛盾,在传动系中设置了变速器。根据汽车在不同的行驶条件下提出的要求,改变发动机的扭矩和转速,使汽车具有合适的牵引力和速度,并同时保持发动机在最有利的工况范围内工作。此外,为保证汽车倒车及使发动机和传动系能够分离,变速器应具有倒档和空档。一般的,变速器设有倒档和空档,以使在不改变发动机旋转方向的情况下,汽车能够倒退行驶和空档滑行、或停车时发动机和传动系能保持分离。在有动力输出需要时,还应有功率输出装置。 为保证变速器具有良好的工作性能,达到使用要求,所以变速器的设计必须要满足以下的使用条件: (一)应该合理的选择变速器的档数和传动比,使汽车具有良好的动力性和经济性; (二)工作可靠,操纵轻便。汽车行驶过程中,变速器内不应有跳档、乱档、换档等冲击等现象发生。此外,为减轻驾驶员劳动强度,提高行驶安全性操纵轻便性的要求日益突出。——可通过同步器或气动换档,自动、半自动换档来实现; (三)传动效力高; (四)结构紧凑,尽量做到质量轻、体积小、制造成本底。 (五)噪音小、为了减少齿轮的啮合损失,应设有直接档,此外,还有合理的齿轮型式以及结构参数,提高其制造和安装精度; 它的功用: (一)改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,如起步、加速、上坡等,同时使发动机在有利的工况下工作; (二)在发动机旋转方向不变的前提下,使汽车能倒退行驶;

汽车变速器设计

汽车变速器设计 机械式手动变速器对比于自动变速器,其结构简单,体积小,造价成本低,方便装配和维修,传动效率高等优点,在今天依旧很受青睐。变速器的设计对汽车动力性,燃料经济性,换挡操纵的可靠和轻便性,传输的平稳与效率等有着直接的影响。随着汽车工业的发展,轿车变速器的设计趋势是加大其传输功率与重量比,并有着更加良好的性能和更小的装配空间。本设计是以一汽大众捷达变速器的数据为基础,在已有的发动机输出转矩,转速及最高车速,最大爬坡度等条件下,主要对变速器的齿轮结构参数以及轴的结构尺寸等进行设计计算,并对其传动方案和结构形式进行设计,同时对操纵机构和同步器进行设计,提高汽车的整体性能和燃油经济性。 1 绪论 1.1 选题的目的和意义 变速机构是除了发动机以外在汽车上的第二个重要机构,它的好坏会直接影响到车子的动力性和燃油经济性,其次,对于驾驶员来说,乘坐的舒适性也与汽车在换挡时的冲击量有关。车载人员的舒服与适应度和操作稳定度,很大一部分取决于变速器是否优良。 手动变速器在质量和参数上的改进会使汽车在燃油经济性和换挡平顺性方面有进一步的提高。 在轿车或货车部件的运行状态中,变速器主要有以下三个任务: 1.使其传动比率发生改变,包括传动时的转速和转矩,这样可以让汽车在耗油率较低的状态下运行。 2.在发动机输出转动力矩状态不发生变化情况中,让其可以倒退运行; 3.挂入空挡的状态下,汽车在不行驶的条件下保持发动机运转,且不进行动力传输,也可以挂入不同的档位,进行不同传动比的动力传输。 变换档位必须用手拨动拨叉完成,动力传递的比值发生变化,从而达到变速的目的。通俗来说,就是在驾驶过程中,我们踏下离合踏板时,才可拨得动变速杆。

