当前位置:文档之家› 控轧控冷工艺对高强度结构钢组织及力学性能的影响

控轧控冷工艺对高强度结构钢组织及力学性能的影响

控轧控冷工艺对高强度结构钢组织及力学性能的影响
控轧控冷工艺对高强度结构钢组织及力学性能的影响

第2期蓝慧芳等:控轧控冷工艺对高强度结构钢组织及力学性能的影响201

生产工艺、降低能耗以生产出低成本、高性能的钢铁产品已成为现今钢铁生产的趋势.

近20年来,控制轧制、控制冷却技术在钢材轧制生产过程中得到了更加广泛的应用.化学成分、控轧和控冷参数对最终显微组织和力学性能的影响很大.合理设计合金元素含量及终轧温度、终冷温度和冷却速度等参数,以相变强化、细晶强化和亚晶强化等强化方式补偿由于降低碳及其合金元素含量带来的固溶强化损失,有助于获得高的强韧性能[2-31;同时,在化学成分固定的情况下,通过改变控轧控冷工艺参数能够实现钢材组织性能的柔性化轧制L4J.

本文着重对控制轧制及加速冷却过程中工艺参数对高强度结构钢组织及性能的影响做了探讨,借助光学显微镜、扫描电镜、电子背散射衍射(electronbackscattereddiffraction,EBSD)和透射电镜对钢的强韧化机制进行了分析;并且,在综合考虑实际生产中冷却能力的前提下,给出了适合Q550及其以上级别的高强度结构钢的工艺参数.1实验材料及方法

实验钢的化学成分(质量分数,%)为:C0.056,Si0.323,Mn1.49,Mo<0.3,Ni<0.3,Nb0.021,V0.053,Ti0.012,P0.0064,S0.0044.在实验钢上取样,加工成声6mill×15mm的热模拟试样,在MMS热模拟试验机上测定动态CCT曲线.实验方案:将试样以10℃/s的速度加热至1200℃,保温3rain后以10℃/S的速度冷却至900℃,保温30s后进行50%的变形,分别经1,2,5,10,15,20,25,30,35℃/S不同冷速冷却至200℃以下.实验得到的动态CCT曲线如图1所示.可见,实验钢能在很大冷速范围内得到贝氏体或贝氏体十针状铁素体组织.

锻后实验钢厚度为751TLrn,在实验室声450rain可逆式热轧机上经7道次两阶段热轧至10nlFn.参考动态CCI"曲线,具体实验控轧及冷却参数如表1所示.

t/s

图1实验钢的动态连续冷却转变曲线Fig.1Dynamiccontinuouscoolingtransformation

curveofspecimens

表1实验钢轧制及冷却参数

Table1Rollingandcoolingparameters℃

试样经砂纸研磨和电动抛光后,经质量分数为2%的硝酸酒精溶液侵蚀.用FEIQuanta600扫描电镜进行观察.用电子背散射衍射对试样进行晶体取向分布测量,步长为0.5ttm.根据GB/1228—2002制取拉伸试样,在WAW一1000型拉伸试验机上进行拉伸试验.采用5IYllTI×10nMTI×55ITllTI的夏比非标准冲击试样在JMB一500型冲击试验机上进行冲击试验,试验温度为~20℃.

2实验结果及分析讨论

图2所示为冷速大于35℃/s的#1钢,#2钢和#3钢的显微组织.#1钢组织主要为板条

图2冷速大于35℃/s实验钢扫描电镜组织照片

Fig.2SEMimagesofmicrostructureofspecimenswithcoolingratehigherthan35℃,Is

(a)一#1钢;(b)一#2钢;(c)一#3钢.

东北大学学报(自然科学版)第30卷

状贝氏体、粒状贝氏体和少量针状铁素体(图2a),#2钢组织为粒状贝氏体和少量针状铁素体(图2b),#3钢组织为板条状贝氏体、粒状贝氏体和少量针状铁素体(图2c);随终冷温度升高,贝氏体形态由板条状向粒状转变,且M/A岛尺寸增大.图3所示为冷速低于20℃^的#4钢,#5钢和#6钢的显微组织.#4钢和#5钢主要为粒状贝氏体和针状铁素体(图3a和图3b),#6钢主要为粒状贝氏体和少量针状铁素体(图3e);随终冷温度升高,M/A岛尺寸明显增大,终轧温度较高的#6钢组织较粗大.

图3冷速低于20℃/s实验钢扫描电镜组织照片

Fig.3SEMimagesofmicrostructureofspecimenswithcoolingratelowerthan

20℃/s

(a)一#4钢;(b)一#5钢;(c)一#6钢.

表2所示为不同控轧控冷条件下实验钢的力学性能.可以看出:#1和#3钢板强度水平已达到了嘶90级别的要求;#2和#4钢板达到了Q(泫0级别的要求;#5和#6钢板达到了Q550级别的要求.实验钢低温韧性优良.

表2实验钢的力学性能

Table2Mechanicalpropertiesofspecimens

综合考虑实验工艺参数,对本实验条件下全部实验数据进行多元回归处理,得到的工艺参数与力学性能之间关系的回归方程如下:

R。L=1163.1529—0.01980FR一1.01770vc+3.0009Vc,R:0.9996;

R。=853.6732—0.13320FR一0.48160m+2.6496口(:,R=0.9968;

A%=136.3847—0.13620vR+0.0167口Fc一0.2164vc,R=0.9498;

Akv=1715.7989—1.7026口FR一0.1420vc一1.2909vc.R=0.9337.

式中:0w为终轧温度,℃;0vc为终冷温度,℃;VC为冷却速度,℃/s;R为相关因数.

由上面的回归公式看出:屈服强度随终轧温度和终冷温度的降低以及冷却速度的增大而升高;抗拉强度随终轧温度和冷却速度的增大以及终冷温度的降低而升高;延伸率随终轧温度和冷却速度的降低和终冷温度的升高而升高;低温韧性随终轧温度、终冷温度和冷却速度的降低而升高.

