当前位置:文档之家› 基于卷积神经网络的深度学习算法与应用研究_陈先昌

基于卷积神经网络的深度学习算法与应用研究_陈先昌

基于卷积神经网络的深度学习算法与应用研究_陈先昌
基于卷积神经网络的深度学习算法与应用研究_陈先昌

零基础入门深度学习(5) - 循环神经网络

[关闭] 零基础入门深度学习(5) - 循环神经网络 机器学习深度学习入门 无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。 文章列表 零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降 零基础入门深度学习(3) - 神经网络和反向传播算法 零基础入门深度学习(4) - 卷积神经网络 零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络 往期回顾 在前面的文章系列文章中,我们介绍了全连接神经网络和卷积神经网络,以及它们的训练和使用。他们都只能单独的取处理一个个的输入,前一个输入和后一个输入是完全没有关系的。但是,某些任务需要能够更好的处理序列的信息,即前面的输入和后面的输入是有关系的。比如,当我们在理解一句话意思时,孤立的理解这句话的每个词是不够的,我们需要处理这些词连接起来的整个序列;当我们处理视频的时候,我们也不能只单独的去分析每一帧,而要分析这些帧连接起来的整个序列。这时,就需要用到深度学习领域中另一类非常重要神经网络:循环神经网络(Recurrent Neural Network)。RNN种类很多,也比较绕脑子。不过读者不用担心,本文将一如既往的对复杂的东西剥茧抽丝,帮助您理解RNNs以及它的训练算法,并动手实现一个循环神经网络。 语言模型 RNN是在自然语言处理领域中最先被用起来的,比如,RNN可以为语言模型来建模。那么,什么是语言模型呢? 我们可以和电脑玩一个游戏,我们写出一个句子前面的一些词,然后,让电脑帮我们写下接下来的一个词。比如下面这句:我昨天上学迟到了,老师批评了____。 我们给电脑展示了这句话前面这些词,然后,让电脑写下接下来的一个词。在这个例子中,接下来的这个词最有可能是『我』,而不太可能是『小明』,甚至是『吃饭』。 语言模型就是这样的东西:给定一个一句话前面的部分,预测接下来最有可能的一个词是什么。 语言模型是对一种语言的特征进行建模,它有很多很多用处。比如在语音转文本(STT)的应用中,声学模型输出的结果,往往是若干个可能的候选词,这时候就需要语言模型来从这些候选词中选择一个最可能的。当然,它同样也可以用在图像到文本的识别中(OCR)。 使用RNN之前,语言模型主要是采用N-Gram。N可以是一个自然数,比如2或者3。它的含义是,假设一个词出现的概率只与前面N个词相关。我

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

吴恩达深度学习课程:神经网络和深度学习

吴恩达深度学习课程:神经网络和深度学习[中英文字幕+ppt课件] 内容简介 吴恩达(Andrew Ng)相信大家都不陌生了。2017年8 月8 日,吴恩达在他自己创办的在线教育平台Coursera 上线了他的人工智能专项课程(Deep Learning Specialization)。此课程广受好评,通过视频讲解、作业与测验等让更多的人对人工智能有了了解与启蒙,国外媒体报道称:吴恩达这次深度学习课程是迄今为止,最全面、系统和容易获取的深度学习课程,堪称普通人的人工智能第一课。 关注微信公众号datayx 然后回复“深度学习”即可获取。 第一周深度学习概论: 学习驱动神经网络兴起的主要技术趋势,了解现今深度学习在哪里应用、如何应用。 1.1 欢迎来到深度学习工程师微专业 1.2 什么是神经网络? 1.3 用神经网络进行监督学习 1.4 为什么深度学习会兴起? 1.5 关于这门课

1.6 课程资源 第二周神经网络基础: 学习如何用神经网络的思维模式提出机器学习问题、如何使用向量化加速你的模型。 2.1 二分分类 2.2 logistic 回归 2.3 logistic 回归损失函数 2.4 梯度下降法 2.5 导数 2.6 更多导数的例子 2.7 计算图 2.8 计算图的导数计算 2.9 logistic 回归中的梯度下降法 2.10 m 个样本的梯度下降 2.11 向量化 2.12 向量化的更多例子 2.13 向量化logistic 回归 2.14 向量化logistic 回归的梯度输出 2.15 Python 中的广播 2.16 关于python / numpy 向量的说明 2.17 Jupyter / Ipython 笔记本的快速指南 2.18 (选修)logistic 损失函数的解释 第三周浅层神经网络:

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.doczj.com/doc/6210938256.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

深度神经网络及目标检测学习笔记

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(DeepNeural Network,NN)实现了对图片的识别,包括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来设置。训练的过程就好像是刚出生的婴儿,在父母一遍遍的重复中学习“这是苹

(完整word版)深度学习-卷积神经网络算法简介

深度学习 卷积神经网络算法简介 李宗贤 北京信息科技大学智能科学与技术系 卷积神经网络是近年来广泛应用在模式识别、图像处理领域的一种高效识别算法,具有简单结构、训练参数少和适应性强的特点。它的权值共享网络结构使之更类似与生物神经网络,降低了网络的复杂度,减少了权值的数量。以二维图像直接作为网络的输入,避免了传统是被算法中复杂的特征提取和数据重建过程。卷积神经网络是为识别二维形状特殊设计的一个多层感知器,这种网络结构对于平移、比例缩放、倾斜和其他形式的变形有着高度的不变形。 ?卷积神经网络的结构 卷积神经网络是一种多层的感知器,每层由二维平面组成,而每个平面由多个独立的神经元组成,网络中包含一些简单元和复杂元,分别记为C元和S元。C元聚合在一起构成卷积层,S元聚合在一起构成下采样层。输入图像通过和滤波器和可加偏置进行卷积,在C层产生N个特征图(N值可人为设定),然后特征映射图经过求和、加权值和偏置,再通过一个激活函数(通常选用Sigmoid函数)得到S层的特征映射图。根据人为设定C层和S层的数量,以上工作依次循环进行。最终,对最尾部的下采样和输出层进行全连接,得到最后的输出。

卷积的过程:用一个可训练的滤波器fx去卷积一个输入的图像(在C1层是输入图像,之后的卷积层输入则是前一层的卷积特征图),通过一个激活函数(一般使用的是Sigmoid函数),然后加一个偏置bx,得到卷积层Cx。具体运算如下式,式中Mj是输入特征图的值: X j l=f?(∑X i l?1?k ij l+b j l i∈Mj) 子采样的过程包括:每邻域的m个像素(m是人为设定)求和变为一个像素,然后通过标量Wx+1加权,再增加偏置bx+1,然后通过激活函数Sigmoid产生特征映射图。从一个平面到下一个平面的映射可以看作是作卷积运算,S层可看作是模糊滤波器,起到了二次特征提取的作用。隐层与隐层之间的空间分辨率递减,而每层所含的平面数递增,这样可用于检测更多的特征信息。对于子采样层来说,有N 个输入特征图,就有N个输出特征图,只是每个特征图的的尺寸得到了相应的改变,具体运算如下式,式中down()表示下采样函数。 X j l=f?(βj l down (X j l?1) +b j l)X j l) ?卷积神经网络的训练过程 卷积神经网络在本质上是一种输入到输出的映射,它能够学习大量的输入和输出之间的映射关系,而不需要任何输入和输出之间的精确数学表达式。用已知的模式对卷积网络加以训练,网络就具有了输

