当前位置:文档之家› 高压避雷器泄漏电流故障分析处理(图文) 民熔

高压避雷器泄漏电流故障分析处理(图文) 民熔

高压避雷器泄漏电流故障分析处理(图文) 民熔
高压避雷器泄漏电流故障分析处理(图文) 民熔

高压避雷器

氧化锌产品介绍

民熔氧化锌避雷器

HY5WS-17/50氧化锌避雷器

10KV高压配电型 A级复合避雷器

产品型号: HY5WS- 17/50 额定电压: 17KV

产品名称:氧化锌避雷器直流参考电压: 25KV

持续运行电压: 13.6KV 方波通流容量: 100A

防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA

操作冲击电流: 38.5KV(下残压)

注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。

使用环境:

a.海拔高度不超过2000米;

b.环境温度:最高不高于+40C- -40C;

C.周围环境相对湿度:平均值不大于85%;

d.地震强度不超过8级;

e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻,

耐碰撞运输无碰损失,

安装灵活特别适合在开关柜内使用

民熔 HY5WZ-17/45高压氧化锌避雷器

10KV电站型金属氧化锌避雷器

民熔 35KV高压避雷器

HY5WZ-51/134

户外电站型

氧化锌避雷器复合型

高压避雷器泄漏电流过大的危害及预防措施(1)检修人员先关闭电容器,采取安全措施,然后检查电流互感器的一次、二次接线,接

线可靠、牢固;摇测电流互感器二次绝缘电阻,二次绝缘电阻1.2mΩ,无异常;(2)检查电容式电压互感器的放电电流,

1、二次接线连接牢固、可靠、正常;(3)电容器对地绝缘、相间绝缘在2000mΩ以上,无异常;(4)检查高压避雷器接线、接线,接触良好,绝缘电阻在1000mΩ以上;(5)高压避雷器导直流1mA电压U1mA,规定变化范围不超过±5%(6)高压避雷器导0.75u1ma,按规定泄漏电流不应超过50μa

由以上试验结果可知,1mA直流电压U1mA的变化范围较初始值小于±5%,符合规定;0.75u1ma、a、B相泄漏电流小于50μa,C相超过规定值,说明C相氧化锌避雷器的泄漏电流为太大了。用合格的高压避雷器更换c相高压避雷器后,故障排除。

高压避雷器泄漏电流过大防范措施(1)及时测量高压避雷器运行电压下的泄漏电流,测量值与初始值相比有明显变化时,应加强监视;

(2)运行中,运行人员巡视检查应到位、认真,及时发现设备异常,并及时予以消除,以避免故障范围扩大。

10kv高压避雷器

防雷器简述: 氧化锌避雷器是具有良好保护性能的避雷器。利用氧化锌良好的非线性伏安特性,使在正常工作电压时流过避雷器的电流极小(微安或毫安级);当过电压作用时,电阻急剧下降,泄放过电压的能量,达到保护的效果。这种避雷器和传统的避雷器的差异是它没有放电间隙,利用氧化锌的非线性特性起到泄流和开断的作用。 产品介绍: 氧化锌避雷器测试仪介绍:采用微电脑进行采样、控制等先进技术,可测量氧化锌避雷器在工频电压下的全电流、三次谐波、阻性电流、阻性电流峰值、容性电流、有功功率等。 1.按电压等级分 氧化锌避雷器按额定电压值来分类,可分为三类: 高压类;其指66KV以上等级的氧化锌避雷器系列产品,大致可划分为500kV、220kV、110kV、66kV四个等级等级。 中压类;其指3kV~66kV(不包括66kV系列的产品)范围内的氧化锌避雷器系列产品,大致可划分为3kV、6kV、10kV、35KV四个电压等级。 低压类;其指3KV以下(不包括3kV系列的产品)的氧化锌避雷器系列产品,大致可划分为1kV、0.5kV、0.38kV、0.22kV四个电压等级。

2.按标称放电电流分 氧化锌避雷器按标称放电电流可划分为20、10、5、2.5、1.5kA 五类。 3.按用途分 氧化锌避雷器按用途可划分为系统用线路型、系统用电站型、系统用配电型、并联补偿电容器组保护型、电气化铁道型、电动机及电动机中性点型、变压器中性点型七类。 4.按结构分 氧化锌避雷器按结构可划分为两大类; 瓷外套;瓷外套氧化锌避雷器按耐污秽性能分为四个等级,Ⅰ级为普通型、Ⅱ级为用于中等污秽地区(爬电比距20mm/KV)、Ⅲ级为用于重污秽地区(爬电比距25mm/kV)、Ⅳ级为用于特重污秽地区(爬电比距31mm/kV)。 复合外套;复合外套氧化锌避雷器是用复合硅橡胶材料做外套,并选用高性能的氧化锌电阻片,内部采用特殊结构,用先进工艺方法装配而成,具有硅橡胶材料和氧化锌电阻片的双重优点。该系列产品除具有瓷外套氧化锌避雷器的一切优点外,另具有绝缘性能、高的耐污秽性能、良好的防爆性能以及体积小、重量轻、平时不需维护、不易破损、密封可靠、耐老化性能优良等优点。