在快速冷却过程中,随终冷温度降低,更多的位错、空位等缺陷保留在基体中;而且易于形成板条状贝氏体,有效细化组织,对提高强度十分有利.冷却速度提高,促进晶内形核,增加了形核率并加快相变速度bJ,能有效细化组织,使组织由扩散型转变为由扩散控制的切变型.#3钢和#4钢终冷温度接近,但高冷速使#3钢贝氏体呈板条状,而#4钢中板条形貌不明显.可见,提高冷却速度可以促进贝氏体由粒状组织形貌转变为板条形貌[刮.但板条贝氏体中高密度的位错不利于变形过程中位错的运动,导致塑性较差.

图4所示为#5钢和#6钢的EBSD取向图(图中黑线表示晶界取向差>15。的大角晶界,白线表示晶界取向差在2。~15。之间的小角晶界).终轧温度较高的#6钢组织较#5钢明显粗大,而且相变前奥氏体晶界(图4b中箭头所示)明显.鉴于针状铁素体晶内形核的特点,出现较明显的奥氏体晶界通常认为是针状铁素体不足造成的.终轧温度降低,组织中位错、形变带等缺陷密度将大大增加.在加速冷却条件下,这些位错组成的位错缠结以及形变带将成为针状铁素体的有效形核地点.经EBSD测定,#5钢和#6钢等效晶粒尺寸分别为3.8ptm和6.1pm.细晶强化对屈服强度增加的贡献可以用Hall—Petch公式来描述:

%=kyd~.

其中,忌。为系数,对于大角晶界一般为15.1~

第2期蓝慧芳等:控轧控冷工艺对高强度结构钢组织及力学性能的影响203

18.1N?rnlTl一%[7-8],d为晶粒直径.因此,#5钢和#6钢晶界对屈服强度的贡献分别为245--294MPa和193~232MPa.由于晶粒细化,#5钢比#6钢屈服强度提高52~62MPa.可见,终轧温度的降低对于提高屈服强度十分有利.

通过控轧控冷实现组织细化,提高组织中大角晶界的比例和数量,是改善冲击韧性的主要途径.终轧温度的提高导致组织粗化是降低冲击韧性的一个原因,造成#6钢低温韧性较差.从图5看出:#6钢冲击断口表现为河川状(图5b),即发生脆性断裂;#5钢断口表现为韧窝状(图5a),发生韧性断裂.M/A岛的数量和形态也对冲击韧性有较大影响[91.当M/A岛比较粗大时,相界面可因塑变而诱发出断裂的核心,在外力的作用下裂纹得以迅速扩展,导致韧性恶化【10].分析实验结果发现,冷却速度和终冷温度对M/A岛的数量和形态有较大影响.冷速高、终冷温度低的#1和#3钢较冷速低、终冷温度较高的#5和#6钢M/A岛数量少,尺寸小.冷却速度提高使碳原子的扩散速度相对降低,碳向奥氏体中的富集速度也随之降低,从而大大降低了冷却过程中形成富碳

M/A岛的可能性;终冷温度升高,碳更充分地向奥氏体中富集,从而易于形成大块的M/A岛.尽管冷速高的组织中M/A岛的数量和形态对冲击韧性有利,但通过回归公式看,过高的冷却速度反而不利于冲击韧性的提高,这可能与针状铁素体的数量有关.彼此咬合、相互交错的针状铁素体能有效阻碍裂纹的扩展【11121,使组织具有更高的冲击韧性.过高的冷速使冷却曲线在针状铁素体的形成温度范围内停留时间短,从而抑制其形成.

表3列出了日本新日铁以及JFE的标准.本实验中#2,#4,#5和#6钢力学性能分别达到WEL一1EN650RE—B,WEL—TEN690和JFE—HITEN一690S的要求,#3钢性能达到了JFE—HITEN780LE的要求,#l钢塑性偏低.对比本实验中的工艺参数和力学性能,可以认为在终轧温度870~880℃,冷速约15~20℃/s的条件下,终冷温度570~600℃,能够达到Q550级别,而终冷温度500~570℃,能够达到Q620级别;冷速提高至35~40℃/s,终冷温度在550℃左右,能够达到Q690级别.

图4

#5钢和#6钢组织的EBSD取向图

Fig.4

EBSDorientationmapofspecimens

(a)一#5钢;(b)一#6钢.

图5#5钢和#6钢-20℃冲击断口形貌

Fig.5

Morphologiesofimpactfracturesurfaces

at一20℃ofspecimens

(a)一#5钢;(b)一#6钢.

工程材料力学性能-第2版课后习题答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 4、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 5、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 6、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。

钢的力学性能

冷轧学习资料(轧机车间) 钢的力学性能 1拉力试验 按标准制备的拉力试样,安装在拉力试验机的夹头内,对试样缓慢施加单轴向拉伸应力,直至试样被拉断为止的试验称作拉力试验。 1.1强度 金属材料在外力作用下,抵抗变形和断裂的能力叫强度。强度指标包括:比例极限、弹性极限、屈服强度、抗拉强度等。 1.2比例极限 对金属施加拉力,金属存在着力与变形成直线比例的阶段,而这个阶段的最大极限负荷Pp除以试样的原横截面积即为比例极限,用σ P表示。 1.3弹性极限 金属受外力作用发生了变形,外力去掉后,能完全恢复原来的形状,这种变形称为弹性变形。金属能保持弹性变形的最大应力称为弹性极限,用σe表示。 1.4抗拉强度 试样拉伸时,在拉断前所承受的最大负荷除以原横截面积所得的应力,称作抗拉强度,用σb表示。当材料所受的外应力大于其抗拉强度时,将会发生断裂。因此σb越高,则表示它能承受愈大的外应力而不致于断裂。 国外标准的结构钢常按抗拉强度来分类,如SS400,其中400即表示σb的最小值为400MPa 超高强度钢是指σb≥1373 Mpa的钢。 1.5屈强比 屈强比即屈服强度与抗拉强度之比值(σS/σb)。屈服比值越高,则该材料的强度愈高,屈强比值愈低则塑性愈佳,冲压成形性愈好。如深冲钢板的屈强比值为≤0.65。 弹簧钢一般均在弹性极限范围内服役,受载荷时不允许产生塑性变形,因此要求弹簧钢经淬火、回火后具有尽可能高的弹性极限和屈强比值(σS/σb≥0.90)此外疲劳寿命与抗拉强度及表面质量往往有很大关连。 1.6塑性 金属材料在受力破坏前可以经受永久变形的性能称为塑性。塑性指标通常伸长率和断面收缩率表示。伸长率与断面收缩率越高,则塑性越好。 8、冲击韧性 用一定尺寸和形状的金属试样,在规定类型的冲击试验上受冲击负荷折断时,试样刻槽处单位横截面上所消耗的冲击功,称为冲击韧性以αk表示。 目前常用的10×10×55mm,带2 mm深的V形缺口夏氏冲击试样,标准上直接采用冲击功(J焦耳值)AK,而不是采用αK值。因为单位面积上的冲击功并无实际意义。 冲击功对于检查金属材料在不同温度下的脆性转化最为敏感,而实际服役条件下的灾难性破断事故,往往与材料的冲击功及服役温度有关。因此在有关标准中常常规定某一温度时的冲击功值为多少、还规定FATT(断口面积转化温度)要低于某一温度的技术条件。所谓FATT,即一组在不同温度下的冲击试样冲断后,对冲击断口进行评定,当脆性断裂占总面积的50%时所对应的温度。由于钢板厚度的影响,对厚度≤10mm的钢板,可取得3/4小尺寸冲击试样(7.5×10×55mm)或1/2小尺寸冲击试样(5×10×55mm)。但是一定要注意,同规格及同一温