深度学习与全连接神经网络

统计建模与R语言 全连接神经网络 学院航空航天学院 专业机械电子工程 年级 2019级 学生学号 19920191151134 学生姓名梅子阳

一、绪论 1、人工智能背景 信息技术是人类历史上的第三次工业革命,计算机、互联网、智能家居等技术的普及极大地方便了人们的日常生活。通过编程的方式,人类可以将提前设计好的交互逻辑交给机器重复且快速地执行,从而将人类从简单枯燥的重复劳动工作中解脱出来。但是对于需要较高智能水平的任务,如人脸识别、聊天机器人、自动驾驶等任务,很难设计明确的逻辑规则,传统的编程方式显得力不从心,而人工智能(Artificial Intelligence,简称 AI)是有望解决此问题的关键技术。 随着深度学习算法的崛起,人工智能在部分任务上取得了类人甚至超人的智力水平,如围棋上 AlphaGo 智能程序已经击败人类最强围棋专家之一柯洁,在 Dota2 游戏上OpenAI Five 智能程序击败冠军队伍 OG,同时人脸识别、智能语音、机器翻译等一项项实用的技术已经进入到人们的日常生活中。现在我们的生活处处被人工智能所环绕,尽管目前能达到的智能水平离通用人工智能(Artificial General Intelligence,简称 AGI)还有一段距离,但是我们仍坚定地相信人工智能的时代已经来临。 怎么实现人工智能是一个非常广袤的问题。人工智能的发展主要经历过三个阶段,每个阶段都代表了人们从不同的角度尝试实现人工智能的探索足迹。早期,人们试图通过总结、归纳出一些逻辑规则,并将逻辑规则以计算机程序的方式实现,来开发出智能系统。但是这种显式的规则往往过于简单,并且很难表达复杂、抽象的概念和规则。这一阶段被称为推理期。 1970 年代,科学家们尝试通过知识库加推理的方式解决人工智能,通过建庞大复杂的专家系统来模拟人类专家的智能水平。这些明确指定规则的方式存在一个最大的难题,就是很多复杂、抽象的概念无法用具体的代码实现。比如人类对图片的识别、对语言的理解过程,根本无法通过既定规则模拟。为了解决这类问题,一门通过让机器自动从数据中学习规则的研究学科诞生了,称为机器学习,并在 1980 年代成为人工智能中的热门学科。在机器学习中,有一门通过神经网络来学习复杂、抽象逻辑的方向,称为神经网络。神经网络方向的研究经历了两起两落。2012 年开始,由于效果极为显著,应用深层神经网络技术在计算机视觉、自然语言处理、机器人等领域取得了重大突破,部分任务上甚至超越了人类智能水平,开启了以深层神经网络为代表的人工智能的第三次复兴。深层神经网络有了一个新名字:深度学习。一般来讲,神经网络和深度学习的本质区别并不大,深度学习特指基于深层神经网络实现的模型或算法。 2、神经网络与深度学习 将神经网络的发展历程大致分为浅层神经网络阶段和深度学习阶段,以2006 年为分割点。2006 年以前,深度学习以神经网络和连接主义名义发展,

神经网络及深度学习

可用于自动驾驶的神经网络及深度学习 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 作者:来源:电子产品世界|2017-02-27 13:55 收藏 分享 高级辅助驾驶系统(ADAS)可提供解决方案,用以满足驾乘人员对道路安全及出行体验的更高要求。诸如车道偏离警告、自动刹车及泊车辅助等系统广泛应用于当前的车型,甚至是功能更为强大的车道保持、塞车辅助及自适应巡航控制等系统的配套使用也让未来的全自动驾驶车辆成为现实。 如今,车辆的很多系统使用的都是机器视觉。机器视觉采用传统信号处理技术来检测识别物体。对于正热衷于进一步提高拓展ADAS功能的汽车制造业而言,深度学习神经网络开辟了令人兴奋的研究途径。为了实现从诸如高速公路全程自动驾驶仪的短时辅助模式到专职无人驾驶旅行的自动驾驶,汽车制造业一直在寻求让响应速度更快、识别准确度更高的方法,而深度学习技术无疑为其指明了道路。 以知名品牌为首的汽车制造业正在深度学习神经网络技术上进行投资,并向先进的计算企业、硅谷等技术引擎及学术界看齐。在中国,百度一直在此技术上保持领先。百度计划在2019 年将全自动汽车投入商用,并加大全自动汽车的批量生产力度,使其在2021 年可广泛投入使用。汽车制造业及技术领军者之间的密切合作是嵌入式系统神经网络发展的催化剂。这类神经网络需要满足汽车应用环境对系统大小、成本及功耗的要求。 1轻型嵌入式神经网络 卷积式神经网络(CNN)的应用可分为三个阶段:训练、转化及CNN在生产就绪解决方案中的执行。要想获得一个高性价比、针对大规模车辆应用的高效结果,必须在每阶段使用最为有利的系统。 训练往往在线下通过基于CPU的系统、图形处理器(GPU)或现场可编程门阵列(FPGA)来完成。由于计算功能强大且设计人员对其很熟悉,这些是用于神经网络训练的最为理想的系统。 在训练阶段,开发商利用诸如Caffe(Convolution Architecture For Feature Extraction,卷积神经网络架构)等的框架对CNN 进行训练及优化。参考图像数据库用于确定网络中神经元的最佳权重参数。训练结束即可采用传统方法在CPU、GPU 或FPGA上生成网络及原型,尤其是执行浮点运算以确保最高的精确度。 作为一种车载使用解决方案,这种方法有一些明显的缺点。运算效率低及成本高使其无法在大批量量产系统中使用。 CEVA已经推出了另一种解决方案。这种解决方案可降低浮点运算的工作负荷,并在汽车应用可接受的功耗水平上获得实时的处理性能表现。随着全自动驾驶所需的计算技术的进一步发展,对关键功能进行加速的策略才能保证这些系统得到广泛应用。 利用被称为CDNN的框架对网络生成策略进行改进。经过改进的策略采用在高功耗浮点计算平台上(利用诸如Caffe的传统网络生成器)开发的受训网络结构和权重,并将其转化为基于定点运算,结构紧凑的轻型的定制网络模型。接下来,此模型会在一个基于专门优化的成像和视觉DSP芯片的低功耗嵌入式平台上运行。图1显示了轻型嵌入式神经网络的生成