避雷器试验

避雷器试验 一.实验目的: 了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。 二.实验项目: 1.FS-10型避雷器试验 (1).绝缘电阻检查 (2).工频放电电压测试 2.FZ-15型避雷器试验 (1).绝缘电阻检查 (2).泄漏电流及非线性系数的测试 三.实验说明: 阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。FS型避雷器的结构最简单,如图4-1所示,由火花间隙和非线性电阻(阀片)串联组成。FZ型避雷器的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图4-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。非线性电阻的伏安特性式为:U=CIα,其中C 为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图4-3所示。可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。磁吹型避雷器有FCZ型(电站用)和FCD型(旋转电机用)两种,其结构与FZ型相似,间隙上都有均压电阻,只是磁吹型避雷器采用磁吹间隙,并配有磁场线圈和辅助间隙。由于以上结构上的不同,所以对FS 型和FZ(FCZ、FCD)型避雷器的预防性试验项目和标准都有很大的不同。 根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查和工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查和直流泄漏电流及非线性系数的测试。只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。避雷器其它的预防性试验还包括底座绝缘电阻的检查、放电计数器的检查及瓷套密封性检查等。 避雷器试验应在每年雷雨季节前及大修后或必要时进行。绝缘电阻的检查应采用电压≥2500v及量程≥2500MΩ的兆欧表。要求对于FS型避雷器绝缘电阻应不低于2500MΩ;FZ(FCZ、FCD)型避雷器绝缘电阻与前次或同类型的测试值比较,不应有明显差别。FS型避雷器的工频放电电压试验的合格值如表4-1所列。 表 FZ型避雷器的直流泄漏电流及非线性系数的测试的试验电压及电导电流值如表4-2所列,所测泄漏电流值

配变高压避雷器两种安装方式

配变高压避雷器两种安装方式 高压避雷器是配电变压器防雷保护的主要措施之一。在实际安装配电变压器高压避雷器时,避雷器有两种不同的安装方式:一种是避雷器安装于跌落式熔断器前端;另一种是安装于跌落式熔断器后端。 1设备的安装 L:接市电的火线; N:接市电的零售线; 接地就表示接大地。 记住:一定是大地 2对防雷保护效果的影响 (1)接地引下线长度的影响。当高压侧进线遭受雷击,雷电波使避雷器动作后,雷电流通过引下线进入接地装置,假设引下线的电感值为L,雷电流的陡度为di/dt,在引下线上将产生Ldi/dt(kV)的电压降。取不很大的电感L=1μH和电流陡度di/dt=10kA/μs,引下线上会产生10kV的电压降,它和避雷器的残压叠加于变压器高压绕组上,加剧了绕组的绝缘损坏,可见引下线电感值的大小影响了避雷器的防雷效果,而电感值与引下线的长度有关,引下线越长电感值越大,引下线上的压降也增大,反之亦然。对两种不同的安装方式,以常用的引下线材料考虑,电感值相差在1μH以上(前者大于后者),同时以10kA/us的电流陡度计算,则引下线上的压降比后者也大10kV以上。因此,为提高避雷器的防雷效果,应尽量缩短引下线长度。

(2)避雷器与变压器距离的影响。一般来说,采用避雷器保护变压器,只要避雷器的冲击放电电压及残压低于变压器的冲击耐压就行,但由于避雷器与变压器之间存在一段距离,设此距离为L,L的存在将影响避雷器的防雷效果。假设侵入波为斜角度波at,由于变压器T点相当于开路式,根据波的全反射过程,利用网络分析法,可以得出变压器所受冲击电压的最大值为: Umax=Us+2aL/v 式中Us-避雷器放电以后的残压,kV L-避雷器至变压器的距离,m v-行波速度,m/s 以上忽略了工频电压的影响,当存在与来电波极性相反的工频电压幅值时,将使来电波幅值增加,使变压器首端所受的电压有所增加。 根据以上分析,避雷器与变压器之间的距离对防雷效果有影响,减小此距离亦可提高防雷效果。 3对操作过电压的防护 当拉开低压负荷开关,配电变压器处于空载时,操作跌落式熔断器切断空载配电变压器,这种操作过程可能出现幅值较高的过电压,如果避雷器安装于跌落式熔断器的下端,则可以防护过电压对配电变压器的损坏。 图1切空载变压器的等值电路 图1为切空载变压器的等值电路,其中K为跌落式熔断器,L为空载变