结构力学名词解释整理

1. 框剪结构中剪力墙布置的三个原则: (1)沿结构单元的两个方向设置剪力墙,尽量做到分散、均匀、对称,使结构的质量中心和刚度中心尽量重合,防止在水平荷载的作用下,结构发生扭转。(2)在楼盖水平刚度急剧变化处,以及楼盖较大洞口的两侧,应设置剪力墙。(3)在同一方向各片剪力墙的抗侧刚度不应大小悬殊,以免水平地震作用过分集中到某一片剪力墙上。 2. 解决拱结构拱脚推力的三种方法: (1)推力由拉杆承受 (2)推力由侧面框架结构承受 (3)推力由基础直接承受 3. 变形体与刚体: (1)变形体固体在外力作用下会发生变形,包括物体尺寸的改变和形状的改变,这些固体称之为变形体。 (2)刚体刚体是一种理想化的力学模型,理论力学认为刚体是这样的物体,在力的作用下,其内部任意二点之间的距离始终保持不变。 4. 索膜结构的四种主要形式: 1).双曲面单元结构 2).类锥形单元结构. 3).索弯顶结构 4).桅杆斜拉结构 5. 先张法与后张法: (1)先张法张拉预应力钢筋在浇筑混凝土之前进行的方法叫先张法。 (2)后张法张拉预应力钢筋在浇筑混凝土之后,待混凝土达到一定的强度后再进行的方法叫后张法。 6. 端承桩与摩擦桩: (1)端承桩:是指桩顶竖向荷载由桩侧阻力和桩端阻力共同承受,但桩端阻力分担荷载较多的桩。 (2)摩擦桩:是指桩顶竖向荷载由桩侧阻力和桩端阻力共同承受,但桩侧阻力分担荷载较多的桩。 7. 钢骨混凝土结构的优点: (1)钢筋混凝土与型钢共同受力 (2)与全钢结构相比,可节约钢材1/3左右: (3)型钢外包的钢筋混凝土不仅可以取代防腐,防火材料,而且更耐久,可节省经常性维护费用。 (4)可用于钢结构和钢筋混凝土结构各种结构体系中。 8.筒体结构类型5种: 实腹筒、框筒、桁架筒、筒中筒、筒束

结构力学 第二章 几何组成分析(典型例题)

[例题2-1-1] 计算图示体系的自由度。 ,可变体系。 (a ) ( b ) 解: (a ) 几何不变体系,无多余约束 ( b ) 几何可变体系 [例题2-1-2 ] 计算图示体系的自由度。桁架几何不变体系,有多余约束。 解: 几何不变体系,有两个多余约束 [例题 2-1-3] 计算图示体系的自由度。桁架自由体。 解: 几何不变体系,无多余约束 [例题 2-1-4] 计算图示体系的自由度。 ,几何可变体系。 解: 几何可变体系 [例题 2-1-5] 计算图示体系的自由度。刚架自由体。 解: 几何不变体系,有6个多余约束 [例题2-2-1] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-2] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-3] 对图示体系进行几何组成分析。两刚片规则。 几何不变体系,且无多余约束 [例题2-2-4] 对图示体系进行几何组成分析。两刚片规则。

几何不变体系,有一个多余约束 [例题2-2-5] 对图示体系进行几何组成分析。二元体规则。几何不变体系,且无多余约束 [例题2-2-6 ] 对图示体系进行几何组成分析。两刚片规则,三刚片规则。 几何不变体系,且无多余约束 [例题2-2-7] 对图示体系进行几何组成分析。三刚片规则。 几何不变体系,且无多余约束 [例题 2-2-8] 对图示体系进行几何组成分析。三刚片规则。 几何不变体系,且无多余约束[例题2-3-1] 对图示体系进行几何组成分析。两刚片规则。 几何瞬变体系 [例题2-3-2] 对图示体系进行几何组成分析。两刚片规则。 几何瞬变体系 [例题2-3-3] 对图示体系进行几何组成分析。三刚片规则。 几何瞬变体系 [例题2-3-4] 对图示体系进行几何组成分析。三刚片规则。

GB2975钢材力学及工艺性能取样规定

中华人民共和国国家标准UDC669.142620.11 钢材力学及工艺性能取样规定GB2975-82 本标准适用于轧制、锻制、冷拉和挤压钢材的拉力、冲击、弯曲、硬度和顶锻等试验的取样。也可供其它力学及工艺性能试验取样时参考。 如产品标准或双方协议对取祥另有规定时,则按规定执行。 1样坯的切取 1.1样坯应在外观及尺寸合格的钢材上切取。 1.2切取样坯时,应防止因受热、加工硬化及变形而影响其力学及工艺性能。 1.2.1用烧割法切取样坯时,从祥坯切割线至试样边缘必须留有足够的加工余量,一般应不小于钢材的厚度或直径,但最小不得少于20mm。对厚度或直径大于60mm的钢材,其加工余量可根据双方协议适当减小。1.2.2冷剪样坯所留的加工余量可按下表选取: 2样坯切取位置及方向 2.1对截面尺寸〈图1的D和a〉小于或等于6Omm的圆钢、方钢和六角钢,应在中心切取拉力及冲击样坯;截面尺寸大于60mm时,则在直径或对角线距外端四分之一处切取,如图1所示。 2.2样坯不需热处理时,截面尺寸小于或等于40mm的圆钢、方钢和六角钢,应使用全截面进行拉力试验。当试验机条件不能满足要求时,应加工成GB228-76《金属拉力试验法》中相应的圆形比例试样。 2.3样坯需要热处理时,应按有关产品标准规定的尺寸,从圆钢、方钢和六角钢上切取。

