当前位置:文档之家› 阻尼复合材料的发展研究

阻尼复合材料的发展研究

阻尼复合材料的发展研究
阻尼复合材料的发展研究

阻尼复合材料的研究发展

摘要:阐述了阻尼材料的基本概念和阻尼作用的基本原理,回顾了阻尼材料发展的三个阶段,简单介绍了阻尼材料的性能评价方法和大致分类,并对复合阻尼材料的研究状况及进展进行了详细的评述和分析。

关键词:阻尼材料;复合阻尼材料;减振;降噪

0引言

随着现代工业的发展, 振动工具和产生强烈振动的大功率机械不断增多, 各种机械设备在运转及工作过程中带来的振动危害也日益严重[1] 。在日常生活中, 这类振动和噪声会给人们的生活和工作带来影响, 危害人体的健康, 使人疲倦、耳鸣, 严重者甚至丧失工作能力[2] ,如果长期暴露在85dB 以上的环境中,就会导致噪声型耳聋[3, 4]。在工程中, 振动和噪声带来的宽频带随机激振会引起结构的多共振峰响应, 还会直接影响电子器件、仪器和仪表的正常工作, 严重时造成灾难性后果。在军事中, 由于武器装备和飞行器的发展日趋高速化和大功率化, 各种飞行器在飞行过程中受到发动机和高速气流的激励, 所产生的振动和谐动响应而产生的结构疲劳是十分严重的。并且潜艇和气垫船受到发动机的激励, 产生的高分贝噪声将严重影响战斗力。因此, 采用高阻尼材料或阻尼结构进行减振降噪成为解决上述问题十分有效的手段之一[4]。同时为了减少各种灾害所带来的影响, 对阻尼技术的研究已经成为迫切需要解决的事情。目前, 功能性阻尼材料已经在尖端武器装备、航天飞行器、航海、民用建筑、环境保护等方面得到广泛应用。

1 阻尼材料的发展历史

第一阶段是1784~1920年,在1784年Cou1omb[5]便指出金属经受循环应变时,应力.应变曲线将形成滞后环,并有能量耗散。1837年,Weber首次用扭摆的自由衰减测量了材料的阻尼。从1850年开始,声学家们对有阻尼的振动系统进行研究。Rayleigh于1878年给出了线性、粘性阻尼离散系统和连续介质力学、声学等系统的微分方程及一些方程的解,在此阶段阻尼材料的研究才刚刚起步。

第二阶段是1920—1940年,这一时期机器的运转速度越来越高,振动问题成为高速旋转机械、飞机及大型工程结构等的主要困扰。振动使得螺旋桨曲轴和水轮机叶片出现疲劳破坏,轮船的舱口产生疲劳裂纹,疲劳破坏使得第一架商务飞机坠毁,美国的Tacoma Na~ows 大桥也由于水流导致的振动而损坏[6],从而使得振动控制成为工业生产的主要话题之一,人们开始就这一问题进行工程应用研究。

第三个阶段是1940年至今,这一时期,有关阻尼的文献逐年增加,如1945年有500篇,1965年则超过了2500篇。这一阶段,人们开始定量描述阻尼对动态系统的影响,并于上世纪六七十年代发展起了一门涉及材料学、力学、机械学和环境科学等多学科的新技术,即阻尼技术[7]。

2 阻尼机理

阻尼复合材料主要是通过基体、增强体以及两者之间的界面摩擦阻尼来吸收振动机械能量,并将机械能转化为热能或其他形式的能量而耗散的功能材料。阻尼减振技术利用阻尼材

料在变形时把动能变成为其他形式能的原理,降低材料结构的共振振幅和增加材料的疲劳寿

命[8] 。因此,基体阻尼、增强体阻尼及界面阻尼构成了阻尼原理的三个主要的微观机制,其

叠加的结果决定了复合材料的宏观阻尼行为。

2. 1基体材料阻尼

阻尼复合材料通常是通过基体的阻尼特性起到减振抗噪的目的。聚合物基体与金属基体的阻尼特性是完全不同的。聚合物基体在处于刚性的玻璃态时,高分子链段的自由运动是受限制的,材料形变主要是由大分子链键长和键角的变化而引起,不能消耗机械能。当聚合物基体中的分子链处于运动状态时,分子链段发生相互运动时产生内摩擦,这需要克服阻力,需要

一定的时间,将外部施加的机械能转化为其他形式的能量[9 ] ,这就是基体材料阻尼的机制。

2. 2增强体材料阻尼

阻尼复合材料的另一种减振方式是靠复合材料中的增强材料来消耗振动能量的。这些增强材料如纤维能起到增加材料的应变及损耗能量的能力。它能限制分子的运动,增加应力和应变之间的相位滞后;增强材料能限制分子长链相互转换过程中的运动,从而增强能量的转

化,并增强了阻尼作用[10 ]。

2. 3材料界面阻尼

大多数增强材料与基体树脂在结构上存在很大差异,在物理和化学性质上不相容,因此两者结合后,界面会影响复合材料的性能。而增强体与基体的结合面恰恰就是复合材料阻尼机制的来源。界面阻尼是复合材料界面在外加应力的作用下发生相对的微滑移现象,从而消耗了从外界来的振动能量。界面阻尼在复合材料中起到微观阻尼的作用,从而增大了复合材料的阻尼性能。

3 分类

阻尼材料大致可分为粘弹性阻尼材料、高阻尼合金材料、复合阻尼材料和智能型阻尼材料,其中复合阻尼材料包括聚合物基阻尼复合材料和金属基阻尼复合材料,智能型阻尼材料主要包括压电阻尼材料和电流变流体阻尼材料。下面主要就复合阻尼材料的研究现状进行分析。

4 复合阻尼材料的研究现状

这类材料包括聚合物基阻尼复合材料和金属基阻尼复合材料。聚合物基阻尼复合材料是用纤维增强具有一定力学强度和较高损耗因子的聚合物而形成的复合材料;金属基阻尼复合材料包括在金属基体中添加第二相粒子形成的金属基复合材料、两种不同的金属板叠合在一