避雷器泄漏电流带电测试仪技术规范书

避雷器泄露电流测试仪技术规范书 桂林供电局 2012年01月

目录 1. 总则 (1) 2. 技术性能要求 (1) 3. 供货范围 (2) 4. 供方在投标时应提供的资料和参数 (3) 5. 技术资料和交付进度 (3) 6. 技术服务与设计联络 (4)

1. 总则 1.1 本规范书适用于避雷器泄露电流测试仪技术规范书,它提出设备的功能设计、性能和试验等方面的技术要求。 1.2 需方在本规范书中提出了最低限度的技术要求,并未规定所有的技术要求和适用的标准,未对一切技术细则作出规定,也未充分引述有关标准和规范的条文,供方应提供一套满足本规范书和现行有关标准要求的高质量产品及其相应服务。 1.3 如果供方没有以书面形式对本规范书的条款提出异议,则意味着供方提供的设备(或系统)完全满足本规范书的要求。如有异议,不管是多么微小,都应在投标书中以“对规范书的意见和与规范书的差异”为标题的专门章节加以详细描述。 1.4 本设备技术规范书经需供双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.5 供方须执行现行国家标准和行业标准。 1.6 本设备技术规范书未尽事宜,由需供双方协商确定。 1.7 供方应获得ISO9000(GB/T 19000)资格认证书或具备等同质量认证证书,必须已经生产过三台以上或高于本招标书技术规范的设备,并在相同或更恶劣的使用条件下持续使用三年以上的成功经验。提供的产品应有省部级鉴定文件或等同有效的证明文件。 2. 技术性能要求 2.1 技术参数 全电流测量范围:0~10mA有效值,50Hz / 60Hz 准确度:±(读数×5%+5uA) 阻性电流基波测量准确度(二次法不含相间干扰):±(读数×5%+5uA)电流谐波测量准确度: ±(读数×10%+10uA) 电流通道输入电阻:≤2Ω

变电站避雷器原理及参数

变电站避雷器原理及参数 一、氧化锌避雷器的定义: 金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套内的若干非线性电阻阀片串联组成。其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。 二、氧化锌避雷器的工作原理: 在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。因此,它可以不用火花间隙来隔离工作电压与阀片。当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。 三、结构: 一般220kV等级的氧化锌避雷器采用2串、110kV采用1串。氧化锌避雷器底部与底座绝缘*的是绝缘瓷套(有采用一个大瓷套或采用四各小瓷套)。氧化锌避雷器内部有一导线从底部引出至大地,当中串联一只泄漏电流表,以监视避雷器阀片绝缘情况。避雷器屏蔽线接于避雷器瓷套的最后一级裙边上,用一导线连接大地,作用是使瓷套表面电导电流不进入泄漏电流表,使泄漏电流表测量更加精确。 四、最常见异常分析及处理: 1、泄漏电流表为零。可能引起该现象的原因有:表计指示失灵;屏蔽线将电流表短接。处理方法为: (1)用手轻拍表计看是否卡死,无法恢复时,应添报缺单,修理或更换。 (2)用令克棒将屏蔽线与避雷器导电部分相碰之处挑开,既可恢复正常。 2、泄漏电流表指示偏大:根据历史数据进行分析,如发现表计打足,应判断避雷器有问题,应立即汇报调度,将避雷器退出运行,请检修检查。 3、避雷器瓷套管破裂放电。在工频情况下,避雷器的瓷套管用于保证避雷器必要的绝缘水平,如果瓷套管发生破裂放电,则将成为电力系统的事故隐患。此种情况,应及时停用、更换。

避雷器带电测试

避雷器 避雷器带电测试 [1] 2.测试内容及原理 2.1 测试内容 a) 全电流 b) 阻性电流(或功率损耗) c) 泄漏电流谐波;判定老化的重要方法 d) 各相泄漏电流与运行电压相角差 2.2 测试原理 在交流电压下,避雷器的总泄漏电流包含阻性电流(有功分量)和容性电流(无功分量)。在正常运行情况下流过避雷器的主要为容性电流,阻性电流只占很小一部分,为5%~20%。但当电阻片老化后,避雷器受潮、内部绝缘部件受损以及表面严重污秽时,容性电流变化不大,阻性电流大大增加。所以带电测试