2.4应从圆钢和方钢端部沿轧制方向切取弯曲样坯,截面尺寸小于或等于35mm时,应以钢材全截面进行试验。截面尺寸大于35mm时,圆钢应加工成直径25mm的圆形试样,并应保留宽度不大于5mm的表面层,方钢应加工成 厚度为2Omm并保留一个表面层的矩形试样,如图2所示。 度应是钢材厚度,如图3所示。

结构力学

Structural Mechanics 郑州大学樊友景教授高等教育出版社高等教育电子音像出版社 结构力学是土木工程各类专业方向的一门重要的专业技术基础课,是土木工程专业的一门重要的主干课程。高等数学、理论力学和材料力学为 结构力学提供了必要的数学基础和力学基础;结构力学的内容又将在钢筋混凝土结构、砌体结构、钢结构、地基基础、高层结构、结构抗震等各后续专业课中得到广泛的应用。通过本课程的学习,使学生能较全面地掌握杆系结构的强度、刚度和稳定 计算的基本理论和基本方法。为后续专关于作者单元测试软件说明综合测试电子教案使用说明退出 第二章第三章 第四章第五章 第六章第七章 第八章第九章 第十章关闭 试卷1试卷2试卷3试卷4试卷5试卷6试卷7试卷8试卷9试卷10关闭结构力学教学课件

郑州大学樊友景教授 高等教育出版社高等教育电子音像出版社 课件说明 本软件依据的教材蓝本是龙驭球、包世华主编的《结构力学I——基本教程》(第二版),高等教育出版社,2007 。主要内 容包括静定结构分析、超静定结构分析、矩阵位移法、动力计 算基础等共10章课堂教学内容;另有各章单元测试题和10 套 综合测试题。学生做了单元测试题和综合测试题后,可立即得 到评判和参考解答。 本电子教案可用于高等学校土建、水利、力学等专业结构力 学课程的教学,也可供有关工程技术人员参考。 返回

郑州大学樊友景教授 高等教育出版社高等教育电子音像出版社 绪论 静定结构的受力分析虚功原理与结构位移计算 力法影响线 结构的几何构造分析 位移法(以直接建立平衡方程法为主)矩阵位移法结构动力计算基础渐近法及其他算法简述电子教案章目录 返回 位移法(以基本体系法为主)各章重点回顾第二章第三章第四章第五章第六章第七章第八章第九章第十章关闭

结构力学钢结构课程设计

华北水利水电学院 课程设计 任务书及计划书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

课程设计任务书 教研室

课程设计计划书 注:指导老师在课程设计期间每天指导时间不少于2小时。 教学院长、教学主任:_________________ 教研室主任:__________________填表人:____________________填表时间:2012 年12月20日

结构力学与钢结构课程设计 钢吊车梁设计分组及设计参数 2、吊车采用大连重工起重集团有限公司2003年DSQD系列产品。

华北水利水电学院 课程设计 指导书 2012——2013学年 第一学期 环节名称:结构力学与钢结构课程设计学生专业班级:2009059——2009063 指导老师:高勇伟王利英 院系:机械学院 教研室:工程机械

结构力学与钢结构课程设计指导书 钢吊车梁设计概述 一、吊车梁所承受的载荷 吊车在吊车梁上运动产生三个方向的动力荷载:竖向荷载和沿吊车梁纵向的水平荷载。如图1所示。 图1 吊车梁承受荷载 纵向水平荷载是指吊车刹车力,其沿轨道方向由吊车梁传给柱间支撑,计算吊车梁截面时不予考虑。吊车梁的竖向荷载标准值应采用吊车最大轮压或最小轮压。 吊车沿轨道运行、起吊、卸载、以及工件翻转时将引起吊车梁振动。特别是当吊车越过轨道接头处的空隙时还将发生撞击。因此在计算吊车梁及其连接强度时吊车竖向荷载应诚意动力系数。对悬挂吊车(包裹电动葫芦)及工作级别A1--A5的软钩吊车,动力系数可取1.05:对工作级别A6--A8的软钩吊车、硬钩吊车和其他种吊车,动力系数可取1.1。 吊车的横向水平荷载由小车横行引起,其标准值赢取横行小车重量与额定起重之和的下列百分数,并乘以重力加速度: (1)软钩吊车:当额定起重量不大于10吨时,应取12%;当额定起重量为16--50吨时,应取10%;当额定起重量不小于75吨时,应取8%。

受损钢结构力学分析模型研究

受损钢结构力学分析模型研究 摘要:通过对8组不同受损程度的Q235钢材进行力学性能实验研究,分析了不同损伤程度对钢材二次加载和卸载时加载弹性模量和卸载弹性模量的影响,提出了受损钢材的力学模型。基于受损截面的应力-应变关系,通过定义受损受弯构件截面的无损高度比K,推导了不同受损程度下构件截面的平均弹性模量和损伤指标的计算公式。用转动弹簧来模拟受损截面的力学性能,根据受损微段的应力-应变关系,推导了受损截面的弯矩-转角关系和截面转动刚度计算公式,提出了可用于受损钢结构力学分析的计算模型。算例分析表明,截面受损降低了结构的刚度,在实际工程应用时不容忽视。 关键词:钢结构;损伤;实验;力学模型;转动弹簧模型 1 引言 既有钢结构在自然灾害作用或其他因素的影响下,容易造成工程事故[1,2]。2008年,我国南方经历了一场特大冰雪和冻雨天气,导致大量轻型门式刚架结构发生坍塌[3-5],大量的钢结构房屋受损。受损钢结构房屋能否满足其正常使用要求,一直都是人们关注的焦点。 目前,对此类结构安全可靠性的评估通常是参考《钢结构工程施工质量验收规范》[6]中的相关要求,从构件和节点的层面去评估,结合权重系数等方法来分析结构的整体可靠性[7,8],而未考虑损伤对截面、构件和结构力学性能的不利影响,难以真实反映结构的实际力学性能。