深度学习与神经网络

CDA数据分析研究院出品,转载需授权 深度学习是机器学习的一个子领域,研究的算法灵感来自于大脑的结构和功能,称为人工神经网络。 如果你现在刚刚开始进入深度学习领域,或者你曾经有过一些神经网络的经验,你可能会感到困惑。因为我知道我刚开始的时候有很多的困惑,我的许多同事和朋友也是这样。因为他们在20世纪90年代和21世纪初就已经学习和使用神经网络了。 该领域的领导者和专家对深度学习的观点都有自己的见解,这些具体而细微的观点为深度学习的内容提供了很多依据。 在这篇文章中,您将通过听取该领域的一系列专家和领导者的意见,来了解什么是深度学习以及它的内容。 来让我们一探究竟吧。 深度学习是一种大型的神经网络 Coursera的Andrew Ng和百度研究的首席科学家正式创立了Google Brain,最终导致了大量Google服务中的深度学习技术的产品化。 他已经说了很多关于深度学习的内容并且也写了很多,这是一个很好的开始。 在深度学习的早期讨论中,Andrew描述了传统人工神经网络背景下的深度学习。在2013年的题为“ 深度学习,自学习和无监督特征学习”的演讲中“他将深度学习的理念描述为: 这是我在大脑中模拟的对深度学习的希望: - 使学习算法更好,更容易使用。 - 在机器学习和人工智能方面取得革命性进展。 我相信这是我们迈向真正人工智能的最好机会

后来他的评论变得更加细致入微了。 Andrew认为的深度学习的核心是我们现在拥有足够快的计算机和足够多的数据来实际训练大型神经网络。在2015年ExtractConf大会上,当他的题目“科学家应该了解深度学习的数据”讨论到为什么现在是深度学习起飞的时候,他评论道: 我们现在拥有的非常大的神经网络......以及我们可以访问的大量数据 他还评论了一个重要的观点,那就是一切都与规模有关。当我们构建更大的神经网络并用越来越多的数据训练它们时,它们的性能会不断提高。这通常与其他在性能上达到稳定水平的机器学习技术不同。 对于大多数旧时代的学习算法来说......性能将达到稳定水平。......深度学习......是第一类算法......是可以扩展的。...当你给它们提供更多的数据时,它的性能会不断提高 他在幻灯片中提供了一个漂亮的卡通片: 最后,他清楚地指出,我们在实践中看到的深度学习的好处来自有监督的学习。从2015年的ExtractConf演讲中,他评论道: 如今的深度学习几乎所有价值都是通过有监督的学习或从有标记的数据中学习 在2014年的早些时候,在接受斯坦福大学的题为“深度学习”的演讲时,他也发出了类似的评论。 深度学习疯狂发展的一个原因是它非常擅长监督学习

深度神经网络

1. 自联想神经网络与深度网络 自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入。很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在。所以,我们说,输出是对输入的一种重构。其网络结构可以很简单的表示如下: 如果我们在上述网络中不使用sigmoid函数,而使用线性函数,这就是PCA模型。中间网络节点个数就是PCA模型中的主分量个数。不用担心学习算法会收敛到局部最优,因为线性BP网络有唯一的极小值。

