当前位置:文档之家› 加工误差统计分析实验

加工误差统计分析实验

加工误差统计分析实验
加工误差统计分析实验

《机械制造工艺学》课程实验报告(非本校资料)实验名称:实验一加工误差的统计分析

姓名:班级:学号:

实验日期:年月日指导教师:成绩:

一、实验目的

(1)掌握加工误差统计分析方法的基本原理和应用。

(2)掌握样本数据的采集与处理方法,要求:能正确地采集样本数据,并能通过对样本数据的处理,正确绘制出加工误差的实验分布曲线和图。

(3)能对实验分布曲线和图进行正确地分析,对加工误差的性质、工序能力及工艺稳定性做出准确的鉴别。

(4)培养对加工误差进行综合分析的能力。

二、实验设备、仪器及试件

设备:无心磨床

量仪:0~25mm数显千分尺一把

试件:φ24(±0.01)×32的45钢(淬火)100件

三、实验原理

在实际生产中,为保证加工精度,常常通过对生产现场中实际加工出的一批工件进行检测,运用数理统计的方法加以处理和分析,从中寻找误差产生的规律,找出提高加工精度的途径。这就是加工误差统计分析方法。加工误差分析的方法有两种形式,一种为分布图分析法,另一种为点图分析法。

1.分布图分析法

分布图分析法是通过测量一批加工零件的尺寸,把所测到的尺寸范围分为若干个段。画出该批零件加工尺寸(或误差)的实验分布图。其折线图就接近于理论分布曲线。在没有明显变值系统误差的情况下,即工件的误差是由很多相互独立的微小的随机误差综合作用的结果,则工件尺寸分布符合正态分布。利用分布曲线图可以比较方便地判断加工误差性质,确定工序能力,并估算合格品率,但利用分布图分析法控制加工精度,必须待一批工件全部加工完毕,测量了样本零件的尺寸后,才能绘制分布图,因此不能在加工过程中及时提供控制精度的信息,这在生产上将是很不方便的。

2.点图法

在生产中常用的另一种误差分析方法是点图法或图法。点图法是以顺序加工的零件序号为横坐标,零件的加工尺寸为纵坐标,把按加工顺序定期测量的工件尺寸画在点图上。

点图可以反映加工尺寸和时间的关系,可以看出尺寸变化的趋势,找出产生误差的原因。

图称为平均尺寸——极差质量控制图。一般是在生产过程开始前,先加工一批试

件(本实验中即用本批加工的零件作为试件),根据加工所得的尺寸,求出平均值x 和极差R 而绘制成的。

x 点图:中线 ∑==k

i i x k x 1

1

上控制线 R A x x s 2+= 下控制线 R A x x x 2-=

R 点图:中线 ∑==k

i i R k R 1

1

上控制线 R s = D 1R 下控制线 R x = D 2R

i x 是将一批工件依照加工顺序按n 个分为一组第i 组的平均值,共分成k 组; i R 是第i 组的极差;

式中A 2、D 1、D 2的数值根据数理统计原理而定出(见表1)。

将生产中定期抽样的尺寸结果,点在

图上,从点子在图中的位置便可看出x 和R

的波动,它反映了工件平均值的变化趋势和随机误差的分散程度。图上的控制界限线,就是用来判断工艺是否稳定的界限。因此图是用来判断工艺过程的稳定性的。

四、实验步骤

1. 按无心磨床的操作方法,加工一批零件(本实验为100件)。加工完的零件,擦洗

干净,按加工顺序放置好。 2. 按加工顺序测量工件的加工尺寸,记录测量结果。 3. 绘制直方图和分布曲线

1)找出这批工件加工尺寸数据的最大值x max 和最小值x min ,按下式计算出极差R 。

R =x max 一x min

2)确定分组数K (K 一般根据样本容量来选择,建议可选在8~11之间)。

3)按下式计算组距 d 。

4)确定组界(测量单位:微米)。 5)做频数分布表。 6)计算x 和σ。

7)画直方图

以样本数据值为横坐标,标出各组组界;以各组频率密度为纵坐标,画出直方图。 8)画分布曲线

若工艺过程稳定,则误差分布曲线接近正态分布曲线;若工艺过程不稳定,则应根据实际情况确定其分布曲线。画出分布曲线,注意使分布曲线与直方图协调一致。 9)画公差带

在横轴下方画出公差带,以便与分布曲线相比较。

4. 绘制

1)确定样组容量,对样本进行分组

样组容量m 通常取4或5件。按样组容量和加工时间顺序,将样本划分成若干个样组。

2)计算各样组的平均值和极差

对于第i 个样组,其平均值和极差计算公式为:

∑==m

j ij i x m x 1

1

式中

——第i 个样组的平均值;

——第i 个样组的标准差;

——第i 个样组第j 个零件的测量值;

——第i 个样组数据的最大值;

——第i 个样组数据的最小值 3)计算图控制限(计算公式见实验原理) 4)绘制

以样组序号为横坐标,分别以各样组的平均值和极差R 为纵坐标,画出图,并在图上标出中心线和上、下控制限。 5. 按下式计算工序能力系数

Cp

6.判别工艺过程稳定性

可按下表所列标准进行判别。注意,同时满足表中左列3个条件,工艺过程稳定;表中右列条件之一不满足,即表示工艺过程不稳定。

表2

7.加工误差综合分析

通过对分布图和图的分析,可以初步判断误差的性质。进而结合具体加工条件,分析影响加工误差的的各种因素,必要时,可对工艺系统的误差环节进行测量和实验。

五、实验结果分析与讨论

1.本工序的实验分布曲线图是否接近正态分布曲线?为什么?

2.根据工序能力系数Cp,本工序属哪一级?如果出现了废品,试分析产生废品的原因。3.从图看,本工序的工艺过程稳定吗?如果不稳定,试分析其原因。

表1-3 实验数据

表1-4 实际分布曲线图(直方图)

x

武汉大学分析题库误差电子文档

1 下列表述中,最能说明随机误差小的是-------------------( A) (A) 高精密度 (B) 与已知的质量分数的试样多次分析结果的平均值一致 (C) 标准差大 (D) 仔细校正所用砝码和容量仪器等 2 下列表述中,最能说明系统误差小的是------------------------------( B) (A) 高精密度 (B) 与已知的质量分数的试样多次分析结果的平均值一致 (C) 标准差大 (D) 仔细校正所用砝码和容量仪器等 3 以下情况产生的误差属于系统误差的是-------------------------------( A) (A) 指示剂变色点与化学计量点不一致 (B) 滴定管读数最后一位估测不准 (C) 称样时砝码数值记错 (D) 称量过程中天平零点稍有变动 4 当对某一试样进行平行测定时,若分析结果的精密度很好,但