主要是检测泄漏电流及其阻性分量[3]。 3.国内常用测试方法 a) 全电流法; b) 补偿法(阻性电流法);采用电压互感器二次接线信号(局里主要采用方式) c) 谐波法; d) 测温法; e) 改进补偿法;采用检修箱电源作为电压信号代替PT二次电压[4] 4.测试方法及测试设备 (1) 设备:南京伏安电气有限公司ZD-1型金属氧化物避雷器阻性电流带电测量仪 (2) 测试方法,可参考《金属氧化物避雷器带电测试作业指导书》[5],目前相关测试接线方法大致有以下几种,如下图所示[6]

(3) 干扰及改进方法 干扰原因:测量三相氧化锌避雷器时,由于相间干扰影响,A、C 相电流相位都要向B 相方向偏移,一般偏移角度2°~4°左右,这导致A 相阻性电流增加,C 相变小甚至为负[6]。相间干扰向量图见图4。 改进方法:采用自动边补方式[6],自动边补(边相补偿)原理是假定B相对A、C相影响是对称的,测量出I c超前I a的角度Φca,A相补偿Φoa=(Φca-120°)

/2,C相补偿Φoc=-(Φca-120°)/2。 5.典型故障数据 (1) 220 kV I 母A 段避雷器A 相型号为Y10W5-220 / 520W[7] 2007年7月21日 2007年8月2日 6.典型故障原因 a) 结构受损,避雷器内部受潮[4] b) MOA阀片老化,引起阀片击穿[8]

避雷器全电流及阻性电流带电检测报告

避雷器泄漏电流检测报告 参评公司 检测日期 检测人员 测评人员

一、检测时间及测试对象范围 1.1测试时间及人员信息 检测日期: 测试人员: 1.2测试对象基本信息 (拍避雷器铭牌照片) 1.3测试环境 天气:温度:℃湿度:% 二、检测依据 《国家电网公司电力安全工作规程(变电部分)》(国家电网安监〔2009〕664号)《电力设备带电检测技术规范(试行)》(国家电网公司生变电〔2010〕11号) 《国家电网公司变电检测管理规定(试行)》第 16 分册泄漏电流检测细则 《输变电设备状态检修试验规程》(Q/GDW 1168-2013) 三、检测项目 避雷器全电流及阻性电流带电检测。 四、检测仪器及装置 五、检测数据情况 检测数据见附录1 横向比较,对避雷器阻性电流和全电流测试结果表明,A相泄漏电流检测结果比B、C相显著偏大。 纵向比较,查阅避雷器A相阻性电流历次检测数据,发现该相避雷器全电流及阻性泄漏电流基波分量发生突发性增长,阻性电流初值差为,>50%,全电流初值差为,>20%。

阻性电流的基波成分增长较大,谐波的含量增长不明显时,一般为污秽严重或受潮缺陷; 阻性电流谐波的含量增长较大,基波成分增长不明显时,一般为老化缺陷。 容性电流增加,避雷器一般发生不均匀劣化,避雷器有一半发生劣化时,底部容性电流增加最多。 六、结论及建议 所测的避雷器可能存在老化缺陷,根据《输变电设备状态检修试验规程》(Q/GDW 1168-2013),建议“缩短试验周期并加强监测”。具体分析详见异常分析报告。 当阻性电流增加0.5倍时,应缩短试验周期并加强监测,增加1倍时应停电检查。附录1 避雷器全电流及阻性电流带电检测记录

避雷器的分类及结构 图文 民熔

避雷器的分类及结构避雷器的分类及结构常用避雷器的形式有阀式、管式、保护间限金属氧化物等。 避雷器的介绍 氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器 直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米;

b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。 体积小、重量轻,耐碰撞运输无碰损失,安装灵活特别适合在开关柜内使用 民熔 HY5WZ-17/45高压氧化锌避雷器 10KV电站型金属氧化锌避雷器

民熔 35KV高压避雷器 HY5WZ-51/134户外电站型 氧化锌避雷器复合型 (1)阀式避雷器阀式避雷器主要分为普通阀式避雷器和磁吹阀式避雷器两大类。普通阀式避雷器有FS和FZ两种系列;磁吹阀式避雷器有FCD和FCZ两种系列。阀式避雷器型号中的符号含义如下:F-阀式避雷器;