在深度学习的术语中,上述结构被称作自编码神经网络。从历史的角度看,自编码神经网络是几十年前的事情,没有什么新奇的地方。 既然自联想神经网络能够实现对输入数据的重构,如果这个网络结构已经训练好了,那么其中间层,就可以看过是对原始输入数据的某种特征表示。如果我们把它的第三层去掉,这样就是一个两层的网络。如果,我们把这个学习到特征再用同样的方法创建一个自联想的三层BP网络,如上图所示。换言之,第二次创建的三层自联想网络的输入是上一个网络的中间层的输出。用同样的训练算法,对第二个自联想网络进行学习。那么,第二个自联想网络的中间层是对其输入的某种特征表示。如果我们按照这种方法,依次创建很多这样的由自联想网络组成的网络结构,这就是深度神经网络,如下图所示:

注意,上图中组成深度网络的最后一层是级联了一个softmax分类器。 深度神经网络在每一层是对最原始输入数据在不同概念的粒度表示,也就是不同级别的特征描述。 这种层叠多个自联想网络的方法,最早被Hinton想到了。 从上面的描述中,可以看出,深度网络是分层训练的,包括最后一层的分类器也是单独训练的,最后一层分类器可以换成任何一种分类器,例如SVM,HMM等。上面的每一层单独训练使用的都是BP算法。相信这一思路,Hinton早就实验过了。 2. DBN神经网络模型 使用BP算法单独训练每一层的时候,我们发现,必须丢掉网络的第三层,才能级联自联想神经网络。然而,有一种更好的神经网络模型,这就是受限玻尔兹曼机。使用层叠波尔兹曼机组成深度神经网络的方法,在深度学习里被称作深度信念网络DBN,这是目前非

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

《神经网络与深度学习综述DeepLearning15May2014

Draft:Deep Learning in Neural Networks:An Overview Technical Report IDSIA-03-14/arXiv:1404.7828(v1.5)[cs.NE] J¨u rgen Schmidhuber The Swiss AI Lab IDSIA Istituto Dalle Molle di Studi sull’Intelligenza Arti?ciale University of Lugano&SUPSI Galleria2,6928Manno-Lugano Switzerland 15May2014 Abstract In recent years,deep arti?cial neural networks(including recurrent ones)have won numerous con-tests in pattern recognition and machine learning.This historical survey compactly summarises relevant work,much of it from the previous millennium.Shallow and deep learners are distinguished by the depth of their credit assignment paths,which are chains of possibly learnable,causal links between ac- tions and effects.I review deep supervised learning(also recapitulating the history of backpropagation), unsupervised learning,reinforcement learning&evolutionary computation,and indirect search for short programs encoding deep and large networks. PDF of earlier draft(v1):http://www.idsia.ch/~juergen/DeepLearning30April2014.pdf LATEX source:http://www.idsia.ch/~juergen/DeepLearning30April2014.tex Complete BIBTEX?le:http://www.idsia.ch/~juergen/bib.bib Preface This is the draft of an invited Deep Learning(DL)overview.One of its goals is to assign credit to those who contributed to the present state of the art.I acknowledge the limitations of attempting to achieve this goal.The DL research community itself may be viewed as a continually evolving,deep network of scientists who have in?uenced each other in complex ways.Starting from recent DL results,I tried to trace back the origins of relevant ideas through the past half century and beyond,sometimes using“local search”to follow citations of citations backwards in time.Since not all DL publications properly acknowledge earlier relevant work,additional global search strategies were employed,aided by consulting numerous neural network experts.As a result,the present draft mostly consists of references(about800entries so far).Nevertheless,through an expert selection bias I may have missed important work.A related bias was surely introduced by my special familiarity with the work of my own DL research group in the past quarter-century.For these reasons,the present draft should be viewed as merely a snapshot of an ongoing credit assignment process.To help improve it,please do not hesitate to send corrections and suggestions to juergen@idsia.ch.