准确度不好,可能的原因是---------------------------------------------------------------------------------( B) (A) 操作过程中溶液严重溅失(B) 使用未校正过的容量仪器 (C) 称样时某些记录有错误(D) 试样不均匀 5 做滴定分析遇到下列情况时,会造成系统误差的是---------------------( A) (A) 称样用的双盘天平不等臂 (B) 移液管转移溶液后管尖处残留有少量溶液 (C) 滴定管读数时最后一位估计不准 (D) 确定终点的颜色略有差异 5 用重量法测定试样中SiO2的质量分数时能引起系统误差的是---( D) (A) 称量试样时天平零点稍有变动(B) 析出硅酸沉淀时酸度控制不一致 (C) 加动物胶凝聚时的温度略有差别(D) 硅酸的溶解损失7 重量法测定硫酸盐的质量分数时以下情况可造成负系统误差的是----( C)

加工误差统计分析实验指导

加工误差统计分析实验 一、实验目的 1、巩固已学过的统计分析法的基本理论; 2、掌握运用统计分析法的步骤; 3、学习使用统计分析法判断和解决问题的能力。 二、实验设备与仪器 电感测量仪、块规、千分尺、试件(滚动轴承滚柱)、计算机。 三、实验原理和方法 在机械加工中,应用数理统计方法对加工误差(或其他质量指标)进行分析,是进行过程控制的一种有效方法,也是实施全面质量管理的一个重要方面。其基本原理是利用加工误差的统计特性,对测量数据进行处理,作出分布图和点图,据此对加工误差的性质、工序能力及工艺稳定性等进行识别和判断,进而对加工误差作出综合分析。 1、直方图和分布曲线绘制 1)初选分组数k 2 找出样本数据的最大值X imax和最小值X imin,并按下式计算组距: 式中:k——分组数,按表选取; X max和X min——本组样本数据的最大值和最小值。 选取与计算的d值相近的且为测量值尾数整倍数的数值为组距。 3)确定组界 各组组界为: min (i1)d 2 d X+-± (i=1,2,…,k),为避免样本数据落在组 界上,组界最好选在样本数据最后一位尾数的1/2处。 4)统计各组频数 频数,即落在各组组界范围内的样本个数。 频率=频数/样本容量 5)画直方图 以样本数据值(被测工件尺寸)为横坐标,标出各组组界;以各组频数为纵坐标,画出直方图。 6)计算总体平均值与标准差

平均值的计算公式为 1 1n i i X X n ==∑ 式中:X i ——第i 个样本的测量值; n ——样本容量。 标准差的计算公式为 s =7)画分布曲线 若研究的质量指标是尺寸误差,且工艺过程稳定,则误差分布曲线接近正态分布曲线;若研究的资料指标是形位误差或其他误差,则应根据实际情况确定其分布曲线。画出分布曲线,注意使分布曲线与直方图协调一致。 8)画公差带 按照与以上分布曲线相同的坐标原点,在横轴下方画出被测零件的公差带,以便与分布曲线相比较。 公差根据试件类型、规格查国标手册可得到。 2、X -R 图绘制 1)确定样组容量,对样本进行分组 样组容量一般取m=2~10件,通常取4或5,即对试件尺寸依次按每4~5个一组进行分组,将样本划分成若干个样组。 2)计算各样组的平均值和极差 对于第i 个样组,其平均值和极差计算公式为 1 1m i ij j X X m ==∑, max min i i i R X X =- 式中:i X ——第i 个样组的平均值; i R ——第i 个样组的标准差; ij X ——第i 个样组第j 个试样的测量值; max i X ——第i 个样组数据的最大值; min i X ——第i 个样组数据的最小值。 3)计算X -R 图的控制线 X -R 图的控制线为 样组平均值X 图的中线 1 1m k i i m X X k ==∑ 样组平均值R 图的中线

工艺过程的统计分析一

工艺过程的统计分析 一:概述 在生产实际中,影响加工精度的原始误差很多,这些原始误差往往使综合地交错在一起对加工精度产生综合影响的,且其中不少原始误差的影响往往带有随机性。对于一个受多个随机性质原始误差影响的工艺系统,只有用概率统计的方法来进行分析,才能得出正确的、符合实际的结果。 (一)系统性误差与随机性误差 系统性误差可分为常值系统性误差和变值系统性误差两种。在顺序加工一批工件中,其大小和方向皆不变的误差,称为常值系统性误差。例如,铰刀直径大小的误差,测量仪器的一次对零误差等。在顺序加工一批工件中,其大小和方向遵循某一规律变化的误差,称为变值系统性误差。例如,由于刀具的磨损引起的加工误差,机床和刀具或工件的受热变形引起的加工误差等。显然,常值系统性误差与加工顺序无关,而变值系统性误差则与加工顺序有关。 在顺序加工一批工件中,有些误差的大小和方向使无规则变化着的,这些误差称为随机误差。例如加工余量不均匀、材料硬度不均匀、夹紧力时大时小等原因引起的 加工误差。 对于常值系统性误差,若能掌握其大小和方向,就可以通过调整消除;对于变值系统性误差,若能掌握其大小和方向随时间变化的规律,则可通过自动补偿消除;唯队随机性误差,只能缩小它们的变动范围,而不可能完全消除。由概率论与数理统计血可知,随机性误差的统计规律可用它的概率分布表示。 (二)机械制造中常见的误差分布规律

偏态 分布 在用试切法车削轴径或孔径时,由于操作者为了尽量避免产生不 可修复的废品,主观地(而不是随机地)使轴颈加工得宁大勿小, 则它们得尺寸误差就呈偏态分布。 机械加工误差 分布规律 (三)正态分布 1.正态分布的数学模型、特征参数和特殊点机械加工 中,工件的尺寸误差是由很多相互独立的随机误差综合作 用的结果,如果其中没有一个随机误差是起决定作用的, 则加工后工件的尺寸将呈正态分布,其密度方程中,有两 个特征参数:一个算术平均值只影响曲线的位置,而不影 响曲线的形状;另一个均方根偏差(标准差)σ 只影响曲 线的形状,而不影响曲线的位置,均方根偏差愈大,曲线 愈平坦,尺寸就愈分散,精度就愈差。因此,均方根偏差 反映了机床加工精度的高低,算术平均值反映了机床调整 位置的不同。 2.标准正态分布 算术平均值为 0,均方根偏差为 1 的正态分布为标准正态分布。 3.工件尺寸再某区间内的概率 生产上感兴趣的往往不是工件为某一尺寸的概率是多大,而是加工工件尺寸落在某一 区间(x1≤x≤x2)内的概率是多大,如右图示。通过分析可知,非标准正态分布概率 密度函数的积分,经标准化变换后,可用标准正态分布概率密度函数的积分表示,为 了计算的需要,可制作一个标准化正态分布概率密度函数的积分表。通过计算可知, 正态分布的分散范围为 这就是工程上经常用到的“±3σ 原则”,或称“6σ 原 则”。