起或由金属板和树脂粘合在一起而形成的复合阻尼金属板等。

4.1 聚合物基阻尼材料的研究现状

传统聚合物阻尼材料的吸振机理基于粘弹阻尼,所以其适用温度和阻尼性能强烈依赖于聚合物的玻璃化转变温度。20世纪90年代,日本东京工业大学住田雅夫教授提出将导电炭黑与压电陶瓷粒子填充到聚合物基体中,制备导电压电型阻尼复合材料的设想。由于该类复

合材料的吸振机理基于振动机械能一电能一热能的转换损耗而非传统的粘弹阻尼,故不依赖

于聚合物基体的玻璃化转变,这将大大拓展其应用温度范围。因为该类阻尼复合材料理论上可以用任何一种聚合物作为基体,具有传统聚合物吸振材料无可比拟的优越性,引起了广大阻尼材料研究者的兴趣[11]。

晏雄等[12,13]用具有压电、介电效应的有机材料替代无机压电陶瓷,在高分子材料氯化聚乙烯(CPE)中,填充导电的气相成长超细碳纤维和具有强介电性能的N,N.二环己基-2.苯并噻唑基亚磺酸胺,制备导电压电型阻尼材料。结果表明,当导电网络形成时,材料的阻尼效果较好,因为这时复合材料内部的能量损耗主要是靠振动机械能一电能一热能的转换损耗来实现的。作为优良的阻尼材料,在应用的温度和频率范围内要有较大的阻尼损耗模量和阻尼损耗因子(tan8)的峰面积,而互穿网络结构则对阻尼损耗模量的峰宽增加并不明显。研究表明,一般填料能使高聚物的阻尼温域增加,而复合阻尼材料则可兼顾两者的优点,因此有

望具有更高的阻尼性能[14]。

4.2 金属基阻尼材料的研究现状

在金属基体中加入增强相制成复合材料能使材料同时具有较好的阻尼性能和较强的力学性能。在制备复合材料中一般选择颗粒、晶须和纤维作为增强相。与颗粒或晶须相比,连续纤维可较大程度地提高复合材料的阻尼。目前研究较多的阻尼金属基复合材料主要是Mg 基阻尼复合材料和Al基阻尼复合材料。R.Schallerl[15]采用定向凝固技术,以Mg-2%Si(质量分数)合金为原料获得了Mg Si/Mg复合材料,其力学性能与铸造镁合金AZ63的差不多,但阻尼性能却是它的100倍,同时高阻尼的基体还能改善金属基复合材料的抗疲劳性能。Jia[16]在商业纯铝中加入FeA1 增强相,成功地制备了Al/FeM 复合材料,研究表明A1/FeA1 复合材料的阻尼性能比Al基体的更好[17]。

5 展望

阻尼材料的开发和应用虽已有三四十年的历史, 但从理论上形成新的学科, 应用上形成新的技术只有10 多年的时间, 特别是IPN 阻尼材料的发展更是相当地年轻。纵观阻尼材料的发展史和研究现状, 阻尼材料的发展必须适应新的需要, 从发展角度来看, 复合阻尼材料较普通高聚物阻尼材料先进很多, 但是基于超高速内耗阻尼材料、宽工作温度区间和宽频带范围高阻尼材料及结构 能一体化高阻尼结构将是今后研究和开发的重点。

参考文献

[1] 王晏研, 陈喜荣, 黄光速. 复合阻尼材料最新研究进展[ J] .材料导报, 2004, 18( 10) : 54

[2] 张忠明, 刘宏昭, 王锦程, 等. 材料阻尼及阻尼材料的研究进展[ J] . 功能材料, 2001, 32( 3) : 227

[3] 李强, 黄光速. 互穿聚合物网络阻尼材料研究进展[ J] . 合成橡胶工业, 2002, 25( 1) : 1

[4] 王志远, 杨留拴. 泡沫金属基高阻尼复合材料的研究进展[ J] . 材料开发与应用, 2004, 19( 3) : 38

[5]Plunkett R.Damping Analysis:an Historical Perspective.M D:Mechanics an d Mechanics of Material

Damping,ASTM STP 1169[M].American Society for testing and Materials,Philadel—phia,1992,562-569.

[6]周克宁.振动、测试与诊断,1991,11(4):56-59.

[7]张忠明,刘宏昭,王锦程,杨根仓.材料阻尼及阻尼材料的研究进展[J].功能材料,2001,32(3):227-230.

[8 ] 戴德沛. 阻尼减振降噪技术[M ]. 西安:西安交通大学出版社,1986.

[9 ] 张晓农,吴人洁,李小璀,等. 金属基复合材料界面层阻尼功能研究[ J ]. 中国科学( E辑) , 2002, 32 (1) :

14 - 19.

[10 ] 任勇生,刘立原. 纤维增强复合材料结构阻尼研究进展[ J ]. 力学与实践, 2004, 26 (1) : 9 - 15.

[11]张诚,盛江峰,吴鸿飞,徐意.聚合物基阻尼材料研究进展[J].浙江工业大学学报,2005,33(1):83-87.

[12]晏雄,张慧萍,住田雅夫.新型减振高分子复合材料研究[J].高分子材料科学与工程,2001,17(5):86-89.

[13]晏雄,张慧萍,住田雅夫.CPE/DZ/VGCF科学与复合材料动态粘弹性研究[J].2002,18(3):165—

168.

[14]张治平,张泽朋,翁建乐.聚合物阻尼材料研究进展[J].2008,36(7):20-27.

[15]Schaller R.Metal matrix composites,a smart choice for high damp—ing materials[J].J Alloys Compd,2003,

(355):131.

[16]Jia C L.Study on damping behavior of FeA13 reinforced commercialpurity aluminum[J].Mater Des,2007,

(28):1711.

[17]王敬丰,魏文文等.金属阻尼材料研究新进展及发展方向[J].材料导报,2009,23(7):15 19.