深度神经网络的关键技术及其在自动驾驶领域的应用

ISSN 1674-8484 CN 11-5904/U 汽车安全与节能学报, 第10卷第2期, 2019年 J Automotive Safety and Energy, Vol. 10 No. 2, 2019 1/13 119—145 深度神经网络的关键技术及其在自动驾驶领域的应用 李升波1,关?阳1,侯?廉1,高洪波1,段京良2,梁?爽3,汪?玉3,成?波1, 李克强1,任?伟4,李?骏1 (1. 清华大学车辆与运载学院,北京100084,中国;2. 加州大学伯克利分校机械系,加州 94720,美国; 3. 清华大学电子工程系,北京100084,中国; 4. 加州大学河滨分校电子计算机系,加州92521,美国) 摘?要:?智能化是汽车的三大变革技术之一,深度学习具有拟合能力优、表征能力强和适用范围广的 特点,是进一步提升汽车智能性的重要途径。该文系统性总结了用于自动驾驶汽车的深度神经网络(DNN)技术,包括发展历史、主流算法以及感知、决策与控制技术应用。回顾了神经网络的历史及现状, 总结DNN的“神经元-层-网络”3级结构,重点介绍卷积网络和循环网络的特点以及代表性模型; 阐述了以反向传播(BP)为核心的深度网络训练算法,列举用于深度学习的常用数据集与开源框架,概 括了网络计算平台和模型优化设计技术;讨论DNN在自动驾驶汽车的环境感知、自主决策和运动控 制3大方向的应用现状及其优缺点,具体包括物体检测和语义分割、分层式和端到端决策、汽车纵 横向运动控制等;针对用于自动驾驶汽车的DNN技术,指明了不同问题的适用方法以及关键问题的 未来发展方向。 关键词:?智能汽车;自动驾驶;深度神经网络(DNN);深度学习;环境感知;自主决策;运动控制 中图分类号:?TP 18;U 463.6 文献标志码:?A DOI:?10.3969/j.issn.1674-8484.2019.02.001 Key technique of deep neural network and its applications in autonomous driving LI Shengbo1, GUAN Yang1, HOU Lian1, GAO Hongbo1, DUAN Jingliang2, LIANG Shuang3, WANG Yu3, CHENG Bo1, LI Keqiang1, REN Wei4, LI Jun1 (1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China; 2. Mechanical Engineering, University of California Berkeley, Berkeley, CA 94720, USA; 3. Electronic Engineering, Tsinghua University, Beijing 100084, China; 4. Electrical and Computer Engineering, University of California Riverside, Riverside, CA 92521, USA) Abstract: Autonomous driving is one of the three major innovations in automotive industry. Deep learning is a crucial method to improve automotive intelligence due to its outstanding abilities of data fitting, feature representation and model generalization. This paper reviewed the technologies of deep neural network (DNN) 收稿日期?/?Received?:?2019-01-19。 基金项目?/?Supported?by?: “十三五”国家重点研发计划(2016YFB0100906);国家自然科学基金面上项目(51575293);国家自然科学基金优秀青年科学基金项目(U1664263);国家自然科学基金重点项目(51622504);北京市自然科学基金杰出青 年科学基金项目(JQ18010);汽车安全与节能国家重点实验室开放基金课题(KF1828)。 第一作者?/?First?author?:?李升波(1982—),男(汉),山东,副教授。E-mail: lishbo@https://www.doczj.com/doc/6210938256.html,。

深度学习

卷积神经网络 卷积神经网络被设计用来处理到多维数组数据的,比如一个有3个包含了像素值2-D图像组合成的一个具有3个颜色通道的彩色图像。很多数据形态都是这种多维数组的:1D用来表示信号和序列包括语言,2D用来表示图像或者声音,3D用来表示视频或者有声音的图像。卷积神经网络使用4个关键的想法来利用自然信号的属性:局部连接、权值共享、池化以及多网络层的使用。 图2 卷积神经网络内部 一个典型的卷积神经网络结构(如图2)是由一系列的过程组成的。最初的几个阶段是由卷积层和池化层组成,卷积层的单元被组织在特征图中,在特征图中,每一个单元通过一组叫做滤波器的权值被连接到上一层的特征图的一个局部块,然后这个局部加权和被传给一个非线性函数,比如ReLU。在一个特征图中的全部单元享用相同的过滤器,不同层的特征图使用不同的过滤器。使用这种结构处于两方面的