误差统计分析题库

1. 在机床上磨一批mm 0035.018-Φ的光轴,工件尺寸呈正态分布,现测得平均尺寸- x =,均方根差σ=,试: (1)画出工件尺寸误差的分布曲线,并标出公差带; (2)计算该工序的工艺能力系数; (3)估计该工序的废品率; (4)分析产生废品的原因,并提出解决办法。(12分) 解 (1)分布曲线及公差带如图: (2)工艺能力系数: C P =T/6σ, C P =(6×)= (3)按题意x =,σ=,实际加工尺寸: 加工尺寸最大值Amax =x +3σ=+=,最小值Amin =x -3σ=,即加工尺寸介于~之间,而T =,肯定有废品。所以分布在和18mm 之间的工件为合格产品,其余为废品。 因为= σ x - x z = 01 .0975 .1718-=,所以F (z )=F ()=,即平均值右侧废品率为 ()=%,即18mm 与间为废品;又因为= σ x -x z = 01 .0965 .17975.17-=1,所以F (z )=F (1)=,即平均值左侧废品率为(1)=%,即与间为废品,则总废品

率为%+%=%。18mm 与间的废品为可修复废品。与间的废品为不可修复废品,因其尺寸已小于要求。 (3)产生废品的主要原因是加工精度不够,尺寸分布较散,另外对刀不准,存在系统误差。 2. 磨一批工件的外圆,工件尺寸呈正态分布,尺寸公差T =,均方根偏差σ=,公差带对称分布于尺寸分布中心,试: (1)画出销轴外径尺寸误差的分布曲线,并标出公差带; (2)计算该工序的工艺能力系数; (3)估计该工序的废品率。 (4)分析产生废品的原因,并提出解决办法。(8分) 解 (1) 分布曲线(1分)及公差带(1分): (2)工艺能力系数: C P =T/6σ,C P =(6×)=(2分) (3)要求的极限尺寸上偏差为,下偏差为;工件可能出现的极限尺寸上偏差为,下偏差为;所以分布在和之间的工件为合格产品,其余为废品。

中学化学中四种定量实验常见误差分析例举

中学化学中四种定量实验常见误差分析例 举 物质的量浓度溶液的配制,酸碱中和滴定,硫酸铜晶体中结晶水含量的测定和中和热的测定是中学化学实验中的四种定量实验。它是学生学习和掌握中学化学实验的重点内容,特别是四种定量实验的误差分析是学生学习和掌握定量实验的难点。现就中学化学中四种定量实验常见误差分析例举如下: 一、物质的量浓度溶液的配制 (以配制500mL.1mol/LNaOH溶液为例) 1、NaOH药品不纯(如NaOH中混有少量Na2O),结果偏高。 2、用天平称量NaOH时,称量时间过长。由于部分NaOH 与空气中的CO2反应生成Na2CO3,得到Na2CO3和NaOH 的混合物,则结果偏低。 3、用天平称量NaOH时,如砝码有污物,结果偏高。 4、用天平称量NaOH时,物码颠倒,但未用游码,不影响结果。 5、用天平称量NaOH时,物码颠倒,又用了游码,结果偏低。 6、用天平称量NaOH时,若用滤纸称NaOH,结果偏低。

7、称量前小烧杯中有水,无影响。 8、向容量瓶中转移溶液时,有少量溶液流至容量瓶之外,结果偏低。 9、未把烧杯、玻璃棒洗涤2~3次,或洗涤液未注入容量瓶,结果偏低。 10、烧杯中溶液未冷却至室温,就开始转移溶液注入容量瓶,结果偏高 11、定容时蒸馏水加多了,液面超过了刻度线,而用滴管吸取部分溶液至刻度线,结果偏低。 12、定容时摇匀,容量瓶中液面下降,再加蒸馏水至刻度线,结果偏低。 13、容量瓶定容时,若俯视液面读数,结果偏高。 14、容量瓶定容时,若仰视液面读数,结果偏低。 15、配制一定物质的量浓度稀H2SO4时,用量筒量取浓溶液,若俯视读数,结果偏低。 16、配制一定物质的量浓度稀H2SO4时,用量筒量取浓溶液,若仰视读数,结果偏高。 二、酸碱中和滴定 17、滴定管蒸馏水洗后未用标准液润洗,就直接装入标准液,造成标准液稀释,溶液浓度降低,滴定过程中消耗标准液体积偏大,测定结果偏高。 18、盛待测液滴定管水洗后,未用待测液润洗就取液加

机械加工误差分析实验报告

机械加工误差的综合分析 ------统计分析法的应用一、实验目的

运用统计分析法研究一批零件在加工过程中尺寸的变化规律,分析加工误差的性质和产生原因,提出消除或降低加工误差的途径和方法,通过本实验使同学能够掌握综合分析机械加工误差的基本方法。 二、实验用仪器、设备 1.M1040A型无心磨床一台; 2.分辨率为0.001mm的电感测微仪一台; 3.块规一付(尺寸大小根据试件尺寸而定); 4.千分尺一只; 5.试件一批约120件, 6.计算机和数据采集系统一套。 三、实验容 在无心磨床上连续磨削一批试件(120件),按加工顺序在比较仪上测量尺寸,并记录之,然后画尺寸点图和X---R图。并从点图上取尺寸比较稳定(即尽量排除掉变值系统性误差的影响)的一段时间连续加工的零件120件,由此计算出X、σ,并做出尺寸分布图,分析加工过程中产生误差的性质,工序所能达到的加工精度;工艺过程的稳定性和工艺能力;提出消除或降低加工误差的措施。

四、实验步骤 1. 按被磨削工件的基本尺寸选用块规,并用气油擦洗干净后推粘在一起; 2. 用块规调整比较仪,使比较仪的指针指示到零,调整时按大调---微调---水平调整步骤进行(注意大调和水平调整一般都予先调好),调整好后将个锁紧旋钮旋紧,将块规放入盒中。 3. 修正无心磨床的砂轮,注意应事先把金刚头退后离开砂轮。将冷却液喷向砂轮,然后在按操作规程进刀,修整好砂轮后退刀,将冷却液喷头转向工件位置。 4. 检查磨床的挡片,支片位置是否合理(如果调整不好,将会引起较大的形变误差)。对于挡片可通过在机床不运转情况下,用手将工件沿着支片紧贴挡片前后推动,同时调整前后螺钉,直至工件能顺利、光滑推过为宜。 5. 按给定尺寸(Φd-0.02)调整机床,试磨五件工件,使得平均尺寸应保证在公差带中心稍偏下为宜,然后用贯穿法连续磨削一批零件,同时用比较仪,按磨削顺序测量零件尺寸并记录之。 6. 清理机床,收拾所用量具、工具等。 7. 整理实验数据,打印做实验报告。 五、实验结果及数据处理 该实验选用M1040A型无心磨床和块规一付 (1)实验原始数据