硅橡胶阻尼材料

硅橡胶阻尼材料 专业:11高分子 姓名:刘谢非 学号:C31114047

一.硅橡胶特点 硅橡胶是以—Si—O—Si—为主链,通过硅原子与有机基团组成侧链的高分子弹性体。侧基为有机基团。因其键角大、取向自由度大,柔顺性好,所以具有卓越的耐低温性能;因其键能大(422.5kJ/mol),所以耐高温性能好[1]。其玻璃化转变温度较低(-70~-140℃),室温附近其性能变化小,而硅氧键的结构使其在较宽的温度范围(-50~200℃)内力学性能较稳定 二.硅橡胶阻尼材料 1.阻尼材料 将固体机械振动能转变为热能而耗散的材料,主要用于振动和噪声控制。材料的阻尼性能可根据它耗散振动能的能力来衡量,评价阻尼大小的标准是阻尼系数。导弹、运载火箭和飞机在飞行时,由于发动机工作和气动噪声等原因,会引起严重的宽频带随机振动和噪声环境,还会激发结构和电子控制仪器系统众多的共振峰,使结构出现疲劳失效和动态失稳,使电子控制仪器精度降低以至发生故障。统计数字表明,火箭的地面和飞行试验故障约有三分之一与振动有关,而结构材料的阻尼性能不佳是造成这类故障的一个重要原因。为了提高结构的阻尼性能,可将结构材料和阻尼材料组合成复合材料,即由结构材料承受应力,阻尼材料产生阻尼作用,以达到控制振动和降低噪声的目的 2.高分子材料的阻尼原理 高聚物在交变应力的作用下,由于其特有的粘弹性,形变的变化落后于应力的变化,发生滞后现象,有一部分功以热或其他形式消耗掉。这样就形成阻尼。在玻璃化温度以下,高聚物在外力作用下的形变主要是由键长、键角的改变引起的小形变,即弹性形变,速度很快几乎完全跟得上应力的变化,因此阻尼小;在高弹态时,由于链段运动比较自由,内耗也小。在玻璃化转变区域向高弹态过渡时,当应力以适中的频率作用于高聚物,由于链段开始运动,而体系的粘度还很大,链段受到的摩擦阻力比较大,形变落后与应力变化,阻尼较大。通用型阻尼材料要求至少有60~80℃这样宽广的玻璃化转变温度,为了加宽玻璃化转变温度范围,可以在高聚物的侧链上引入大体积的苯基,或用阻尼系数高的聚合物作为基材,和另一种玻璃化温度与之相差几十度的聚合物共混、共聚,来达到扩大阻尼温度区域及满足其他需求的目的。

阻尼复合材料发展研究

阻尼复合材料研究进展 摘要:阻尼材料是近几十年来发展起来的一种新型减振降噪材料。由于其特殊用途,深受国内外关注,而兼具高阻尼和静态力学性能的结构阻尼复合材料则具有十分广阔的应用前景,目前国内外对结构阻尼复合材料的研究和开发十分重视。本文简要阐述了阻尼复合材料的阻尼机理以及国内外的发展史,分别介绍了树脂基阻尼复合材料、金属基阻尼复合材料、橡胶阻尼复合材料、树脂—金属基阻尼复合材料、压电导电新型阻尼复合材料, 以及几种阻尼复合材料的研究发展状况。 关键词:树脂基、金属基、橡胶基、压电、阻尼复合材料

Abstract:Damping material is a new material for reducing librations and noises developed in recent years. Many people in and out of China begin to interested in this kind of material for its special use.The structural damping composites that have not only high damping but also high strength and modulus will hold an extensive application future. At present many countries have put emphasis on the study and exploitation of structural damping composites. This paper summarizes the chief principle of damping composite materials and its development history around world. It introduces a kind of damping composite materials such as resin based damping composite material、metal based damping composite material、rubber based damping composite material、resin-metal based damping composite material and piezoelectric and conductive advanced damping composite material. The paper shows the development of several damping composite material. Keywords:Resin matrix;Metal matrix;Rubber matix ;Piezoelectic;Damping Composite material

ansys提阻尼比

请教,ANSYS模态分析后,如何得到各阶模态的模态阻尼比 *get entity=mode ,item1=damp 请教1楼,命令流*GET, Par, Entity, ENTNUM, Item1, IT1NUM, Item2, IT2NUM 中其他几项分别如何设置,如Par,ENTNUM,等,另外输入命令流如何显示其模态阻尼比,本人初学命令流,谢谢! par是随便一个参数名,其他的默认,,,只有逗号即可, 在后在参数里看 ANSYS动力学分析中提供了各种的阻尼形式,这些阻尼在分析中是如何计算,并对分析有什么影响呢?本文将就此做一些说明何介绍. 一.首先要清楚,在完全方法和模态叠加法中定义的阻尼是不同。因为前者使用节点坐标,而后者使用总体坐标. 1.在完全的模态分析、谐相应分析和瞬态分析中,振动方程为: 阻尼矩阵为下面的各阻尼形式之和: α为常值质量阻尼(α阻尼)(ALPHAD命令) β为常值刚度阻尼(β阻尼)(BETA命令) ξ为常值阻尼比,f为当前的频率(DMPRAT命令) βj为第j种材料的常值刚度矩阵系数(MP,DAMP命令) [C]为单元阻尼矩阵(支持该形式阻尼的单元) where: [C] = structure damping matrix α = mass matrix multiplier (input on ALPHAD command) [M] = structure mass matrix β = stiffness matrix multiplier (input on BETAD command) βc = varia ble stiffness matrix multiplier (see Equation 15–23) [K] = structure stiffness matrix Nm = number of materials with DAMP or DMPR input = stiffness matrix multiplier for material j (input as DAMP on MP command) = constant (frequency-independent) stiffness matrix coefficient for material j (input as DMPR on MP command) Ω = circular excitation frequency Kj = portion of structure stiffness matrix based on material j Ne = number of elements with specified damping Ck = element damping matrix Cξ = fre quency-dependent damping matrix (see Equation 15–21) 2.对模态叠加方法进行的谐相应分析、瞬态分析何谱分析,动力学求解方程为:

阻尼性能-材料物性

材料的阻尼性能(内耗) 一.内耗的概念 大家都有这样的经验,振动的固体会逐渐静止下来。如我们用一个铜丝吊一个圆盘使其扭动,即使与外界完全隔绝,在真空环境下也会停止下来。这说明使振动得以停止的原因来自物体内部,物质不同会有不同的的表现,如改用细铅丝悬挂,振动会较快停下来。 我们把“机械振动能量由于内部的某种物理过程而引起的能量耗损称为内耗”能量损耗的大小对应着内耗损耗的大小,上面铅丝的内耗就比铜丝大(损耗大,衰减快,停得快)。对于高频振动(兆赫芝以上),这种能量损耗又称超声衰减。在工程领域又称内耗为阻尼。在日常生活中,内耗现象相当普遍。例如,古代保留下来的一些大钟,制造水平很高,敲击后余音不绝,这反映铸钟用的合金材料的内耗很低。不过一旦钟出现裂纹,其声音便会很快停止下来,表明内耗已大为增加。又如,人的脊椎骨的内耗很大,这样人走动时脚下的剧烈振动才不会传到人的大脑,而引起脑震荡。在社会生活中,则常借用内耗概念来比喻一个单位内部因相互不配合使工作效率下降的现象。 关于内耗的研究主要集中在两个方面,一是寻求适合工程应用的有特殊阻尼本领的材料(通常用在两头。内耗极小的材料,如制备钟表游丝,晶场显微镜的探针材料;内耗很大的材料,如隔音材料,潜艇的螺旋桨及风机)。二是内耗的物理研究,由于内耗对固体中缺陷的运动及结构的变化敏感(上面大钟内的微裂纹),因此,常利用内耗来研究材料中各种缺陷的弛豫及产生相变的机制。 缺陷有点缺陷(零维):杂质原子替代原子空位 缺陷有线缺陷:位错 缺陷有面缺陷:晶界、相界、 缺陷有体缺陷:空洞 具体实验中常通过改变温度、振动频率或振幅、变温速度、试样组分及加工、热处理、辐照条件等研究各种因素对内耗的影响规律及产生内耗的机制。 上面两方面的研究是相辅相成的。需求刺激研究,如国防军工需求,潜艇降噪的需要推动了对高阻尼材料的研究;反之,研究有助于开发,如Mn-Cu合金的内耗研究,发现材料在某一温存在一个马氏体相变,可引起很大的内耗峰,此

阻尼材料发展现状与应用进展_张文毓

2011年4月材 料 开 发 与 应 用 文章编号:1003 1545(2011)02 0075 04 阻尼材料发展现状与应用进展 张文毓 (中国船舶重工集团公司第七二五研究所,河南洛阳 471039) 摘 要:综述了国外阻尼材料发展现状,对阻尼材料的发展趋势进行了展望。关键词:阻尼材料;发展;应用中图分类号:TB34 文献标识码:A 收稿日期:2010-06-22 作者简介:张文毓,女,1968年生,高级工程师,现主要从事情报研究工作。E -m a i:l Z W Y68218@163 com 。 阻尼材料是将固体机械振动能转变为热能而耗散的材料,主要用于振动和噪声控制。阻尼材料按特性分为4类[1] : 橡胶和塑料阻尼板:用作夹芯层材料。应用较多的有丁基、丙烯酸酯、聚硫、丁腈和硅橡胶、聚氨酯、聚氯乙烯和环氧树脂等。这类材料可以满足-50-200 C 范围内的使用要求。 橡胶和泡沫塑料:用作阻尼吸声材料。应用较多的有丁基橡胶和聚氨酯泡沫,以控制泡孔大小、通孔或闭孔等方式达到吸声的目的。 阻尼复合材料:用于振动和噪声控制。它是将前两类材料作为阻尼夹芯层,再同金属或非金属结构材料组合成各种夹层结构板和梁等型材,经机械加工制成各种结构件。 高阻尼合金:阻尼性能在很宽的温度和频率范围内基本稳定。应用较多的是铜 锌 铝系、铁 铬 钼系和锰 铜系合金。下面对阻尼材料的发展、应用等进行分析、综述,以期对阻尼材料有一个全面的了解。 1 国外阻尼材料发展现状 1.1 主要研究计划 (1)美国先进研究项目局正在筹划复合材料壳体潜艇的研究工作。复合材料壳体潜艇既吸收一部分艇的自噪声,又可吸收一部分敌方主动式声呐发出的声波,从而提高艇的隐蔽性。 (2)美国海军金属加工中心开展研究计划项目之一,旨在对一种备选的阻尼材料进行鉴定和验证,拟用于弗吉尼亚核潜艇(SSN 774),使海 军能够更加有效使用阻尼材料,降低总成本。 (3)美国国家涡轮机高周疲劳计划,由美国空军、海军及国家宇航局合作,分7个专题,其中之一为被动阻尼技术。 (4)美国海军结构基础减震计划,采用层压复合材料用于减震。 (5)日本理工大学2002研究计划中有基于分子设计开发新型高阻尼材料的项目。 (6)英国剑桥大学CAVEND I S H 实验室承担的一项合同项目,利用液晶弹性体制作阻尼材料[2] 。 (7)在美国TDSI (T e m asek Defence Syste m Institute)支持下[3] ,新加坡计划研究一种具有高阻尼和高刚性的潜艇螺旋桨材料,其目标是开发一种粘弹性复合材料,以减少水下武器和随艇设备的辐射噪声,实现隐身潜艇。其内容是:开发各种超低噪声粘弹性复合材料以制备具有高阻尼和高刚性的潜艇螺旋桨;通过涂覆一种高阻尼、高刚性的颗粒增强复合材料,开发一种机械装置的被动减噪方法。1.2 主要研究内容1.2.1 粘弹性阻尼材料 (1)粘弹性材料应力 应变本构关系模型及性能预测研究; (2)粘弹性阻尼材料高频动态力学性能测试技术研究; (3)静压力条件下动态力学性能测试表征技术研究; (4)粘弹性材料阻尼微观设计技术研究; 75