(2) S配(变)电作用; Z-电站用; Y-线路用: D-旋转电机用: C-具有磁吹放电间隙。阀式避雷器主要由平板火花间隙与碳化硅电阻片(阀片)串联而成,装在密封的瓷管内,外壳有接线螺栓供安装用。避雷器中的碳化硅电阻具有非线性特性,在正常电压时其阻值很大,过电压时其阻值随之变小。 阀式避雷器在正常的工频电压作用下火花间隙不被击穿,但在雷电波过电压下,避雷器的火花间隙被击穿;碳化硅电阻的阻值随之变得很小,雷电波巨大的雷电流顺利地通过电阻流入大地中,电阻阀片对尾随雷电流而来的工频电压呈现了很大的电阻,从而工频电流被火花间隙阻断,线路恢复正常运行。 由此可见,电阻阀片和火花间隙的密切配合使避雷器很像--个阀],对于雷电流“阀门”打开,对于工频电流“阀门”则关闭,故称之为阀式避雷器FS系列阀式避雷器的结构如图2,此系列避雷器阀片直径较小,通流容量较低,一般用于保护变配电设备和线路。 FZ系列阀式避雷器的结构如图2 (b)示,此系列避雷器阀片直径较大,且火花间隙并联了具有非线性的碳化硅电阻,通流容量较大,一般用于保护35kV及以上大、中型工厂中总降压变电所的电气设备。

避雷器阻性电流测试说明

避雷器阻性电流测试技术说明 1 范围 本技术说明规定了避雷器阻性电流在线监视仪(以下简称监视仪)的适用范围、技术要求、试验方法、检验规则。 本技术说明适用于交流电力系统中与金属氧化物避雷器(标称放电电流20kA及以下、额定电压500kV及以下)相串联用的监视仪。监视仪可显示金属氧化物避雷器的动作次数和阻性泄漏电流值。 2 规范性引用文件 GB11032-2000 交流无间隙金属氧化物避雷器 GB3797-89 电控设备第二部分装有电子器件的电控设备 GB4208-1993 外壳防护等级 GB/T17626.5--1999 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验 JB2440-1991 避雷器用放电计数器 3 基本测试功能: 1)测量避雷器的全电流功能(有效值) 2)测量避雷器的阻性电流功能(峰值) 3)记录避雷器放电次数记录功能 4 监视仪的测试使用条件

1)环境温度 +50°C — -10°C 2)相对湿度≤85% (25°C) 3)海拔高度≤1000米 4)使用场所户内、户外 5)耐太阳光辐射 6)被检测系统电源频率:50HZ 48-52HZ 60HZ 58-62HZ 7)可使用在高电场场合 5 仪器特性指标: 1)测量精度:全电流 Ix(有效值)测量精度±3.0% 阻性电流 Ir(峰值)测量精度±10.0% 2)泄漏电流测量有效范围: 0.1 — 5.0 mA 3)放电电流次数记录动作电流:30A — 10KA 4) 电流传感器标称放电电流下残压: 10KA等级≤1500V 20KA等级≤2500V 5) 工作电源: 24VDC±10%(仅对有源仪器适用)

氧化锌避雷器带电测试原理、方法和试验标准

氧化锌避雷器带电测试原理、方法和试验标准 (傅祺,成都铁路局供电处工程师 37883 张丕富,成都铁路局多元工程师) 摘要避雷器是保证牵引供电系统安全运行的重要设备之一,接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。由于电气化铁路运行的特殊性,常规避雷器预防性试验受天窗时间和现场条件限制,很难开展,氧化锌避雷器带电测试的研制使用为解决这一难题提供了新的途径。 关键词:接触网;避雷器;预防性试验; 1引言 避雷器是保证电力系统安全运行的重要设备之一,主要用于限制由线路传来的雷电过电压或操作引起的内部过电压。为保证金属氧化物避雷器的安全运行,必须定期测试避雷器的电气性能。接触网线路的雷电过电压保护基本上采用避雷器来完成,检测避雷器的主要手段仍然是周期性停电预试项目,这样既耗费了人力、物力,还常因停电原因不能完成避雷器预试项目。据统计,各线每年均有避雷器因自身原因发生击穿而造成停电的事故发生。 可见,避雷器运行状态是否良好、能否得到较好的监控,与铁路供电质量的稳定可靠有密切关系。这就需要我们尽快找到一种能解决该问题的方案。 2现状 按照《电力设备预防性试验规程》要求:变电所和接触网线路上使用的避雷器均需在雷雨季节来临前进行一次预防性试验以证明避雷器的电气性能良好,可以正常运行,能保证供电系统安全运行。由于电气化铁路运行的特殊性,避雷器预防性试验目前存在很多问题:目前牵引供电系统氧化锌避雷器预防性试验的方法是直流耐压试验:即测试直流1mA 电压(U1mA)及(U1mA)下的泄漏电流。这种测试方法需要停电进行,测试结果受空气湿度和气温的影响较大。每台避雷器测试时间需要40分钟左右的天窗时间。 受馈线天窗影响,如天窗时间短、天窗时间多数为夜间、繁忙区段天窗时间无法保证等因素(特别是高铁区段,馈线天窗几乎不可能安排在天气晴朗的白天),造成变电所馈线避雷器及接触网线路避雷器每年的预防性试验无法正常进行,给供电设备运行带来了很大的安全隐患,近年来多次发生接触网避雷器炸裂导致供电中断的事故。 为解决以上问题,我们需要采取一种新的不需要停电,在运行情况下就可以进行避雷器检测的方法,确认避雷器状态是否良好。 3.测试原理 运行状态的氧化锌避雷器,在运行电压下的总泄漏电流包括阻性电流和容性电流。在正常情况下流过金属氧化物避雷器的主要为容性电流,阻性电流只占很小的一部分,约为