误差和分析数据处理习题

第二章误差和分析数据处理 1、在定量分析中,精密度和准确度的关系是() A、精密度高,准确度一定高, B、准确度是保证精密度的前提 C、精密度是保证准确度的前提 2、从精密度好就可以断定分析结果可靠的前提是() A、偶然误差小 B、系统误差小 C、平均偏差小 D、标准偏差小 3、偏差是() A、测量值与真实值之差 B、测量值与平均值之差 C、真实值与平均值之差C、平均值间的差值 4、下列各项定义不正确的是() A、绝对误差是测量值和真值之差 B、相对误差是绝对误差在真实值中所占的百分比例 C、偏差是测定值与平均值之差 D、总体平均值就是真值 5、四位同学读同一滴定管,读得合理的是() A、21mL B、21.1mL C、21.100mL D、22.10mL 6、包含两位有效数字的是() A、2.0×10-5 B、pH=6.5 C、8.10×105 D、-5.30 7、可减小随机误差的是() A、进行仪器校准 B、做对照试验 C、增加平行测定次数 D、做空白试验 8、有两组分析数据,要比较它们精密度有无显著性差异时,应采用() A、F检验法 B、t检验法 C、μ检验 D、Q检验 9、有两组分析数据,进行显著性检验的基本步骤( ) A、可疑值的取舍→精密度检测→准确度检测 B、可疑值的取舍→准确度检测→精密度检测 C、精密度检测→准确度检测→可疑值的取舍 10、对置信区间的概念应理解为() A、以真值为中性的某一区间内包含测定结果的平均值的概率 B、在一定置信度时,以测量值的平均值为中心的包含真值的范围 C、真值落在某一可靠区间的概率 D、在一定置信度时,以真值为中心的可靠范围 11、准确度的高低用来衡量,它表示,精密度高低用衡量,它表示。 12、通常标准偏差的数值比平均偏差要,少次测量数据结果的随机误差遵循分布,当测量次数趋于无限次时,随机误差遵循分布;在少量数据的统计处理时,,当测定次数相同时,置信水平越高,则显著性水平愈,置信区间愈,所估计得区间包括真值的可能性,一般置信度定在和;在少量数据的统计处理时,当在相同的置信度下,精密度越高,标准偏差s ,实验次数增加,置信区间会。 13、用分度值为0.1mg的天平准确称取5g试样,记录为,用10ml的量筒量取5ml溶液,记录为,25ml滴定管滴定了22.4ml的溶液,记录为。 14、滴定分析中,应使化学计量点和滴定终点尽量,终点误差(系统误差or偶然误差),是(可避免or不可避免) 15、在不加待测组分的情况下,用测定样品相同的方法、步骤进行定量分析的实验称为,这种实验可以消除由于、或由配制溶液的蒸馏水还有待测组分而造成的系统误差。

机械加工定位误差分析及菱形销设计

机械加工定位误差分析及菱形销设计 如前所述,为保证工件的加工精度,工件加工前必须正确的定位。所谓正确的定位,除应限制必要 的自由度、正确地选择定位基准和定位元件之外,还应使选择的定位方式所产生的误差在工件允许的误 差范围以内。本节即是定量地分析计算定位方式所产生的定位误差,以确定所选择的定位方式是否合理。 使用夹具时造成工件加工误差的因素包括如下四个方面: ( 1 )与工件在夹具上定位有关的误差,称为定位误差Δ D ; ( 2 )与夹具在机床上安装有关的误差,称为安装误差Δ A ; ( 3 )与刀具同夹具定位元件有关的误差,称为调整误差Δ T ; ( 4 )与加工过程有关的误差,称为过程误差Δ G 。其中包括机床和刀具误差、变形误差和测量 误差等。 为了保证工件的加工要求,上述误差合成后不应超出工件的加工公差δ K ,即 Δ D + Δ A + Δ T + Δ G ≤δ K 本节先分析与工件在夹具中定位有关的误差,即定位误差有关的内容。 由定位引起的同一批工件的设计基准在加工尺寸方向上的最大变动量,称为定位误差。当定位误差,一般认为选定的定位方式可行。 Δ D ≤ 1/3 δ K 一、定位误差产生的原因及计算 造成定位误差的原因有两个:一个是由于定位基准与设计基准不重合,称为基准不重合误差(基准 不符误差);二是由于定位副制造误差而引起定位基准的位移,称为基准位移误差。

(一)基准不重合误差及计算 由于定位基准与设计基准不重合而造成的定位误差称为基准不重合误差,以Δ B 来表示。 图 3 -61a 所示为零件简图,在工件上铣缺口,加工尺寸为 A 、 B 。图3-61b 为加工示意图,工件以底面和 E 面定位, C 为确定刀具与夹具相互位置的对刀尺寸,在一批工件 的加工过程中 C 的位置是不变的。 加工尺寸 A 的设计基准是 F ,定位基准是 E ,两者不重合。当一批工件逐个在夹具上 定位时,受尺寸S ±δ S /2 的影响,工序基准 F 的位置是变动的, F 的变动影响 A 的大小,给 A 造成误差,这个误差就是基准不重合误差。 显然基准不重合误差的大小应等于定位基准与设计基准不重合而造成的加工尺寸的变动 范围,由图3-61b 可知: Δ B =A max-A min =S max-S min= δ S S 是定位基准 E 与设计基准 F 间的距离尺寸。当设计基准的变动方向与加工尺寸的方向相同时, 基准不重合误差就等于定位基准与设计基准间尺寸的公差,如图3-61 ,当S 的公差为δ S ,即 Δ B = δ S (3-2 ) 当设计基准的变动方向与加工尺寸方向有一夹角(其夹角为β)时,基准不重合误差等于定位基准

化学实验误差分析总结

高中化学高二第一学期 第十章学习几种定量测定方法 关于实验误差方面的总结 10.1 测定1mol气体体积 在实验中造成测定结果偏小的是 1.装置漏气 2.镁带含有跟硫酸不反应的杂质 3.称量后擦去镁带表面的氧化膜 4.反应结束后,未用针筒抽气 5.硫酸注入量不足10ml,使镁带有剩余 6.实验仪器本身存在量得气体体积偏小的误差 在实验中造成测定结果偏大的是 1.最后计算氢气体积时没有扣去硫酸的体积 2.反应放热,实验过程中温度升高较大 3.镁带中含有产生气体比等质量的镁产生气体多的杂质(如Al 等) 4.实验仪器本身存在量得气体偏大的误差 10.2结晶水合物中结晶水含量的测定