各种材料摩擦系数表

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

纤维增强复合材料的阻尼研究_图文(精)

2007.NO.6侯永振编译.纤维增强复合材料的阻尼研究 21 纤维增强复合材料的阻尼研究 侯永振编译 (天津市橡胶工业研究所,天津300384 摘要:本文评述了关于纤维增强复合材料和结构阻尼的研究现状,特别是聚合物基复合材料 和结构阻尼的研究现状,首先叙述了复合材料的阻尼机理和适宜的阻尼分析方法学,而后提出了 关于阻尼的研究包括宏观力学、微观力学、粘弹性研究方法、复合材料中的界面阻尼模型、阻尼 与破坏模型,某些重要工作涉及到已经改进了的厚的层压制品结构阻尼模型,对层压制品阻尼的 改进以及纤维增强复合材料/结构阻尼的优化进行了评价。 0导言 纤维增强复合材料正被目益广泛地用来代替传统材料,主要是由于其高的比强度、比刚度以及方便制作的性能,再加上其粘弹特性,使其适用于高性能的结构用途如飞行器、船舶、汽车等方面。可是,这些材料与金属材料有很大的区别, 在于前者呈现出几种特殊的材料失效方式(树脂基体破裂,脱层,纤维失效以及由于粘接破坏而造成的界面结合失效和微观机理方面的相互租用,即微观组成成分的不同。一些应用于微观力学、宏观力学和建立结构模型/理论的分析方法也已应用于复合材料的静态和动态力学研究。

阻尼是与纤维增强复合材料结构的动态力学性能研究有关的一个重要参数,对于在规定的负荷方式和时问历程下的粘弹性阻尼复合材料的动态力学响应的成功表征,取决于描述复合材料性能所采用的适当的分析模型/分析方法,而这种描述复合材料性能的分析模型/分析方法是基于复合材料本身的组成成份和这些组成成份问的界面相互作用一界面的情况和存在的缺陷,以及计算技术的选择。已有文献尝试对复合材料阻尼的某些不同方面,如阻尼机理、阻尼行为的预测方法、阻尼模型/理论等进行了评述。 1复合材料阻尼机理 复合材料与传统的金属和合金材料阻尼机理完全不同,纤维增强复合材料中能量损耗的根源不同在于: (a树脂基体和/或纤维材料各自本身的粘弹性能不同。复合材料的阻尼主要归因于树脂基体, 但是由于碳纤维和kevlar纤维与其他纤维相比有着更高的阻尼,所以这两种纤维的阻尼在进行阻尼分析时也必须包括进去。 (b界面阻尼。界面是沿着纤维长度方向与纤维全部表面相连接的区域,界面具有一定的厚度,并且有着与大块的树脂基体和嵌入其中的纤维都不同的性质,界面的性质:根据对力学性能影响的强弱,随之也会对纤维增强复合材料的阻尼性能产生相应的强或弱的影响。 (c因破坏而产生的阻尼。这种阻尼主要包括两种类型: ①是由纤维和树脂基体界面间的未成键区域的滑移、或者由脱层所产生的摩擦阻尼。 ②是由于树脂基体破裂、纤维折断等区域的耗能而产生的阻尼。据报导,由于纤维界面的滑移增加的阻尼比起由于刚度增加的阻尼来说,这种增长是成倍的,并且对于破坏来说,比起由于 万方数据 《橡塑资源利用》 2007.NO.6

结构中的常用阻尼

结构动力学中的阻尼 摘要:静止的结构,一旦从外界获得足够的能量(主要是动能),就要产生振动。在振动过程中,若再无外界能量输入,结构的能量将不断消失,形成振动衰减现象。振动时,使结构的能量散失的因素的因素称为结构的阻尼因素。本文列举了常见的几种阻尼模型以及其适用条件, 关键词:阻尼,粘性阻尼,滞变阻尼,比例与非比例阻尼 1、粘性阻尼 1.1粘滞阻尼的模型 1865年,Kelvin提出固体材料中存在内阻尼,为了描述这种内阻尼,他借用了粘滞性模型,提出固体材料的内阻尼与粘滞流体中的粘滞阻尼相似,与变形速度有关。1892年,V ougt发展并完成了此理论,形成了粘滞阻尼模型,其数学表示为 d = σηε? 其中η为材料的粘滞阻尼常数,ε为材料应变,ε?为材料应变速率。 1.2粘滞阻尼的适用 线性粘滞阻尼模型很好描述了粘滞液体中结构的耗能特性,但将此模型用于描述固体材料的内阻尼,则缺乏物理实验基础,其能力耗散系数与振动频率成不合理性已经被许多实验证实。

2、滞变阻尼(频率相关阻尼) 2.1滞变阻尼的模型 在粘性阻尼模型的基础上,为了保证结构振动时每周消耗掉的能量与结构振动频率的增加而线性增加,提出迟滞阻尼模型,如下: d h f =x θ? 式中,h 为材料迟滞阻尼常数,θ为振动频率,h/θ可以看作一个与频率相关的阻尼因子。 2.2滞变阻尼的适用 实际工程中,通过阻尼比的选取使粘性阻尼的理论能正确反映所有频率情况下的体系耗能是不可能的,方法是使阻尼比ζ的选取能较为正确的反映感兴趣频段内的耗能能力,通常取外荷载频率等于结构自振频率。 3、库伦阻尼 3.1库伦阻尼模型 该阻尼模型经常被用来表示被铆接或者栓接的两个结构单元的摩擦。有库伦定律: d f =N μ 式中,d f 为库伦阻尼力,μ为摩擦系数,N 为正压力。 3.2库伦阻尼的适用 库伦阻尼描述来自于长压力下的两个干滑动表面支教的干摩擦。