变速器设计步骤

第一节概述 变速器用来改变发动机传到驱动轮上的转矩和转速,目的是在原地起步,爬坡,转弯,加速等各种行驶工况下,使汽车获得不同的牵引力和速度,同时使发动机再最有利工况范围内工作。变速器设有空挡和倒挡。需要时变速器还有动力输出功能。 变速器由变速传动机构和操纵机构组成。 对变速器如下基本要求. 1)保证汽车有必要的动力性和经济性。 2)设置空挡,用来切断发动机动力向驱动轮的传输。 3)设置倒档,使汽车能倒退行驶。 4)设置动力输出装置,需要时能进行功率输出。 5)换挡迅速,省力,方便。 6)工作可靠。汽车行驶过程中,变速器不得有跳挡,乱挡以及换挡冲击等现象发生。 7)变速器应当有高的工作效率。 8)变速器的工作噪声低。 除此以外,变速器还应当满足轮廓尺寸和质量小,制造成本低,维修方便等要求。 满足汽车有必要的动力性和经济性指标,这与变速器的档数,传动比范围和各挡传动比有关。汽车工作的道路条件越复杂,比功率越小,变速器的传动比范围越大。 在原变速传动机构基础上,再附加一个副箱体,这就在结构变化不大的基础上,达到增加变速器挡数的目的。近年来,变速器操纵机构有向自动操纵方向发展的趋势。

第二节变速器传动机构布置方案 机械式变速器因具有结构简单,传动效率高,制造成本低和工作可靠等优点,在不同形式的汽车上得到广泛应用。 一.传动机构布置方案分析 变速器传动机构有两种分类方法。根据前进挡数的不同,有三,四,五和多挡变速器。根据轴的形式不同,分为固定轴式和旋转轴式(常配合行星齿轮传动)两类。固定轴式又分为两轴式,中间轴式,双中间轴式变速器。固定轴式应用广泛,其中两轴式变速器多用于发动机前置前轮驱动的汽车上,中间轴式变速器多用于发动机前置后轮驱动的汽车上。旋转轴式主要用于液力机械式变速器。与中间轴式变速器比较,两轴式变速器有结构简单,轮廓尺寸小,布置方便,中间挡位传动效率高和噪声低等优点。因两轴式变速器不能设置直接挡,所以在高档工作时齿轮和轴承均承载,不仅工作噪声增大,且易损坏。此外,受结构限制,两轴式变速器的一挡速比不可能设计得很大。 图3-1示出用在发动机前置前轮驱动轿车的两轴式变速器传动方案。其特点是:变速器输出轴与主减速器主动齿轮做成一体,发动机纵置时,主减速器采用弧齿锥齿轮或双曲面齿轮,发动机横置时则采用圆柱齿轮;多数方案的倒档传动常用滑动齿轮,其他挡位均用常啮合齿轮传动。图3-1F中的倒挡齿轮为常啮合齿轮,并用同步器换挡;同步器多数装在输出轴上,这是因为一挡主动齿轮尺寸小,同步器装在输入轴上有困难,而高档同步器可以装在输入轴的后端,见图3-1D,E;图3-1D所示方案的变速器有辅助支承,用来提高轴的刚度,减少齿轮磨损和降低工作噪声。图3-1F所示方案为五挡全同步器式变速器,以此为基础,只要将五挡齿轮用尺寸相当的隔套替代,即可改变为四挡变速器,从而形成一个系列产品。

变速器课程设计说明书

课程设计说明书 题目:机械变速器 传动机构设计 学生姓名:潘东 学号: 20080711 系部名称:汽车与交通工程学院 专业班级:车辆工程B08-1班 指导教师:李涵武王永梅 职称:教授讲师 二○一一年十二月二十六日

目录 第一章基本数据选择 (01) 1.1设计初始数据 (01) 1.1.1变速器各挡传动比的确定 (02) 1.1.2中心距 (03) 1.2齿轮参数 (04) 1.3各挡齿轮齿数的分配 (05) 第二章齿轮校核 (17) 2.1齿轮材料的选择原则 (17) 2.2计算各轴的转矩 (18) 2.3齿轮强度计算 (18) 2.3.1齿轮弯曲强度计算 (18) 2.3.2齿轮接触应力 (22) 2.4计算各挡齿轮的受力 (23) 第三章轴及轴上支撑件的校核 (24) 3.2轴的强度计算 (26) 3.2.1初选轴的直径 (29) 3.2.2轴的强度校核 (30) 3.3轴承及轴承校核 (32) 3.3.1一轴轴承校核 (36) 3.3.2中间轴轴承校核 (38)