1.加热不彻底造成硫酸铜晶体未失去全部结晶水 2.失去全部结晶水后未放入干燥器中冷却(在空气中冷却) 3.取用的样品中混有前面同学操作后的无水硫酸铜 4.晶体中含有不挥发杂质 在实验中造成测定结果偏高的是 1.加热时有晶体溅出(用玻璃棒搅拌时被沾去一点硫酸铜) 2.坩埚不干燥 3.晶体表面有水 4.加热时间过长,部分变黑 5.晶体中含有受热易分解的杂质 6.为了测定一包白色粉末的质量,将药品放在右盘,砝码放在 左盘,并需移动游码使之平衡,测得药品的质量为m(砝码)和m(游码的移动) 10.3酸碱滴定 在实验中造成测定结果偏低的是 1.用以量取待测液的滴定管未用待测液润洗 2.滴定时,摇动锥形瓶不慎溅出几滴溶液

1.锥形瓶洗净后又用待测液润洗 2.装酸液的滴定管内有气泡,滴定后气泡消失 3.滴定管用水洗后,未用标准溶液润洗就装入标准溶液 4.滴定前,滴定管尖嘴部分有一气泡,滴定过程中气泡消失 滴定结束读数时,若仰视,则读数值比溶液的实际体积偏大,结果造成测得的待测液浓度偏大 若同一次读数采用俯视,则使测得待测液浓度偏小。

误差分析例题

【例1】某电流表测得的电流示值为0.83m A,查该电流表的检定证书,得知该电流表在0.8m A及其附近的修正值都为 -0.02m A,那么被测电流的实际值为多少? 【解】:A x C =+=0.83m A+(-0.02m A)=0.81m A 【例2】某电压表的S=1.5,计算它在0V~100V 的量限内的最大绝对误差。 【解】:该表的满量程值为Ym =100V ,由式(1-8)得到 △ x m =m γ×Ym =±1.5 %×100=±1.5V 【例3】检定一个1.5级、满量程值为10mA 的电流表,若在5mA 处的绝对误差最大且为0.13mA (即其他刻度处的绝对误差均小于0.13mA ),问该表是否合格? 【解】:根据式(1-7),可求得该表实际引用误差为: 100%m m m x Y γ?= ?=mA mA 10130. =1.3 % 因为m γ=1.3 % <1.5 %,所以该表是合格的。 根据式(1-6)和式(1-8)可知,S 级仪表在其量限Y m 内的任一示值x 的相对误差为: 100%m m m x x Y x x γγ??= =? (1-9) 【例4】 某电流表为1.0级,量程100mA ,分别测100mA 、80mA 、20mA 的电流,求测 量时的绝对误差和相对误差。 【解】:由前所述,用此表的100mA 量程进行测量时,不管被测量多大,该表的绝对误差不会超过某一个最大值,即 △ x m =m γ×Ym =±1.0%×100=±1 mA 对于不同的被测电流,其相对误差为: 11 1%100m x x γ?±= ==± 21 1.25%80m x x γ?±===± 31 5%20 m x x γ?±===± 【例5】某被测电压为10V ,现有量程为150V 、0.5级和量程为15V 、1.5级两块电压表, 问选用哪块表更为合适? 【解】:使用150V 电压表,最大绝对误差为:△ x m =±0.5%×150V=±0.75V 则测量10V 电压所带来的相对误差为:γ1=(±0.75/10) ×100%=±7.5% 使用15V 电压表,最大绝对误差为:△ x m =±1.5%×15V=±0.225V 则测量10V 电压所带来的相对误差为:γ2=(±0.225/10) ×100%=±2.25% 可见,γ2 <γ1,所以应该选用15V 、1.5级的电压表。 【例6】用温度计重复测量某个不变的温度,得11个测量值的序列(见下表),求测量值的平均值及其标准偏差。

高三化学 中和热测定实验误差分析

中和热概念及分类 ?一、定义 ?在稀溶液中,酸跟碱发生中和反应生成1 mol 水时的反应热叫做中和热. ?定义要点: ?1.必须是酸和碱的稀溶液,因为浓酸溶液和浓碱溶液在相互稀释时会放热. ?2.强酸和强碱的稀溶液反应才能保证H+(aq)+OH-(aq)====H2O(l)中和热均为57.3 kJ·mol-1,而弱酸或弱碱在中和反应中由于电离吸收热量,其中和热小于57.3 kJ·mol-1; ?3.以生成1 mol 水为基准. ?二、注意点: ?中和热是以生成1 mol H2O所放出的热量来测定的,因此书写它们的热化学方程式时,应以生成1 mol 水为标准来配平其余物质的化学计量数,例如: ?KOH(aq)+1/2H2SO4(aq)==== 1/2K2SO4(aq)+H2O(l);ΔH=-57.3 kJ·mol-1 ?实质:H++OH- =H2O,当强酸与强碱在稀溶液中发生中和反应时,都有:H+(aq) +OH- (aq) =H2O(l);ΔH =-57.3kJ/mol ?三、分类与实例

?发生中和反应时,由于所用的酸和碱有强弱不同,又有一元、二元或多元之分,因而中和热各不相同。 ?(1)一元强酸跟一元强碱的中和热 ?一元强酸跟一元强碱中和时,中和热为-57.3 kJ/mol。 ?(2)一元强酸跟一元弱碱或一元弱酸跟一元强碱的中和热 ?如果有一元弱酸或弱碱参加中和反应,其中和热所放出热量一般都低于57.3 kJ/mol,也有个别高于57.3 kJ/mol的。这主要取决于弱酸或弱碱电离时吸热还是放热。 一般地说,弱酸或弱碱的电离是吸热的,因此,中和反应所放出的热量还要扣除电离时吸收的那部分热量,中和热也就低于57.3 kJ/mol。 例如,1 mol CH3COOH跟1 mol NaOH溶液反应时,中和热是56.0 kJ/mol。 ?有的弱电解质电离时是放热的。例如,1 mol 氢氟酸电离时放出 10.4 kJ/mol热量。当它跟1 mol NaOH溶液反应时,中和热是67.7 kJ/mol。 ?(3)二元酸跟一元强碱的中和热 ?二元酸的电离是分两步进行的,两个H+的中和热各不相同。中和第一个H+的中和热,等于57.3 kJ/mol减去二元酸电离出第一个H+所吸收的热量ΔH1;中和第二个H+的中和热,等于57.3 kJ/mol减去二元酸电离出第二个H+所吸收的热量ΔH2。因此,二元酸跟一元强碱的中和热ΔH可用下式表示: ?ΔH=-〔2×57.3 kJ/mol-(ΔH1+ΔH2)〕