本文从受损钢材的力学性能实验研究着手,分析损伤对钢材力学性能的影响程度,提出受损钢材、构件截面和结构的力学分析模型,研究损伤对钢结构力学性能的影响。 2 受损钢材力学性能实验 2.1 试件设计 选用Q235钢材为实验研究对象。为了分析Q235钢材在不同损伤程度时的力学性能,采用8组(每组取3个试件)标准板试件进行实验研究,研究试件在不同损伤程度情况下的二次加载和卸载时的力学性能。根据国家标准《金属材料拉伸试验第1部分:室温试验方法》[9],板试件的几何尺寸参数如图1所示。 根据对该批试件的实验测试结果,测得试件在屈服阶段结束时的变形约为0.8 mm,强化阶段结束时的变形约为9 mm,如图2所示。为了考虑钢材不同的受损情况,将此8组试件分别在实验机上拉伸,使其初始变形分别达到0 mm,0.8 mm,2 mm,3 mm,4 mm,5 mm,7 mm和9 mm等8个级别,并测得各试件的原始弹性模量E0。初拉伸实验完成后,根据不同分组情况,将各组试件分别进行二次加载和卸载,测得受损试件在二次加载和卸载过程中的加载弹性模量和卸载弹性模量E′。 2.2 实验测试 采用型号为CMT5105的微机控制电子万能试验机,其最大负荷为100 kN,精度为0.5级。采用电子引伸计记录试件在加载和卸载过程中的变形情况,引伸计的标距为50 mm,最大变形量为10 mm。通过对微机控制

火灾条件下钢结构力学性能的研究

火灾条件下钢结构力学性能的研究 [摘要]钢结构因其自身的材料特性,在建筑方面得到了广泛的应用,特别是在高层建筑和工业厂房的施工中,钢结构的选择,可以大大的缩短工期,节约成本。但钢结构在高温下的材料性能的改变,为钢结构建筑的防火提出了新的要求。本文以通过对火灾条件下钢材料力学性能研究,指出在火灾条件下钢结构建筑的隐患,并提出了一些提高钢结构抗火性能的方法。 [关键词]钢结构;火灾;抗火设计;高温试验;耐火时间 1、引言 在现代建筑结构形式中,钢结构以其重量轻、强度高受到人们的喜爱,再加上钢结构的施工速度快、抗震性能好就更加被推崇。然而,钢结构也有其自身不可避免的弱点,就是它的耐火性,在高温下,钢材便无法达到保持建筑结构所要求的强度。当火灾发生时,所产生的高温达到400℃时,钢材的强度下降到室温条件的一半,而600℃时,钢结构就将完全丧失其本身的强度和刚度。所以钢结构建筑一旦发生火灾,将对其结构造成严重的破坏,甚至发生倒塌,从而引发大量的人员伤害和财产的巨大损失。所以钢结构建筑,在利用钢结构优点的同时,对其缺点的防护措施也必不可少。 2、钢结构抗火设计方法中存在的问题 2、1火灾下建筑钢结构破坏机理 第一,高温使钢材的弹性模量降低,结构钢度下降; 第二,高温使材料强度降低,甚至融化,导致结构承载能力下降; 第三,构件内部不均匀升温,使结够内部以及整个建筑结构中产生不均匀的热膨胀,从而使构件内部及整个结构中产生很大的附加应力。 这三个方面的共同作用,导致建筑构件变形增大、开裂、屈曲、破坏,甚至局部或整体倒塌。 2、2荷载的分布与大小的影响 在实际的建筑过程中结构构件所受的荷载情况十分复杂,荷载的大小与分布的变化很难与实验中的标准状态一致。实验中得知,在荷载大小相同的情况下,偏心受压没有轴心受压所承受的耐火时间长;另外,如果假设荷载状态分布相同,那么钢构件承受的荷载越小,其耐火时间越长。 2、3构件端部约束状态的影响 另外一个不可忽视的因素,是杆端约束情况。由于钢构件的结构不可能独立于其他相连部件,因此,相连部件对杆端的约束的不同,也导致了钢构件所受的承载力和火灾升温时温度内力的差异,通常的钢构件抗火试验都是在标准的状态下进行的,不可能准确全面的模拟

钢筋力学性能和工艺性能试验检验技术措施

钢筋力学性能和工艺性能试验检验技术措施1.工程概况: 1.1.为了保证河津热电厂使用热轧带肋钢筋的质量和为施工提供可靠的技术参数,根据中华人民共和国钢筋砼用热轧带肋钢筋检验标准GB1499-1998,特制定本检验技术措施。 1.2.本检验技术措施适用于钢筋砼热轧带肋钢筋。 2.作业前条件准备: 2.1.作业人员技术要求: 2.1.1.作业人员应工作认真负责,经过技术培训,并取得合格证书。 2.1.2.作业人员应熟知钢筋力学性能试验的取样,试验结果评定等规定。 2.2.试验所需设备仪器 万能试验机1台 游标卡尺或测微仪1把 3.技术要求 热轧带肋钢筋的牌号由HRB和牌号的屈服点最小值构成。H、R、B 分别为热轧(Hotrolled)、带肋(Ribbed)、钢筋(Bars)三个词的英文手写字母。热轧带肋钢筋分为HRB335、HRB400、HRB500、三个牌号。 钢筋的力学性能、工艺性能应符合下表:

钢筋公称直径范围为8-50mm,当钢筋进行冷弯或反向弯曲试验时,受弯部位外表不得产生裂缝。 钢筋表面不得有裂缝、结疤和折叠,钢筋表面允许有凸块,但不得超过横肋的高度,钢筋表面上其他缺陷的深度和高度不得所在部位尺寸的允许偏差。 3.1.每批钢筋的检验项目,取样方法和试验方法应符合表2的规定。表2 3.2.拉伸冷弯,反向弯曲试验不允许进行车削加工,计算钢筋强度用截面面积 采用表3公称横截面积。 表3钢筋公称横截面积与公称重量