第一章 数据计算 1.1设计初始数据:(方案二) 学号:24 最高车速:max a U =94+2×(24-25)=92Km/h 发动机功率:max e P =124+(24-25)=123KW 转矩:max e T =560+5×(24-25)=555Nm 总质量:m a =9410+50×(24-25)=9360Kg 转矩转速:n T=1400+50×(24-20)=1200r/min 车轮:9.00-20 r ≈R=(9×2+20)/2=19×25.4=482.6mm 1.1.1 变速器各挡传动比的确定 初选传动比: 设五挡为直接挡,则5g i =1 max a U = 0.377 max i i r n g p 式中:max a U —最高车速 p n —发动机最大功率转速 r —车轮半径 m a x g i —变速器最大传动比 0i —主减速器传动比 p n / T n =1.4~2.0 即p n =(1.4~2.0)×1200=1680~2400r/min max e T =9549× p e n P max α (式中α=1.1~1.3,取α=1.2) 所以,p n =9549×(1.1~1.3) ×123/555=2327.89~2751.14r/min 取p n =2500r/min

汽车手动变速器毕业设计

汽车手动变速器设计 摘要 本设计的任务是设计一台用于轿车上的FR式的手动变速器。本设计采用中间轴式变速器,该变速器具有两个突出的优点:一是其直接档的传动效率高,磨损及噪声也最小;二是在齿轮中心距较小的情况下仍然可以获得较大的一档传动比。 根据轿车的外形、轮距、轴距、最小离地间隙、最小转弯半径、车辆重量、满载重量以及最高车速等参数结合自己选择的适合于该轿车的发动机型号可以得出发动机的最大功率、最大扭矩、排量等重要的参数。再结合某些轿车的基本参数,选择适当的主减速比。根据上述参数,再结合汽车设计、汽车理论、机械设计等相关知识,计算出相关的变速器参数并论证设计的合理性。 它功用是:①改变传动比,扩大驱动轮转矩和转速的变化范围,以适应经常变化的行驶条件,如起步、加速、上坡等,同时使发动机在有利的工况下工作;②在发动机旋转方向不变的前提下,使汽车能倒退行驶;③利用空档,中断动力传递,以使发动机能够起动、怠速,并便于发动机换档或进行动力输出。这台变速器具有五个前进档(包括一个超速档五档)和一个倒档,并通过锁环式同步器来实现换档。 关键词:变速器,锁环式同步器,传动比,中间轴,第二轴,齿轮

目录 第一章机械式变速器的概述及其方案的确定 (1) 第一节变速器的功用和要求 (1) 第二节变速器结构方案的确定 (1) 第三节变速器主要零件结构的方案分析 (1) 第二章变速器主要参数的选择与主要零件的设计 (7) 第一节变速器主要参数的选择 (8) 第二节各档传动比及其齿轮齿数的确定 (10) 第三节齿轮变位系数的选择 (13) 第三章变速器齿轮的强度计算与材料的选择 (14) 第一节齿轮的损坏原因及形式 (14) 第二节齿轮的强度计算与校核 (14) 第四章变速器轴的强度计算与校核 (17) 第一节变速器轴的结构和尺寸 (17) 第二节轴的校核 (19) 第五章变速器同步器的设计 (22) 第六章变速器的操纵机构 (24) 参考文献 (25)

三轴式变速器结构设计

中型货车变速器设计(三轴式) 摘要 三轴式变速器由于具有体积小、原理简单、工作可靠、操纵方便等优点,故在大多数汽车中广泛应用。本次设计的目的主要是基于对机械原理、机械设计、AutoCAD等知识的熟练运用和掌握,同时运用汽车构造、汽车设计、材料力学、互换性测量等学科知识,对三轴式变速器的各部件进行设计。 首先,本文将概述汽车变速器的现状和发展趋势,介绍变速器领域的最新发展状况。 其次,本文将对不同的变速器传动方案进行比较,选择合理的结构方案进行设计。 再次,本文重点对变速器的两种重要部件—轴和齿轮进行受力分析,强度、刚度的校核计算,以及为这些元件选择合适的工程材料及热处理方法。 最后,本文将对变速器换档过程中的重要部件—同步器以及操纵机构进行阐述,讲述同步器的类型、工作原理、设计方法以及重要参数。 在附录中,本文还将给出进行计算的必要公式、表格及图形,供参考之用。关键词:变速器,同步器,轴,齿轮