生物统计学试题及答案

一、填空 变量按其性质可以分为连续变量和非连续变量。 样本统计数是总体参数的估计量。 生物统计学是研究生命过程中以样本来推断总体的一门学科。 生物统计学的基本内容包括试验设计、统计分析两大部分。 统计学的发展过程经历了古典记录统计学、近代描述统计学、现代推断统计学3个阶段。 生物学研究中,一般将样本容量n≥30称为大样本。 试验误差可以分为随机误差、系统误差两类。 资料按生物的性状特征可分为数量性状资料变量和质量性状资料变量。 直方图适合于表示连续变量资料的次数分布。 变量的分布具有两个明显基本特征,即集中性和离散性。 反映变量集中性的特征数是平均数,反映变量离散性的特征数是变异数。 样本标准差的计算公式s=。 如果事件A和事件B为独立事件,则事件A与事件B同时发生地概率P(AB)=P(A)*P(B)。 二项分布的形状是由n和p两个参数决定的。 正态分布曲线上,μ确定曲线在x轴上的中心位置,σ确定曲线的展开程度。 等于σ/√n。 样本平均数的标准误 x t分布曲线和正态分布曲线相比,顶部偏低,尾部偏高。 统计推断主要包括假设检验和参数估计两个方面。

参数估计包括点估计和区间估计。 假设检验首先要对总体提出假设,一般应作两个假设,一个是无效假设,一个是备择假设。 对一个大样本的平均数来说,一般将接受区和否定区的两个临界值写作μ-uασ?x_ μ+uασ?x 在频率的假设检验中,当np或nq<30时,需进行连续性矫正。 2 χ检验主要有3种用途:一个样本方差的同质性检验、适应性检验和独立性检验。 2 χ检验中,在自由度df=(1)时,需要进行连续性矫正,其矫正的2 χ=(p85)。 c 2 χ分布是连续型资料的分布,其取值区间为[0.+∞)。 猪的毛色受一对等位基因控制,检验两个纯合亲本的F2代性状分离比是否符合孟德尔第一遗传规律应采用适应性检验法。 独立性检验的形式有多种,常利用列联表进行检验。 根据对处理效应的不同假定,方差分析中的数学模型可以分为固定模型、随机模型和混合模型混合模型3类。 在进行两因素或多因素试验时,通常应该设置重复,以正确估计试验误差,研究因素间的交互作用。 在方差分析中,对缺失数据进行弥补时,应使补上来数据后,误差平方和最小。方差分析必须满足正态性、可加性、方差同质性3个基本假定。 如果样本资料不符合方差分析的基本假定,则需要对其进行数据转换,常用的数据转换方法有平方根转换、对数转换、正反弦转换等。 相关系数的取值范围是[-1,1]。

高中化学复习知识点定量实验常见误差分析

1、NaOH药品不纯(如NaOH中混有少量Na2O),结果偏高。 2、用天平称量NaOH时,称量时间过长。由于部分NaOH与空气中的CO2反应生成Na2CO3 ,得到Na2CO3和NaOH的混合物,则结果偏低。 3、用天平称量NaOH时,如砝码有污物,结果偏高。 4、用天平称量NaOH时,物码颠倒,但未用游码,不影响结果。 5、用天平称量NaOH时,物码颠倒,又用了游码,结果偏低。 6、用天平称量NaOH时,若用滤纸称NaOH,结果偏低。 7、称量前小烧杯中有水,无影响。 8、向容量瓶中转移溶液时,有少量溶液流至容量瓶之外,结果偏低。 9、未把烧杯、玻璃棒洗涤2~3次,或洗涤液未注入容量瓶,结果偏低。 10、烧杯中溶液未冷却至室温,就开始转移溶液注入容量瓶,结果偏高 11、定容时蒸馏水加多了,液面超过了刻度线,而用滴管吸取部分溶液至刻度线,结果偏低。 12、定容时摇匀,容量瓶中液面下降,再加蒸馏水至刻度线,结果偏低。

13、容量瓶定容时,若俯视液面读数,结果偏高。 14、容量瓶定容时,若仰视液面读数,结果偏低。 15、配制一定物质的量浓度稀H2SO4时,用量筒量取浓溶液,若俯视读数,结果偏低。 16、配制一定物质的量浓度稀H2SO4时,用量筒量取浓溶液,若仰视读数,结果偏高。 二、酸碱中和滴定 17、滴定管蒸馏水洗后未用标准液润洗,就直接装入标准液,造成标准液稀释,溶液浓度降低,滴定过程中消耗标准液体积偏大,测定结果偏高。 18、盛待测液滴定管水洗后,未用待测液润洗就取液加入锥形瓶,待测液被稀释,测定结果偏低。 19、锥形瓶水洗后,又用待测液润洗,再取待测液,造成待测液实际用量增大,测定结果偏高。 20、用滴定管取待测液时,滴定管尖嘴处有气泡未排出就取液入锥形瓶,由于气泡填充了部分待测液,使得待测液体积减小,造成滴定时标准液体积减小,测定结果偏低。 21、滴定前,锥形瓶用水洗涤后,或锥形瓶中残留水,未干燥,或取完待测液后再向锥形瓶中加点水便于观察,虽然待测液体积增大,但待测液浓度变小,其物质的量不变,无影响。 22、滴定前,液面在“0”刻度线之上,未调整液面,造成标准液体积偏小,测定结果

统计学习题集6

第六章抽样推断 一、填空题 1.抽样推断是按照原则,从全部研究对象中抽取部分单位进行调查。 2.抽样推断的组织方式有抽样、抽样、等距抽样、整群抽样和抽样。 3.抽样推断是用指标推断总体指标的一种统计方法。 4.抽样平均误差与极限误差之间的关系为。 5.抽样极限误差是指指标和指标之间最大可能的误差范围。 二、判断题 1.抽样推断的目的是用样本指标从数量上推断全及总体指标。() 2.对各种不同型号的电冰箱进行使用寿命的检查,最好的方法是抽样推断。() 3.为了保证抽样指标的分布趋近于正态分布,抽样时,一般样本容量应大于或等于30,这时的样本称为大样本。() 4.某厂产品质量检查,按连续生产时间顺序每20小时抽取1小时的全部产品进行检验,这种方式是等距抽样。() 5.在其他条件一定时,重复抽样的抽样平均误差大于不重复抽样的抽样平均误差。() 6.抽样平均误差是样本指标与总体指标之间的平均离差。() 7.在抽样推断中,可能没有抽样平均误差。() 8.点估计是直接用样本指标代替总体指标。() 9.在其他条件一定的情况下,将重复抽样改为不重复抽样可以缩小抽样误差。() 10.在其他条件一定时,增大样本容量,抽样平均误差不变。() 三、单项选择题 1.抽样调查的目的在于()。 A.用样本指标推断总体指标 B.对调查单位作深入的研究 C.对全及总体作一般的了解 D.提高调查的准确性和时效性 2.对烟花爆竹进行质量检查,最好采用()。