HY5WZ-51高压避雷器说明书

HY5WZ-51/134高压避雷器 变电站避雷器原理及参数 一、氧化锌避雷器的定义: 金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套内的若干非线性电阻阀片串联组成。其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。 二、氧化锌避雷器的工作原理: 在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。因此,它可以不用火花间隙来隔离工作电压与阀片。当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。 三、结构: 一般220kV等级的氧化锌避雷器采用2串、110kV采用1串。氧化锌避雷器底部与底座绝缘*的是绝缘瓷套(有采用一个大瓷套或采用四各小瓷套)。氧化锌避雷器内部有一导线从底部引出至大地,当中串联一只泄漏电流表,以监视避雷器阀片绝缘情况。避雷器屏蔽线接于避雷器瓷套的最后一级裙边上,用一导线连接大地,作用是使瓷套表面电导电流不进入泄漏电流表,使泄漏电流表测量更加精确。 四、最常见异常分析及处理: 1、泄漏电流表为零。可能引起该现象的原因有:表计指示失灵;屏蔽线将电流表短接。处理方法为: (1)用手轻拍表计看是否卡死,无法恢复时,应添报缺单,修理或更换。

(2)用令克棒将屏蔽线与避雷器导电部分相碰之处挑开,既可恢复正常。 2、泄漏电流表指示偏大:根据历史数据进行分析,如发现表计打足,应判断避雷器有问题,应立即汇报调度,将避雷器退出运行,请检修检查。 3、避雷器瓷套管破裂放电。在工频情况下,避雷器的瓷套管用于保证避雷器必要的绝缘水平,如果瓷套管发生破裂放电,则将成为电力系统的事故隐患。此种情况,应及时停用、更换。 4、避雷器内部有放电声。在工频情况下,避雷器内部是没有电流通过的。因此,不应有任何声音。若运行中避雷器内有异常声音,则认为避雷器损坏失去作用,而且可能会引发单相接地。这种情况,应立即汇报调度,将避雷器退出运行,予以调换。 五、氧化锌避雷器现场泄漏电流的意义: 在现场我们见到的氧化锌避雷器的泄漏电流是全电流I,其主要由阻性电流IR和容性电流IC及外绝缘泄漏电流I0组成,在正常交流电压下,其大小一般为:IR:几十微安;IC:几百微安;主要为容性电流,阻性电流约为10%-20%。 1、当氧化锌避雷器受潮时,IR 、IC 、I0均上升,导致全电流I上升,因此全电流法对避雷器的受潮故障相当灵敏。同时测试也很简单,我们通常通过避雷器上装设的全电流在线检测装置(泄露电流)测试避雷器正常运行时泄漏全电流。 2、当氧化锌避雷器出现内部老化或击穿故障的前兆时,其阻性电流IR上升,容性电流IC及外绝缘泄漏电流I0均不变,由于IR通常比容性电流IC小一个数量级,因此现场装设的全电流在线检测装置数值并不会有显著的提高,因此我们一般通过测试直流1mA(U1mA)电压及0.75 U1mA下的阻性泄漏电流,对其进行评估,但缺点是要停电进行。 3、当氧化锌避雷器出现内部接触不良故障时,其其阻性电流IR下降,同样由于其占全电流的比率很小,现场泄漏电流数值反映不灵敏。 4、避雷器带电测试能检测避雷器全电流、能更准确反映MOA运行状况,全电流的变化可以反映MOA的严重受潮、内部元件接触不良、阀片严重老化,而阻性电流的变化对阀片初期老化的反应较灵敏。