阻尼性能及阻尼机理综述

阻尼性能及阻尼机理 前言 机械构件受到外界激励后将产生振动和噪声;宽频带随机激振引起结构的多共振峰响应,可以使电子器件失效,仪器仪表失灵,严重时甚至造成灾难性后果。目前,武器装备和飞行器的发展趋向高速化和大功率化,因而振动和噪声带来的问题尤为突出[1]。 振动也会影响机床的加工精度和表面粗糙度,加速结构的疲劳损坏和失效,缩短机器寿命;另外振动还可以造成桥梁共振断裂,产生噪声,造成环境污染[2]。 由此可见,减振降噪在工程结构、机械、建筑、汽车,特别是在航空航天和其他军事领域具有及其重要的意义。 阻尼技术是阻尼减振降噪技术的简称。通常把系统耗损振动能或声能的能力称为阻尼,阻尼越大,输入系统的能量则能在较短时间内耗损完毕。因而系统从受激振动到重新静止所经历的时间过程就越短,所以阻尼能力还可理解为系统受激后迅速恢复到受激前状态的一种能力。由于阻尼表现为能量的内耗吸收,因此阻尼材料与技术是控制结构共振和噪声的最有效的方法[1]。 研究阻尼的基本方法有三大类[1~3]: (1)系统阻尼。就是在系统中设置专用阻尼减振器,如减振弹簧,冲击阻尼器,磁电涡流装置,可控晶体阻尼等。 (2)结构阻尼。在系统的某一振动结构上附加材料或形成附加结构,增大系统自身的阻尼能力,这类方法包括接合面、库伦摩擦阻尼、泵动阻尼和复合结构阻尼。 (3)材料阻尼。是依靠材料本身所具有的高阻尼特性达到减振降噪的目的。它包括粘弹性材料阻尼、阻尼合金和复合材料阻尼。 本文主要论述阻尼材料的表征方法,阻尼分类,阻尼测试方法,各种阻尼机理,高阻尼合金及其复合材料,高阻尼金属材料最新研究进展,高阻尼金属材料发展中存在的问题及发展方向,高阻尼金属的应用等内容。 第一章内耗(阻尼)机理 1.1、内耗(阻尼)的定义 振动着的物体,即使与外界完全隔绝,其机械振动也会逐渐衰减下来。这种使机械能量耗散变为热能的现象,叫做内耗,即固体在振动当中由于内部的原因而引起的能量消耗。在英文文献中通用“internal friction”表示内耗。另外,在工程上用“阻尼本领”(damping capacity),对于高频振动则称为“超声衰减”(ultrasonic attenuation),其实与内耗一样都是表征同一个物理过程[4]。 产生内耗(阻尼)的原因是固体内部的结构特点和结构缺陷,因而通过内耗(阻尼)测量可以灵敏地反映固体内部结构的特点以及各种结构缺陷的运动变化和交互作用的情况[5]。 由此可见,内耗是一种很好的研究晶界的工具,它能够在不破坏试样的情况下,查知材料中晶界的动态性质。内耗与静态观测手段相配合,可以加深对晶界性质及其动力学行为的认识[4]。 总的来说,我们可以认为驰豫、后效是非弹性在静态过程中的表现,而阻尼、内耗则是非弹性

动力学基础知识(惯性力、阻尼等)

惯性力 惯性系:相对于地球静止或作匀速直线运动的物体 非惯性系:相对地面惯性系做加速运动的物体 平动加速系:相对于惯性系作变速直线运动,但是本身没有转动的物体.例如:在平直轨道上加速运动的火车 转动参考系:相对惯性系转动的物体.例如:转盘在水平面匀速转动 惯性力:指当物体加速时,惯性会使物体有保持原有运动状态的倾向,若是以该物体为坐标原点,看起来就彷佛有一股方向相反的力作用在该物体上,因此称之为惯性力。因为惯性力实际上并不存在,实际存在的只有原本将该物体加速的力,因此惯性力又称为假想力。当系统存在一加速度a时,则惯性力的大小遵从公式:F=-ma 例如,当公车煞车时,车上的人因为惯性而向前倾,在车上的人看来彷佛有一股力量将他们向前推,即为惯性力。然而只有作用在公车的煞车以及轮胎上的摩擦力使公车减速,实际上并不存在将乘客往前推的力,这只是惯性在不同坐标系统下的现象 注意:惯性力和离心力一样,是没有施力物体的,所以从力的要素来看,是不存在这样的力的。那么为什么要有这样一个概念呢?简单一点讲是为了满足牛顿运动定律在非惯性系中的数学表达形式不变而引入的。所谓非惯性系,简单一点将就是做变速运动的参考系。所以说到底,所谓惯性力和离心力就是在一个加速运动的参考系中观察到的物体惯性的表达形式,是为了计算方便而人为引入的一个概念。 ANSYS中的动力学分析 1动力学分析是用来确定惯性(质量效应)和阻尼起重要作用时的结构或构件动力学特性的技术。 2“动力学特性”可能指的是下面的一种或几种类型 -振动特性:结构振动方式和振动频率 -随时间变化载荷的效应(例如:对结构位移和应力的效应) -周期(振动)或随机载荷的效应 3动力学分析类型 -模态分析:确定结构的振动特性 -瞬态动力学分析:计算结构对时间变化载荷的响应 -谐响应分析:确定结构对稳态简谐载荷的响应 -谱分析:确定结构对地震载荷的响应 -随机振动分析:确定结构对随机震动的影响

(完整版)ansysworkbench常见材料设置

Ansys workbench常用材料属性 1. isotropic secant coefficient of expansion 各向同性的热胀系数 需要输入基准温度、热膨胀系数。 基准温度,默认22度热膨胀系数 2. orthotropic secant coefficient of expansion 各向异性的热胀系数 需要输入基准温度、三个方向的热膨胀系数。 3. isotropic instantaneous coefficient of expansion 各向同性的热胀系数(随温度变化)需要输入基准温度、热膨胀系数。(随温度变化)

4. orthotropic instantaneous coefficient of expansion 各向异性的热胀系数(随温度变化)需要输入基准温度、三个方向的热膨胀系数。(随温度变化) 5. 阻尼系数、质量阻尼、刚度阻尼