A.重点调查 B.抽样调查 C.典型调查 D.普查 3.从生产线上每隔1小时随机抽取10分钟的产品进行检验,这种方式属于()。 A.等距抽样 B.类型抽样 C.整群抽样 D.简单随机抽样 4.在其他条件不变的情况下,如果重复抽样的极限误差缩小为原来的1/2,则样本容量()。 A.扩大为原来的4倍 B.扩大为原来的2倍 C.缩小原来的1/2 D. 缩小原来的1/4 5.纯随机抽样(重复)的抽样平均误差的大小取决于()。 A.样本单位数 B.总体方差 C.总体单位数和总体方差 D.样本单位数和总体方差 6.从纯理论出发,最符合随机性原则的抽样方式是()。 A.简单随机抽样 B.类型抽样 C.等距抽样 D.整群抽样 7.根据对某超市100名顾客等候结账情况的调查,得知每次平均等候时间为4分钟,标准差为2分钟,在概率保证程度为95.45%的要求下,估计顾客平均等候时间的区间为()。(z=2) A.3.9~4.1分钟之间 B.3.8~4.2分钟之间 C.3.7~4.3分钟之间 D.3.6~4.4分钟之间 四、多项选择题 1.缩小抽样误差的途径有()。 A.缩小总体方差 B.增加样本单位数 C.减少样本单位数 D.将重复抽样改为不重复抽样 E.将不重复抽样改为重复抽样 2.抽取样本的方法有()。 A.简单随机抽样 B.类型抽样 C.重复抽样 D.等距抽样 E.不重复抽样 3.抽样的组织方式有()。 A.纯随机抽样 B.类型抽样 C.整群抽样 D.等距抽样 E.阶段抽样

加工过程误差的统计分析实验

加工过程误差的统计分析 一、实验目的和要求 通过本实验掌握加工过程误差统计分析的基本原理和方法。 1.运用计算机辅助误差测控仪进行误差数据的采集,运算,结果显示和打印。 2.熟悉直方图的作法,能根据样本数据确定分组数,组距,由直方图作出实际分布曲线,进而将实际曲线与正态分布曲线相比较,判断加工误差性质。 3.熟悉X-R质量控制图的作法,能根据X-R图判断工序加工稳定性。 二、基本原理和方法 加工误差可以分为系统误差和随机误差两大类。系统误差指在顺序加工一批工件中,其加工误差的大小和方向都保持不变或按一定的规律变化,前者称常值系统误差,是由大小和方向都一定的工艺因素造成,后者为变值系统误差,由大小和方向有规律变化的工艺因素造成。随机误差指在顺序加工一批工件中,其加工误差的大小和方向都是随机的,是许多相互独立的工艺因素微量的随机变化和综合作用的结果。 实际加工误差往往是系统误差和随机误差的综合表现,因此,在一定的加工条件下,要判断是某一因素起主导作用,必须先掌握一定的数据资料,再对这些数据资料进行分析研究,判断误差的大小,性质,及其变化规律等等,然后再正对具体情况采取相应的工艺措施。 统计分析方法可用来研究,掌握误差的分布规律和统计特征参数,将系统误差和随机误差区分开来。 1.误差的分布图分析法; 根据概率论理论,相互独立的大量微小随机变量,其总和的分布接近正态分布。这就是说,对于随机误差,应满足正态分布。 根据数理统计的原理,随机变量是全体(总体)的算术平均值和标准差可用部分随机变量的算术平均值x和标准差S来估算,其值是很接近的。这样,就可用抽检样本来估算整体。 在机械加工中,用调整法加工一批零件,当不存在明显的变值系统误差因素时,其尺寸分布近似于正态分布。 根据上述原理,在本实验中,通过检测丝杠螺距误差的数据样本,来模拟一批零件的加工误差的数据样本,不同截面的丝杠螺距误差,可以看成是该丝杠车削加工工艺系统中众多随机误差因素综合的结果。根据该误差数据样本绘制实验分布图(即直方图)和正态分布曲线。若该分布图呈正态分布,表明加工过程中是影响不突出的随机性误差起主导作用,而变值系统误差作用不明显,若分布图的平均偏差与公差带中点坐标不重合,表明存在常值系统误差,若所分析的误差量呈非正态分布,则说明变值系统误差作用突出。 实验分布图(即直方图)和正态分布曲线的绘制方法如下; 假设有一个误差数据样本,其样本容量为N,样本数据的最大值为Xmax,最小值为Xmin,并记极差,R=Xmax-Xmin。 将数据分为K组,K的选取与样本容量N的大小有一定的关系,可参见表1-1 确定K值以后即可按D=R/K确定组距。样本值落在同一误差组的个数即为频Mi, 频数与样本容量之比,称为频率Fi。以组距为横坐标,以频数为纵坐标按一定比例作出各个数据组的长方形,就构成了直方图。 正态分布概率分布密度函数为;