高压避雷器安装

高压避雷器安装 对于配电变压器10kV侧应装设金属氧化物避雷器,要求越靠近变压器安装,保护效果越好,一般要求装设在跌落熔断器内侧。必须使避雷器的残压小于配电变压器的耐压,才能有效地对配电变压器起到保护作用。避雷器的接地端点应直接接在配电变压器的金属外壳上。不允许将避雷器经引下线自行独立接地。这是因为避雷器的残压只有17kV~50kV。即其冲击下的等值电阻不过为3.4&Omega~10&Omega。但是一个独立接地的接地电阻可能为10&Omega左右,农村山区甚至为更大,那么,当雷电流流过时电位可能比较高,若是避雷器独立接地,则这两者是叠加后再加到变压器上的,可能导致变压器绝缘损坏。若是将避雷器接地端点直接接在变压器金属外壳上,则电位就不作用在变压器的绝缘上,于是变压器的绝缘就比较安全了。但这时变压器金属外壳的电位将很高(等于IR),可能发生由变压器金属外壳向低压侧的逆变电压,故此必须将低压侧的中性点也连接在变压器的金属外壳上。这种接法叫三点(高压避雷器的接地端点、低压绕组的中性点、以及变压器的金属外壳)联合接地。当变压器容量在100kVA及以上时,接地电阻应尽可能降低到4&Omega以下;当变压器容量小于100kVA 时,接地电阻达到10&Omega以下即可。当三点连接在一起接地时,高压侧落雷,避雷器放电时,变压器绝缘上所承受的即是避雷器的残压,而接地装置上的电压降并没有作用在变压器的绝缘上,这样对变压器保护是有利的,能减少高低压绕组间的高压绕组对变压器金属外

壳之间发生绝缘击穿的危险。为了防止变压器低压侧中性点电位瞬间升高对用户安全的影响,可以在靠近用户的地方加装辅助接地线(重复接地)。 这样保护的变压器在运行中还会有一些雷害事故。这是由于一般配电变压器未在低压侧装设低压避雷器的缘故,这时不仅会发生低压侧的损坏,也会发生高压侧的损坏。其损坏机理有三: (1)雷直击低压线路或低压线路遭受感应雷,使低压侧绝缘损坏。 (2)低压侧受雷击使高压侧绝缘损坏,这是因为此时通过电磁耦合,在高压侧绕组也会出现与变压器变比成正比的过电压(正变换过程),由于高压侧绝缘的裕度比低压侧小,所以可能造成高压侧绝缘损坏。(3)雷直击高压线路或高压线路遭受感应雷,此时避雷器动作,在接地电阻上产生压降。这一压降将作用在低压侧中性点上,而低压侧出线,此时相当于经导线波阻接地,因此接地线上产生的高电位的绝大部分都加在低压侧出线上了。

高压避雷器泄漏电流故障分析处理(图文) 民熔

高压避雷器 氧化锌产品介绍 民熔氧化锌避雷器 HY5WS-17/50氧化锌避雷器 10KV高压配电型 A级复合避雷器 产品型号: HY5WS- 17/50 额定电压: 17KV 产品名称:氧化锌避雷器直流参考电压: 25KV 持续运行电压: 13.6KV 方波通流容量: 100A 防波冲击电流: 57.5KV(下残压) 大电流冲击耐受: 65KA 操作冲击电流: 38.5KV(下残压) 注:高压危险!进行任何工作都必须先切断电流,严重遵守操作规程执行各种既定的制度慎防触电与火灾事故。 使用环境: a.海拔高度不超过2000米; b.环境温度:最高不高于+40C- -40C; C.周围环境相对湿度:平均值不大于85%; d.地震强度不超过8级; e.安装场所:无火灾、易燃、易爆、严重污秽、化学腐蚀及剧烈震动场所。

体积小、重量轻, 耐碰撞运输无碰损失, 安装灵活特别适合在开关柜内使用 民熔 HY5WZ-17/45高压氧化锌避雷器 10KV电站型金属氧化锌避雷器 民熔 35KV高压避雷器 HY5WZ-51/134 户外电站型 氧化锌避雷器复合型 高压避雷器泄漏电流过大的危害及预防措施(1)检修人员先关闭电容器,采取安全措施,然后检查电流互感器的一次、二次接线,接

线可靠、牢固;摇测电流互感器二次绝缘电阻,二次绝缘电阻1.2mΩ,无异常;(2)检查电容式电压互感器的放电电流, 1、二次接线连接牢固、可靠、正常;(3)电容器对地绝缘、相间绝缘在2000mΩ以上,无异常;(4)检查高压避雷器接线、接线,接触良好,绝缘电阻在1000mΩ以上;(5)高压避雷器导直流1mA电压U1mA,规定变化范围不超过±5%(6)高压避雷器导0.75u1ma,按规定泄漏电流不应超过50μa 由以上试验结果可知,1mA直流电压U1mA的变化范围较初始值小于±5%,符合规定;0.75u1ma、a、B相泄漏电流小于50μa,C相超过规定值,说明C相氧化锌避雷器的泄漏电流为太大了。用合格的高压避雷器更换c相高压避雷器后,故障排除。 高压避雷器泄漏电流过大防范措施(1)及时测量高压避雷器运行电压下的泄漏电流,测量值与初始值相比有明显变化时,应加强监视; (2)运行中,运行人员巡视检查应到位、认真,及时发现设备异常,并及时予以消除,以避免故障范围扩大。