原因。首先,在数组数据中,比如图像数据,一个值的附近的值经常是高度相关的,可以形成比较容易被探测到的有区分性的局部特征。其次,不同位置局部统计特征不太相关的,也就是说,在一个地方出现的某个特征,也可能出现在别的地方,所以不同位置的单元可以共享权值以及可以探测相同的样本。在数学上,这种由一个特征图执行的过滤操作是一个离线的卷积,卷积神经网络也是这么得名来的。 卷积层的作用是探测上一层特征的局部连接,然而池化层的作用是在语义上把相似的特征合并起来,这是因为形成一个主题的特征的相对位置不太一样。一般地,池化单元计算特征图中的一个局部块的最大值,相邻的池化单元通过移动一行或者一列来从小块上读取数据,因为这样做就减少的表达的维度以及对数据的平移不变性。两三个这种的卷积、非线性变换以及池化被串起来,后面再加上一个更多卷积和全连接层。在卷积神经网络上进行反向传播算法和在一般的深度网络上是一样的,可以让所有的在过滤器中的权值得到训练。 深度神经网络利用的很多自然信号是层级组成的属性,在这种属性中高级的特征是通过对低级特征的组合来实现的。在图像中,局部边缘的组合形成基本图案,这些图案形成物体的局部,然后再形成物体。这种层级结构也存在于语音数据以及文本数据中,如电话中的声音,因素,音节,文档中的单词和句子。当输入数据在前一层中的位置有变化的时候,池化操作让这些特征表示对这些变化具有鲁棒性。

深度学习系列 自己手写一个卷积神经网络

深度学习系列自己手写一个卷积神经网络 首先我们来看一个最简单的卷积神经网络:1.输入层---->卷积层以上一节的例子为例,输入是一个4*4 的image,经过两个2*2的卷积核进行卷积运算后,变成两个3*3的feature_map以卷积核filter1为例(stride = 1 ):计算第一个卷积层神经元o11的输入:神经元o11的输出:(此处使用Relu 激活函数)其他神经元计算方式相同2.卷积层---->池化层计 算池化层m11 的输入(取窗口为2 * 2),池化层没有激活函 数3.池化层---->全连接层池化层的输出到flatten层把所有元素“拍平”,然后到全连接层。4.全连接层---->输出层全连接层到输出层就是正常的神经元与神经元之间的邻接相连,通过softmax函数计算后输出到output,得到不同类别的概率值,输出概率值最大的即为该图片的类别。卷积神经网络的反向传播传统的神经网络是全连接形式的,如果进行反向传播,只需要由下一层对前一层不断的求偏导,即求链式偏导就可以求出每一层的误差敏感项,然后求出权重和偏置项的梯度,即可更新权重。而卷积神经网络有两个特殊的层:卷积层和池化层。池化层输出时不需要经过激活函数,是一个滑动窗口的最大值,一个常数,那么它的偏导是1。池化层相当于对上层图片做了一个压缩,这个反向求误差敏感项时与传统的反向传播方式不同。从卷积后的feature_map反向传播到

前一层时,由于前向传播时是通过卷积核做卷积运算得到的feature_map,所以反向传播与传统的也不一样,需要更新卷积核的参数。下面我们介绍一下池化层和卷积层是如何做反向传播的。在介绍之前,首先回顾一下传统的反向传播方法:卷积层的反向传播由前向传播可得:首先计算输入层的误差项δ11:观察一下上面几个式子的规律,归纳一下,可以得到如下表达式:此时我们的误差敏感矩阵就求完了,得到误差敏感矩阵后,即可求权重的梯度。推论出权重的梯度:误差项的梯度:可以看出,偏置项的偏导等于这一层所有误差敏感项之和。得到了权重和偏置项的梯度后,就可以根据梯度下降法更新权重和梯度了。池化层的反向传播池化层的反向传播就比较好求了,看着下面的图,左边是上一层的输出,也就是卷积层的输出feature_map,右边是池化层的输入,还是先根据前向传播,把式子都写出来,方便计算:这样就求出了池化层的误差敏感项矩阵。同理可以求出每个神经元的梯度并更新权重。手写一个卷积神经网络1.定义一个卷积层首先我们通过ConvLayer来实现一个卷积层,定义卷积层的超参数其中calculate_output_size用来计算通过卷积运算后输出的feature_map大小2.构造一个激活函数此处用的是RELU激活函数,因此我们在activators.py里定义,forward是前向计算,backforward是计算公式的导数:其他常见的激活函数我们也可以放到activators里,如sigmoid

相关主题
文本预览
相关文档 最新文档