6.Isotropic elasticity 各项同性的线弹性材料 需要输入弹性模量与泊松比 7.orthotropic elasticity 各项异性的线弹性材料 需要输入各方向的弹性模量与泊松比 8 Bilinear isotropic/kinematic hardening 双线性材料(非线性材料)需要输入屈服强度及切向模量,需要配合isotropic elasticity使用。

9.multilinear isotropic/kinematic hardening 多线性材料(非线性材料,应力应变曲线)需要配合isotropic elasticity使用,输入应力应变曲线。

内耗(阻尼)的分类、特点及其与金属结构的关系

内耗(阻尼)的分类、特点及其与金属结构的关系 分类和特点内耗产生的原因归纳起来有三种类型即滞 弹性内耗、静滞后内耗和阻尼共振型内耗。 1. 滞弹性内耗1948年,Zener提出了滞弹性这一名词,他从Boltzmann的线性叠加原理出发,推导出各种滞弹性效应之间的定量关系。滞弹性的特征是在加载或去载时,应变不是瞬时达到其平衡值,而是通过一种驰豫过程来完成其变化。如图1,应力去除后应变有一部分(ε0)发生瞬时回复,剩余 一部分则缓慢回到零,这种现象叫弹性后效。 图1 恒应力下的应变弛豫又如图2,要保持应变不变,应力就要逐渐松弛达到平衡值σ(∞),称为应力驰豫现象。由于应变落后于应力,在适当的频率的振动应力作用下就会出现内耗。在此基础上产生的内耗称为动滞后型内耗或驰豫型内耗。图2 恒应力下的应力弛豫过程示意图对于金属,其内耗表达式 式中,ω、τ分别为振动角频率、驰豫时间;M为动力模量(动态模量),即实测的弹性模量;MR为驰豫模量;Mu为未驰豫模量; 驰豫强度为: 模量亏损为: 其内耗于ωτ的关系曲线如图3所示。当ωτωτ>>1时,内耗

值都很小;只有当ωτ=1时,内耗达到最大值。因此滞弹性内耗有一下特征:内耗与频率有关而与振幅无关。图3 之弹性内耗和模量亏损与ωτ的关系 2. 静滞后型内耗在低振动频率下,应力与应变存在多值函数关系,即在加载和去载时同以载荷下具有不同的应变值。完全去掉载荷后有永久变形存在。仅当反向加载时,才能回复的零应变,如图4这种原因产生的内耗时静滞后型的。图4 静态滞后回线示意图由于静态滞后的各种机制之间没有类似的应力应变方程,所以不能像滞弹性内耗那样进行简单明了的数学处理,而必须针对具体的内耗机制进行计算,可先求出回线面积ΔW,再从内耗定义式 求内耗。一般来说,静滞后回线的面积与振幅不存在线性关系,因此内耗的特征式内耗与频率无关,而与振幅有很强的依赖关系,内耗在某一振幅处达到最大值。 3. 阻尼共振型内耗由非弹性应变产生的阻尼,即为阻尼共振型内耗。阻尼共振型内耗的特征是与频率的关系极大,而与振幅无关,内耗峰所对应的频率一般对温度不敏感。研究表明,这种内耗很可能是由于振动固体中存在阻尼共振现象引起的能量损耗,阻尼强迫振动方程可用微分方程来描述:式中ξ为偏离平衡位置的位移;A为振子的有效质量;B为阻尼系数;C(ξ)为回复力(一般与位移成正比)。 位错在交变应力作用下做强迫振动,依照理论上的推导可以

临界阻尼系数与阻尼比

使机械振动能量耗散的作用,是组成机械系统的一个元素。例如物体在其平衡位置附近作自由振动时,振幅总是随着时间增长而逐渐衰减,这表明有阻尼存在。在机械系统中,多数阻尼以阻力形式出现,如两物体表面的摩擦阻力,加入润滑剂后油膜的粘性阻力,物体在流体中运动受到的介质阻力等。此外还有振荡电路中的电阻、材料和结构的内阻引起的结构阻尼等。 在机械系统中,线性粘性阻尼是最常用的一种阻尼模型。阻尼力R的大小与运动质点的速度的大小成正比,方向相反,记作R=-C,C为粘性阻尼系数,其数值须由振动试验确定。由于线性系统数学求解简单,在工程上常将其他形式的阻尼按照它们在一个周期内能量损耗相等的原则,折算成等效粘性阻尼。物体的运动随着系统阻尼系数的大小而改变。如在一个 自由度的振动系统中,[973-01],称临界阻尼系数。式中为质点的质量,K为弹簧 的刚度。实际的粘性阻尼系数C 与临界阻尼系数C之比称为阻尼比。<1称欠阻尼,物体作对数衰减振动;>1称过阻尼,物体没有振动地缓慢返回平衡位置。欠阻尼对系统的固有频率值影响甚小,但自由振动的振幅却衰减得很快。阻尼还能使受迫振动的振幅在共振区附近显著下降,在远离共振区阻尼对振幅则影响不大。新出现的大阻尼材料和挤压油膜轴承,有显著减振效果。 在某些情况下,粘性阻尼并不能充分反映机械系统中能量耗散的实际情况。因此,在研究机械振动时,还建立有迟滞阻尼、比例阻尼和非线性阻尼等模型。使机械振动能量耗散的作用,是组成机械系统的一个元素。例如物体在其平衡位置附近作自由振动时,振幅总是随着时间增长而逐渐衰减,这表明有阻尼存在。在机械系统中,多数阻尼以阻力形式出现,如两物体表面的摩擦阻力,加入润滑剂后油膜的粘性阻力,物体在流体中运动受到的介质阻力等。此外还有振荡电路中的电阻、材料和结构的内阻引起的结构阻尼等。 在机械系统中,线性粘性阻尼是最常用的一种阻尼模型。阻尼力R的大小与运动质点的速度的大小成正比,方向相反,记作R=-C,C为粘性阻尼系数,其数值须由振动试验确定。由于线性系统数学求解简单,在工程上常将其他形式的阻尼按照它们在一个周期内能量损耗相等的原则,折算成等效粘性阻尼。物体的运动随着系统阻尼系数的大小而改变。如在一个 自由度的振动系统中,[973-01],称临界阻尼系数。式中为质点的质量,K为弹簧 的刚度。实际的粘性阻尼系数C 与临界阻尼系数C之比称为阻尼比。<1称欠阻尼,物体作对数衰减振动;>1称过阻尼,物体没有振动地缓慢返回平衡位置。欠阻尼对系统的固有频率值影响甚小,但自由振动的振幅却衰减得很快。阻尼还能使受迫振动的振幅在共振区附近显著下降,在远离共振区阻尼对振幅则影响不大。新出现的大阻尼材料和挤压油膜轴承,有显著减振效果。 在某些情况下,粘性阻尼并不能充分反映机械系统中能量耗散的实际情况。因此,在研究机械振动时,还建立有迟滞阻尼、比例阻尼和非线性阻尼等模型。