3.3.测量钢筋重量偏差时,试样数量不小于10支,试样总长度不小于60cm,长度应逐支测量,精确到10mm,试样总重量不大于100kg时,应精确到0.5kg,试样总重量大于100kg时,应精确到1kg。 当供方能保证钢筋重量偏差符合规定时,试样的数量和长度可不受制上述限制。 3.4.钢筋实际重量与理论重量的偏差按下式计算: (试样实际总重量-(试样总长度×理论重量) 重量偏差(%)= ×100% 试样总长度×理论重量 4.检验规则 4.1.钢筋的检查和验收,按GB/T17505的规定进行。 4.2.组批规则 4.2.1. 钢筋应按批进行检查和验收,每批重量不大于60t。 4.2.2. 每批应由同一牌号、同一规格的钢筋组成,允许由同一牌号、同一冶炼方法、同一浇注方法的不同炉罐号组成混合批,但各炉罐号含碳量之差不大于0.02%,含锰量之差不大于0.15%。 4.3.取样数量 4.3.1. 钢筋各检查项目的取样数量应符合表2的规定

结构力学考核知识点

第1章绪论考核知识点 1.各种材料结构的特点及其应用: 钢筋混凝土结构是由钢筋和混凝土两种受力性能不同的材料共同组成的结构,工程中,混凝土主要承受压力,钢筋主要承受拉力。砌体与混凝土结构的主要特点是抗压承载力高,而抗弯、抗剪性能较差。因此,砌体在工程中常用于以承压为主的结构构件。 混凝土构件适用于以压为主的结构。钢结构主要缺点是造价高、维护性差、耐火性差。预应力混凝土的本质就是在混凝土结构承载前施加一定的压力,使其抵消或减小外荷载产生的拉应力。组合结构充分利用了钢与混凝土结构性能,因此受力比较合理。 预应力混凝土结构和砌体结构的特点: 与普通钢筋混凝土结构相比,预应力混凝土结构可以使混凝土不出现拉应力(或允许出现拉应力限制应力值或允许出现裂缝限制裂缝宽度),因而大大改善了结构的工作性能。 砌体结构的主要特点是抗压承载力高,而抗拉、抗弯、抗剪承载力低。因此,砌体结构以承受压力为主。 2.我国现行公路桥涵设计规范的计算原则;我国现行公路桥涵设计规范的计算原则包括:承载能力极限状态计算原则和正常使用极限状态计算原则。 3.极限状态设计法的基本概念:承载能力极限状态、正常使用极限状态、结构的可靠性、结构的可靠度等。 第2章钢筋混凝土结构的基本概念及材料的物理力学性能考核知识点 1.钢筋混凝土结构基本概念:钢筋混凝土结构是由钢筋和混凝土两种受力性能不同的材料共同组成的结构,工程中,混凝土主要承受压力,钢筋主要承受拉力。 2.钢筋及混凝土材料物理力学性能: 钢筋混凝土结构对钢筋性能的要求包括强度、塑性、与混凝土的粘结力。在《公桥规》中,所提到的混凝土标号是指复合应力下的混凝土强度。利用钢材约束,将混凝土由单向受压转变为三向受压的组合结构称为钢管混凝土结构。冷加工对钢筋性能的影响; 混凝土在长期不变荷载作用下,将产生徐变变形;混凝土随水分蒸发结硬将产生收缩变形。热轧钢筋经冷拉后,抗拉强度提高,变形能力变差。混凝土在一向受拉、另一向受压的双向应力状态下,其抗压强度和抗拉强度都会降低。 3.钢筋和混凝土之间的粘结作用。

金属材料机械性能检测

金属材料机械性能检测 抗拉强度(tensile strength) 试样拉断前承受的最大标称拉应力。 抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。 试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: σ=Fb/So 式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 抗拉强度(Rm)指材料在拉断前承受最大应力值。 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。 单位:kn/mm2(单位面积承受的公斤力) 抗拉强度:Tensile strength. 抗拉强度=Eh,其中E为杨氏模量,h为材料厚度 目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定! 屈服强度(yield strength) 屈服强度:是金属材料发生屈服现象时的屈服极限,亦即抵抗微量塑性变形的应力。对于无明显屈服的金属材料,规定以产生0.2%残余变形的应力值为其屈服极限,称为条件屈服极限或屈服强度。大于此极限的外力作用,将会使零件永久失效,无法恢复。如低碳钢的屈服极限为207MPa,当大于此极限的外力作用之下,零件将会产生永久变形,小于这个的,零件还会恢复原来的样子。 yield strength,又称为屈服极限,常用符号δs,是材料屈服的临界应力值。

结构力学复试

结构工程复试题 1、预应力结构有哪些应用? 答:预应力混凝土可延缓混凝土构件的开裂,提高构件的抗裂度和刚度。 其可用于:①要求裂缝控制等级较高的结构 ②大跨度或受力很大的构件 ③对构件的刚度和变形控制要求较高的结构构件 其缺点是:构造、施工和计算都较钢筋混凝土构件复杂延性也差些 2、基础研究与应用研究的关系? 答:我们将科学研究分为基础研究和应用研究,应用研究是依附于基础研究的,没有基础研究,就没有应用研究。基础研究服务于应用研究,反过来应用研究的发展可以为基础研究提供动力,更好的促进基础研究。基础研究和应用研究就是鱼和水的关系。 3、对于低碳经济的理解? 答:低碳经济是以低能耗、低污染、低排放为基础的经济模式,是人类社会继农业文明、工业文明之后的又一次重大进步,是国际社会应对全球气候灾难性变化而提出的能源品种新概念。发展低碳经济,是我国转变发展观念、创新发展模式、破解发展难题、提高发展质量的重要途径。 4、钢结构应用围与特点? 答:应用围:钢结构在大跨度结构重型厂房结构受动力荷载影响的结构可拆卸的结构高耸结构和高层建筑容器和其他构筑物轻型钢结构钢和混凝土组合结构 钢结构特点:①材料的强度高,塑性和韧性好②材料均匀和力学计算的假定比较符合③钢结构制造简便,施工周期短④钢结构质量轻⑤刚才耐腐蚀性差⑥刚才耐热但不耐火 5、高性能混凝土的特点与围? 答:高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。其特点是:高耐久性、高强度、高体积稳定性、适当的抗压强度、良好的工作性。 6、什么是混凝土的耐久性?其主要的影响因素有哪些?《结构规》规定了哪些 措施来提高混凝土结构的耐久性? 答:混凝土结构的耐久性是指结构在使用环境下,对物理的、化学的以及其他使结构材料性能恶化的各种侵蚀的抵抗能力。主要影响因素有混凝土冻融破坏、碱——骨料反应、侵蚀性介质腐蚀、混凝土碳化、钢筋锈蚀等。耐久性设计主要采取的保证措施有划分混凝土结构的环境类别、规定混凝土的保护层厚度、规定裂缝控制等级及其限值、规定混凝土的基本要求。 7、建筑结构检测与加固的方法? 答:加固的方法:加大截面法、外包钢法、预应力法、改变结构传力途径法、外部粘钢法、使用新材料加固等。 检测的方法:混凝土结构检测(如:结构性能实荷检测、回弹法、超声波法、超声回弹综合法、取芯法、拉拨法) 砌体结构检测(如:轴压法、扁顶法、原位单剪法、原位单砖双剪法、推出法、筒压法、砂浆片剪切法,回弹法、