专题复习实验常见误差分析

专题复习实验常见误差分析 物质的量浓度溶液的配制,酸碱中和滴定,硫酸铜晶体中结晶水含量的测定和中和热的测定是中学化学实验中的四种定量实验。它是学生学习和掌握中学化学实验的重点内容,特别是四种定量实验的误差分析是学生学习和掌握定量实验的难点。 一、物质的量浓度溶液的配制 (以配制500mL.1mol/L NaOH溶液为例) 1、NaOH药品不纯(如NaOH中混有少量Na2O),结果偏高。 2、用天平称量NaOH时,称量时间过长。由于部分NaOH与空气中的CO2反应生成Na2CO3 ,得到Na2CO3和NaOH 的混合物,则结果偏低。 3、用天平称量NaOH时,如砝码有污物,结果偏高。 4、用天平称量NaOH时,物码颠倒,但未用游码,不影响结果。 5、用天平称量NaOH时,物码颠倒,又用了游码,结果偏低。 6、用天平称量NaOH时,若用滤纸称NaOH,结果偏低。 7、称量前小烧杯中有水,无影响。 8、向容量瓶中转移溶液时,有少量溶液流至容量瓶之外,结果偏低。 9、未把烧杯、玻璃棒洗涤2~3次,或洗涤液未注入容量瓶,结果偏低。 10、烧杯中溶液未冷却至室温,就开始转移溶液注入容量瓶,结果偏高 11、定容时蒸馏水加多了,液面超过了刻度线,而用滴管吸取部分溶液至刻度线,结果偏低。 12、定容时摇匀,容量瓶中液面下降,再加蒸馏水至刻度线,结果偏低。 13、容量瓶定容时,若俯视液面读数,结果偏高。 14、容量瓶定容时,若仰视液面读数,结果偏低。 15、配制一定物质的量浓度稀H2SO4时,用量筒量取浓溶液,若俯视读数,结果偏低。 16、配制一定物质的量浓度稀H2SO4时,用量筒量取浓溶液,若仰视读数,结果偏高。 二、酸碱中和滴定 17、滴定管蒸馏水洗后未用标准液润洗,就直接装入标准液,造成标准液稀释,溶液浓度降低,滴定过程中消耗标准液体积偏大,测定结果偏高。 18、盛待测液滴定管水洗后,未用待测液润洗就取液加入锥形瓶,待测液被稀释,测定结果偏低。 19、锥形瓶水洗后,又用待测液润洗,再取待测液,造成待测液实际用量增大,测定结果偏高。 20、用滴定管取待测液时,滴定管尖嘴处有气泡未排出就取液入锥形瓶,由于气泡填充了部分待测液,使得待测液体积减小,造成滴定时标准液体积减小,测定结果偏低。 21、滴定前,锥形瓶用水洗涤后,或锥形瓶中残留水,未干燥,或取完待测液后再向锥形瓶中加点水便于观察,虽然待测液体积增大,但待测液浓度变小,其物质的量不变, 无影响。 22、滴定前,液面在“0”刻度线之上,未调整液面,造成标准液体积偏小,测定结果偏低。 23、移液管悬空给锥形瓶放待测液, 使待测液飞溅到锥形瓶外,或在瓶壁内上方附着,未被标准液中和,造成滴定时标准液体积偏小, 测定结果偏低。 24、移液管下端的残留液吹入锥形瓶内, 使待测液体积偏大,消耗的标准液体积偏大, 测定结果偏高。 25、盛标准液的滴定管,滴定前仰视读数,滴定后平视读数, 造成标准液体积减小,测定结果偏低。 26、盛标准液的滴定管,滴定前平视滴定管刻度线,滴定终了仰视刻度线, 读数偏大,造成标准液体积偏大, 测定结果偏高。 27、盛标准液的滴定管,滴定前平视滴定管刻度线,滴定终了俯视刻度线,读数偏小,造成标准液体积减小,测定结果偏低。 28、盛标准液的滴定管,滴定前仰视滴定管刻度线,读数偏大,滴定后俯视刻度线,读数偏小。造成标准液体积减小,测定结果偏低。 29、滴定前滴定管尖嘴部分有气泡,滴定后气泡消失,部分标准液用来填充气泡所占体积,造成标准液体积偏大,测定结果偏高。 30、滴定过程中,滴定管漏液或标准液滴到锥形瓶外,造成标准液体积偏大,测定结果偏高。 31、滴定达终点后,滴定管尖嘴处悬一滴标准液,造成实际进入锥形瓶的标准液减少,使标准液体积偏大,测定结果偏高。 32、滴定前选用酚酞作指示剂,滴定终了后,溶液变红,造成标准液体积偏大,测定结果偏高。

数据处理与误差分析习题

数据处理与误差分析习题 一、将下列数据修约成保留4位有效数字的数: 1)3.1415926 应修约成 __3.142___。 2)100.005321 应修约成 __100.0___。 3)3.8285 应修约成 __3.828___。 4)3.828501 应修约成 __3.829___。 5)3.8275 应修约成 __3.828___。 6)3.827499 应修约成 __3.827___。 二、检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为整个量程中的最大误差,问该电压表是否合格? 解:∵该电压表的引用误差是2.5% ∴用该电压表测量电压时的最大测量误差是100V ×2.5%=2.5V 又∵最大误差2V <2.5V ∴该电压表合格 三、用钢球形测量头接触测量钢平面件,由测量力P 引起的测量头与被测件之间的压陷量可用如下公式计算: 0.02l = 其中:d 为侧头直径,单位mm ;p 为测量力,单位为gf (1gf=9.8mN );l 为压陷量,单位为μm 。已知测量头直径为3.6mm ,为使压陷量控制在0.1μm 以内,请问测量力应控制在多少gf 以下? 解:40.1110l m mm μ-≤=? 而0.02l = p ∴≤代入数据有46.710p gf -≤? 四、由气压表测得气压值如下(单位Pa ):102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,已知权分8别为:1,4,5,6,3,7,2,8,试求加权平均值及其标准差。

机加工质量分析

第6章机械加工质量技术分析 重点:影响机械加工精度的因素 难点:加工误差的统计分析 机械加工精度 随着机器速度、负载的增高以及自动化生产的需要,对机器性能的要求也不断提高,因此保证机器零件具有更高的加工精度也越显得重要。我们在实际生产中经常遇到和需要解决的工艺问题,多数也是加工精度问题。 研究机械加工精度的目的是研究加工系统中各种误差的物理实质,掌握其变化的基本规律,分析工艺系统中各种误差与加工精度之间的关系,寻求提高加工精度的途径,以保征零件的机械加工质量,机械加工精度是本课程的核心内容之一。 一、机械加工精度概述 (一)、加工精度与加工误差 1、加工精度是指零件加工后的实际几何参数(尺寸、形状和位置)与理想几何参数的符合程度。符合程度越高,加工精度越高。一般机械加工精度是在零件工作图上给定的,其包括:1)零件的尺寸精度:加工后零件的实际尺寸与零件理想尺寸相符的程度。 2)零件的形状精度:加工后零件的实际形状与零件理想形状相符的程度。 3)零件的位置精度:加工后零件的实际位置与零件理想位置相符的程度。 2、获得加工精度的方法: 1)试切法:即试切--测量--再试切--直至测量结果达到图纸给定要求的方法。 2)定尺寸刀具法:用刀具的相应尺寸来保证加工表面的尺寸。 3)调整法:按零件规定的尺寸预先调整好刀具与工件的相对位置来保证加工表面尺寸的方法。 3、加工误差:实际加工不可能做得与理想零件完全一致,总会有大小不同的偏差,零件加工后的实际几何参数对理想几何参数的偏离程度,称为加工误差。加工误差的大小表示了加工精度的高低。生产实际中用控制加工误差的方法来保证加工精度。 4、误差的敏感方向:加工误差对加工精度影响最大的方向,为误差的敏感方向。例如:车削外圆柱面,加工误差敏感方向为外圆的直径方向。

相关主题
文本预览
相关文档 最新文档