常用的材料参数

表5.1 步态地面模型刚性参数

The IMTR vision also anticipates optimization capabilities for trading off product attributes starting fairly early in the process. Therefore, the trade space is defined early in the process (in terms of minimum and maximum acceptable values for each product attribute). The optimization capability reduces or eliminates iterative steps as the design progresses. It also improves tools and other engineering resources that are used by more than one program, further increasing capabilities in the early stages of the process. The ISE's 2015 vision is even more ambitious. It foresees the ability to conduct first-of-a-kind missions routinely with high levels of confidence, even for missions for which little or no experience or experimental data are available to predict system capability. The ISE vision includes the evaluation and optimization of attributes across the complete life cycle at all stages of design refinement and product trade-offs with minimum design iteration. Like the IMTR vision, the ISE vision includes minimal "surgical" testing of attributes. Almost all evaluations would be done virtually, not physically, with immersed environments operated by geographically and temporally distributed collaborative teams. Rework and late trade-offs would be eliminated. Because the ISE vision must also support missions, such as deep-space probes, where human supervisory control will not be practical, the ISE vision emphasizes autonomous system capability for some functions, such as self-directed exploration and fault repair. Many other public and private organizations are also involved in the development of AEE technologies and systems. For example, the U.S. Department of Energy is sponsoring the Accelerated Strategic Computing Initiative to develop computational-based methods of ensuring the safety, reliability, and performance of the U.S. nuclear weapons stockpile in the absence of nuclear testing and with a greatly reduced weapons manufacturing infrastructure (Sandia National Laboratories, 2000). In addition, the Defense Modeling and Simulation Office sponsors 10 separate initiatives for increasing the efficiency and interoperability of modeling and simulation within the U.S. Department of Defense (DMSO, 2000). Separate elements of federal departments are also conducting their own AEE programs, such as the U.S. Army's Simulation and Modeling for Acquisition, Requirements and Training (SMART) Program. The intent of this program is to use advanced modeling and simulation technology to improve the performance of future systems while reducing costs, development time, logistics requirements, and training requirements (U.S. Army, 2000). The committee did not attempt to evaluate the interrelationships among all ongoing AEE technology development programs, or even to compile a comprehensive program list. In some cases, however, the

阻尼系数KD定义为

阻尼系数KD定义为:KD=功放额定输出阻抗(等于音箱额定阻抗)/功放输出内阻。由于功放输出内阻实际上已成为音箱的电阻尼器件,KD值便决定了音箱所受的电阻尼量。KD值越大,电阻尼量越重,当然功放的KD值并不是越大越好,KD值过大会使音箱电阻尼过重,以至使脉冲前沿建立时间增长,降低瞬态响应指标。因此在选取功放时不应片面追求大的KD值。作为家用高保真功放阻尼系数有一个经验值可供参考,最低要求:晶体管功放KD值大于或等于40,电子管功放KD值大于或等于6。 CMR/MPR、CMG/MPG:表示该双绞线的类型 CAT 5E:指该双绞线通过UL测试,达到超5类标准。双绞线种类有3类、4类、5类、超5类、6类、超6类等几种,甚至最近有人提出7类,对于这几种双绞线的技术指标,得到公认的只有从3类到超5类。目前市场上常用的双绞线是5类和超5类。5类线主要是针对100Mbps网络提出的,该标准最为成熟,也是当今市场的主流。后来开发千兆以太网时 许多厂商把可以运行千兆以太网的5 类产品冠以“增强型”Enhanced Cat 5,简称5E 推向市场。美国的TIA/EIA 568A-5是5E标准。5E也被人们称为“超5类”或“5类增强型”。 utp:是指非屏蔽双绞线。计算机局域网中的双绞线可分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)两大类 4pr:是四对的意思 YD:Y是信息产业部标准(原邮电部)

UTP是一种网络线,在计算机局域网中的双绞线可分为非屏蔽双绞线(UTP)和屏蔽双绞线(STP)两大类:STP外面由一层金属材料包裹,以减小辐射,防止信息被窃听,同时具有较高的数据传输速率,但价格较高,安装也比较复杂;UTP无金属屏蔽材料,只有一层绝缘胶皮包裹,价格相对便宜,组网灵活,其线路优点是阻燃效果好,不容易引 起火灾。 UTP(Unshielded Twisted Paired)就是非屏蔽双绞电缆(线)! STP(Shielded Twisted-Pair)——屏蔽双绞电缆(线) ASTP(Armour Shielded Twisted Pair )——铠装型双绞屏蔽电缆. 无后缀默认特性阻抗100Ω, 有后缀则按标志,如:120Ω、150Ω. ------------☆-----------------------☆--------------------☆--------------- 通用型现场总线系列电缆 性阻抗为120Ω的双绞屏蔽电缆广泛用于RS485/422、CANBUS 等总线,该系列电缆规格很多,请提供电缆的敷设环境、通信速率、最大无中继传输距离等参数,我们将依照具体情况推荐最适当的产

相关主题
文本预览
相关文档 最新文档