Design Three-shaft Transmission for Medium-duty Truck Author: Li Bijun Tutor:Lei Zhengbao Abstract Three-shaft transmission is widely used most vehicle for its particular advantages ,such as small dimension ,simply theory ,good stability, conveniently operation .The purpose of my paper is based on the skillful of using mechanic theory ,mechanic design, AutoCAD. Meanwhile, my paper is incorporated structure of vehicle, design of vehicle, mechanic of materials, and survey of interchangeability. I will design the parts of three-shaft transmission. At first, I will give a summary of the current situation and the tendency of development of the vehicle transmission, and introduce the latest development state in the field of the transmission. The second, I will compare the transmitting scheme of different transmission, and choose a better structure scheme. Next, I will do some mechanic analyses, strength, stiffness check of the shafts and gears, which are the important parts of the transmission, and choose appropriate materials and heat treatment. At last, I will introduce the operation mechanism and the synchronizer, which plays an important role in changing gear. I will give an account of the type, operation, design procedure and major parameter of the synchronizer. At the supplement, I will write some thing like formula, tableau graph and so on. It may be helpful for the future design. Key words: Transmission, Synchronizer, Shaft, Gear

变速器课程设计

目录 一、机械式变速器的概述及其方案的确定 (2) 1、变速器的功用和要求 (2) 2、变速器传动方案及简图 (2) 3、倒档的布置方案 (3) 二、变速器主要参数的选择与主要零件的设计 (4) 1、变速器的主要参数选择 (4) 2、齿轮参数 (5) 3、各档传动比及其齿轮齿数的确定 (6) 4、轮的受力和强度校核 (8) 三、轴和轴承的设计与校核 (12) 1、轴的工艺要求 (12) 2、轴的设计 (12) 3、轴的校核 (13) 4、轴承的选择和校核 (17)

一.机械式变速器的概述及其方案的确定 (一)变速器的功用和要求 变速器的功用是根据汽车在不同的行驶条件下提出的要求,改变发动机的扭矩和转速,使汽车具有适合的牵引力和速度,并同时保持发动机在最有利的工况范围内工作。为保证汽车倒车以及使发动机和传动系能够分离,变速器具有倒档和空档。在有动力输出需要时,还应有功率输出装置。 对变速器的主要要求是: 1.应保证汽车具有高的动力性和经济性指标。在汽车整体设计时,根据汽车载重量、发动机参数及汽车使用要求,选择合理的变速器档数及传动比,来满足这一要求。 2.工作可靠,操纵轻便。汽车在行驶过程中,变速器内不应有自动跳档、乱档、换档冲击等现象的发生。为减轻驾驶员的疲劳强度,提高行驶安全性,操纵轻便的要求日益显得重要,这可通过采用同步器和预选气动换档或自动、半自动换档来实现。 3.重量轻、体积小。影响这一指标的主要参数是变速器的中心距。选用优质钢材,采用合理的热处理,设计合适的齿形,提高齿轮精度以及选用圆锥滚柱轴承可以减小中心距。 4.传动效率高。为减小齿轮的啮合损失,应有直接档。提高零件的制造精度和安装质量,采用适当的润滑油都可以提高传动效率。 噪声小。采用斜齿轮传动及选择合理的变位系数,提高制造精度和安装刚性可减小齿轮的噪声。 (二)变速器传动方案及简图 下图a所示方案,除一,倒档用直齿滑动齿轮换档外,其余各档为常啮合齿轮传动。下图b、c、d所示方案的各前进档,均用常啮合齿轮传动;下图d 所示方案中的倒档和超速档安装在位于变速器后部的副箱体内,这样布置除可以提高轴的刚度,减少齿轮磨损和降低工作噪声外,还可以在不需要超速档的条件下,很容易形成一个只有四个前进档的变速器。

相关主题
文本预览
相关文档 最新文档