金属材料的力学性能及其测试方法

目录 摘要1 1引言2 2金属材料的力学性能简介2 2.1 强度3 2.2 塑性3 2.3 硬度3 2.4 冲击韧性4 2.5 疲劳强度4 3金属材料力学性能测试方法4 3.1拉伸试验5 3.2压缩试验8 3.3扭转试验11 3.4硬度试验15 3.5冲击韧度试验22 3.6疲劳试验27 4常用的仪器设备简介29 4.1万能试验机29 4.2扭转试验机34 4.3摆锤式冲击试验机40 5金属材料力学性能测试方法的发展趋势42 参考文献42

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, mon experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend

结构力学 第二章 结构的几何组成分析

第二章 结构的几何组成分析 李亚智 航空学院·航空结构工程系

2.1 概述 结构要能承受各种可能的载荷,其几何组成要稳固。即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。 在任意载荷作用下,若不考虑元件变形,结构保 持其原有几何形状不变的特性称为几何不变性。 在载荷作用下的系统可分为三类。 2.1.1 几何可变系统 特点: 不能承载,只能称作“机构”。 2 1 3 4 P 2’3’

2.1.2 几何不变系统 特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。 2.1.3 瞬时几何可变系统 特点:先发生明显的几何变形,而后几何不变。 P 213 4 2’ 3’ 2’3’ P 2 1 34 5 ∞ →=2321N N 1 2 3 P 内力巨大,不能作为结构。 N 21 N 23 P 2

由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。

2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。

1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A ' x y A y A x A z A z A ' O

金属材料的力学性能及其测试方法

目录 摘要 (1) 1引言 (1) 2金属材料的力学性能简介 (2) 2.1 强度 (2) 2.2 塑性 (2) 2.3 硬度 (2) 2.4 冲击韧性 (3) 2.5 疲劳强度 (3) 3金属材料力学性能测试方法 (3) 3.1拉伸试验 (3) 3.2压缩试验 (6) 3.3扭转试验 (8) 3.4硬度试验 (11) 3.5冲击韧度试验 (16) 3.6疲劳试验 (19) 4常用的仪器设备简介 (20) 4.1万能试验机 (20) 4.2扭转试验机 (23) 4.3摆锤式冲击试验机 (28) 5金属材料力学性能测试方法的发展趋势 (30) 参考文献 (30)

金属材料的力学性能及其测试方法 摘要:金属的力学性能反映了金属材料在各种形式外力作用下抵抗变形或破坏的某些能力,它与材料的失效形式息息相关。本文主要解释了金属材料各项力学性能的概念,介绍了几个常见的测试金属材料力学性能的试验以及相关的仪器设备,最后阐述了金属材料力学性能测试方法的发展趋势。 关键词:金属材料,力学性能,测试方法,仪器设备,发展趋势 Test Methods for The Mechanical Properties of Metal Material Abstract:The mechanical properties of metal material which reflect some abilities of deformation and fracture resistance under various external forces are closely linked with failure forms. This paper mainly introduces some concepts of mechanical properties of metal material, common experiments testing mechanical properties of metal material and apparatuses used. The trend of development of test methods for mechanical properties of metal material is also discussed. Keywords:metal material,mechanical properties,test methods,apparatuses,development trend 1引言 材料作为有用的物质,就在于它本身所具有的某种性能,所有零部件在运行过程中以及产品在使用过程中,都在某种程度上承受着力或能量、温度以及接触介质等的作用,选用材料的主要依据是它的使用性能、工艺性能和经济性,其中使用性能是首先需要满足的,特别是针对性的材料力学性能往往是材料设计和使用所追求的主要目标。材料性能测试与组织表征的目的就是要了解和获知材料的成分、组织结构、性能以及它们之间的关系。而人们要有效地使用材料,首先必须要了解材料的力学性能以及影响材料力学性能的各种因素。因此,材料力学性能的测试是所有测试项目中最重要和最主要的内容之一。 在人类发展的历史长河过程中,人们已经建立了许多反映材料表面的和内在的各种关于力学、物理等相关材料性能的测试和分析技术,近现代科学的发展已使材料性能测试分析从经验发展并建立在现代物理理论和试验的基础之上,并且

钢结构外露式柱脚弱轴方向节点力学性能研究

钢结构外露式柱脚弱轴方向节点力学性能研究钢结构外露式柱脚作为轻型钢结构中广泛应用的柱脚节点,其节点力学性能在整体结构性能当中起着关键性的作用。工程中为了简化设计,通常将柱脚节点视为刚接或铰接,但学术界普遍认为钢结构柱脚节点是具有一定的抗弯刚度的。 目前对外露式柱脚节点的半刚性研究,主要集中在强轴方向,对于弱轴方向上的半刚性性能研究则存在空白。基于上述问题,本文进行了以下研究:(1)对外露式柱脚节点进行了试验研究。 设计并进行了八组外露式柱脚弱轴方向水平循环加载试验,研究了轴向力、底板厚度、锚栓直径及其强弱轴方向间距、加劲肋的设置与柱截面宽度对节点受力性能的影响,分析对比了不同参数外露式柱脚节点的抗弯刚度、抗弯承载力、延性、耗能能力以及破坏模式等内容。建立了理想化的柱脚节点滞回曲线模型;(2)对外露式柱脚节点进行了有限元分析。 采用有限元软件ABAQUS建立了外露式柱脚节点的三维实体有限元模型,设置了与试验相同的参数与加载条件。有限元的计算结果与试验结果吻合,验证了有限元模型的准确性。 提高试验所研究的变量水平数,并补充了锚栓强度等级以及焊缝厚度,研究这些参数对柱脚节点的抗弯刚度、抗弯承载力以及破坏模式的影响;(3)对外露式柱脚节点进行了抗弯刚度的计算。归纳了欧洲规范3中计算外露式柱脚节点抗弯刚度的原理以及其局限性,探讨了轴向力对柱脚节点受力性能的影响。 基于组件法原理,建立了外露式柱脚弱轴方向上抗弯刚度计算模型,对比了试验值、有限元分析值以及模型计算值,验证了计算模型的有效性;(4)对外露式柱脚节点进行了弯矩-转角全过程曲线模拟。基于本文提出的抗弯刚度组件法计

算模型,提出组件屈服的概念,拟合了柱脚节点弯矩-转角全过程曲线,对比了试验结果与拟合结果,验证了拟合方法的有效性。

金属力学性能测试及复习答案

金属力学性能复习 一、填空题 1.静载荷下边的力学性能试验方法主要有拉伸试验、弯曲试验、扭转试验和压缩试验等。 2. 一般的拉伸曲线可以分为四个阶段:弹性变形阶段、屈服阶段、均匀塑性变形阶段和非均匀塑性变形阶段。 3. 屈服现象标志着金属材料屈服阶段的开始,屈服强度则标志着金属材料对开始塑性变形或小量塑性变形能力的抵抗。 4. 屈强比:是指屈服强度和抗拉强度的比值,提高屈强比可提高金属材料抵抗开始塑性变形的能力,有利于减轻机件和重量,但是屈强比过高又极易导致脆性断裂。 5. 一般常用的的塑性指标有屈服点延伸率、最大力下的总延伸率、最大力下的非比例延伸率、断后伸长率、断面收缩率等,其中最为常用的是断后伸长率和断面收缩率 。 6. 金属材料在断裂前吸收塑性变形功和断裂功的能力称为金属材料的韧性。一般来说,韧性包括静力韧性、冲击韧性和断裂韧性。 7. 硬度测试的方法很多,最常用的有三种方法:布氏硬度测试方法、络氏硬度的试验方法和维氏硬度实验法。 8. 金属材料制成机件后,机件对弹性变形的抗力称为刚度。它的大小和机件的截面积及其弹性模量成正比,机件刚度=E 〃S. 9. 金属强化的方式主要有:单晶体强化、晶界强化、固溶强化、以及有序强化、位错强化、分散强化等(写出任意3种强化方式即可)。 10. 于光滑的圆柱试样,在静拉伸下的韧性端口的典型断口,它由三个区域组成:纤维区、放射区、剪切唇区。 11. 变形速率可以分为位移速度和应变速度。 二、判断题 1.在弹性变形阶段,拉力F 与绝对变形量之间成正比例线性关系;(√) 若不成比例原因,写虎克定律。 2.在有屈服现象的金属材料中,其试样在拉伸试验过程中力不断增加(保持恒定)仍能继续伸长的应力,也称为抗服强度。(×) 不增加,称为屈服强度。 3.一般来讲,随着温度升高,强度降低,塑性减小。(×) 金属内部原子间结合力减小,所以强度降低塑性增大。 4.络氏硬度试验采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后卸除主实验力,以测量压痕的深度来计算络氏硬度。压入深度越深,硬度越大,反之,硬度越小。(×) 络氏硬度公式 5.金属抗拉强度b σ与布氏硬度HB 之间有以下关系式:b σ=K ?HB ,这说明布氏硬度越大,其抗拉强度也越大。(√) 6.弹性模量E 是一个比例常数,对于某种金属来说,它是一种固有的特性。(√) 7.使用含碳量高(含碳量为0.5-0.7%)的钢,不能提高机件吸收弹性变形功。(×) 8.脆性断裂前不产生明显的塑性变形,即断裂产生在弹性变形阶段,吸收的能量很小,这种断裂是可预见的。(×)

钢材力学及工艺性能试验取样规定

钢材力学及工艺性能试验取样规定 GB2975-1982 本标准适用于轧制、锻制、冷拉和挤压钢材的拉力、冲击、弯曲、硬度和顶锻等试验的取样。也可供其它力学及工艺性能试验取样时参考。 如产品标准或双方协议对取样板另有规定时,则按规定执行。 1样坯的切取 1.1样坯应在外观及尺寸合格的钢材上切取。 1.2切取样坯时,应防止因受热、加工硬化及变形而影响其力学及工艺性能。 1.2.1用烧割法切取样坯时,从样坯切割线至试样边缘必须留有足够的加工余量,一般应不小于钢材的厚度或直径,但最小不得少于20mm。对厚度或直径大于60mm的钢材,其加工余量可根据双方协议适当减小。 1.2.2冷剪样坯所留的加工余量可按下表选取:

2样坯切取位置及方向 2.1对截面尺寸〈图1的D和a〉小于或等于6Omm的圆钢、方钢和六角钢,应在中心切取拉力及冲击样坯;截面尺寸大于60mm时,则在直径或对角线距外端四分之一处切取,如图1所示。 2.2样坯不需热处理时,截面尺寸小于或等于40mm的圆钢、方钢和六角钢,应使用全截面进行拉力试验。当试验机条件不能满足要求时,应加工成GB228-76《金属拉力试验法》中相应的圆形比例试样。 2.3样坯需要热处理时,应按有关产品标准规定的尺寸,从圆钢、方钢和六角钢上切取。 2.4应从圆钢和方钢端部沿轧制方向切取弯曲样坯,截面尺寸

小于或等于35mm时,应以钢材全截面进行试验。截面尺寸大于35mm时,圆钢应加工成直径25mm的圆形试样,并应保留宽度不大于5mm的表面层,方钢应加工成厚度为2Omm并保留一个表面层的矩形试样,如图2所示。 2.5应从工字钢和槽钢腰高四分之一处沿轧制方向切取矩形拉力、弯曲和冲击样坯。拉力、弯曲试样的厚度应是钢材厚度,如图3所示。

相关主题
文本预览
相关文档 最新文档