氧化锌避雷器阻性电流测试仪

氧化锌避雷器阻性电流测试仪 在开始给大家介绍氧化锌避雷器阻性电流测试仪之前,想先让大家了解一下下什么是氧化锌避雷器阻性电流测试仪?为什么我们会需要氧化锌避雷器阻性电流测试仪? RTYZ-306氧化锌避雷器阻性电流测试仪是用于检测氧化锌避雷器电气性能的专用仪器,该仪器适用于各种电压等级的氧化锌避雷器的带电或停电检测,从而及时发现设备内部绝缘受潮及阀片老化等危险缺陷。 仪器操作简单、使用方便,测量全过程由微机控制,可测量氧化锌避雷器的全电流、阻性电流及其谐波、工频参考电压及其谐波、有功功率和相位差,大屏幕可显示电压和电流的真实波形。仪器运用数字波形分析技术,采用谐波分析和数字滤波等软件抗干扰方法使测量结果准确、稳定,可准确分析出基波和3~7次谐波的含量,并能克服相间干扰影响,正确测量边相避雷器的阻性电流。

氧化锌避雷器阻性电流测试仪产品特点 ●仪器标准配置不带高能锂离子电池,可选配内置。 ● 5.7寸320×240液晶显示器,高速热敏打印机;图文显示,界面直观,便于现场人员操 作和使用。 ●适用于避雷器带电、停电或试验室等场所使用。 ●电流、电压传感器完全隔离,安全可靠。真正做到三相电流、三相电压同时测试,提高 工作效率; ●仪器可连续测试,显示电压电流曲线,并可快速打印数据和曲线。 ●内部配置存储器,可掉电存储200组试验数据。 ●选配RS232通讯接口,可通过上位机进行试验,导出试验数据。 ●可进行抗干扰计算,补偿A、C两相电流受B相偏差。 ●高速的采样频率,先进的数字信号处理技术,抗干扰性能强,测量结果精度极高。 ●选配置内带高能锂离子电池,特别适合无电源场合。仪器内部只带弱电,电压不超过 12V,充电状态亦可工作。 ●采用防尘、防水、防腐工程塑料密封箱,体积小,重量轻,便于携带。 氧化锌避雷器阻性电流测试仪技术参数 1. 工作电源:AC220V/50Hz;若选配内带高能锂离子电池,内部电池供电,充电时间>3小时,连续工作时间>8小时。 2. 测量范围: 泄漏电流:0-10mA(可扩展); 电压:30-100V(可扩展)。 3. 测量准确度: 电流:全电流>100μA,±5%读数±1个字; 电压:基准电压信号>30V时,±2%读数±1个字; 4. 测量参数: 泄漏电流全电流波形、基波有效值、峰值。 泄漏电流阻性分量基波有效值及3、5、7次有效值。 泄漏电流阻性分量峰值:正峰值Ir+ 负峰值Ir-。

10KV高压避雷器HY5WS-17/50详情说明.docx

一、HY5WS-17/5010KV 高压避雷器称说明概述 HY5WS-17/5010KV 高压避雷器称可在工作电流范围内进行频繁的操作或多次开断短路电流;机械寿命可 高达30,000次,满容量短路电流开断次数可达50次。10KV高压避雷器适于重合闸操作并有极高的操作可靠性与使用寿命。10KV高压避雷器(普通型)采用了立式的绝缘筒防御各种气候的影响;且在维护和保养方面,通常仅需对操作机构做间或性的清扫或润滑。10KV高压避雷器(极柱型)采用了固体绝缘结构—集成固封极柱,实现了免维护。10KV 高压避雷器在开关柜内的安装形式既可以是固定式,也可以是可抽出式的,还可安装于框架上使用 二、10KV 高压避雷器含义 三、10KV 高压避雷器技术参数 名称单位数据4s额定短时耐受电流kA20 25 31.5 额定绝缘水平短时(1min)工频耐压kV42(断口48) 雷电冲击耐压 kV75(断口84) 额定操作顺序分 -0.3S-合分-180S合分 机械寿命次 10000 额定短路开断电流开断次数次 50 操动机构额定合闸电压(直流) V110,220 操动机构额定分闸电压(直流) V110,220 额定触头压力 N2000±200 2500±200 3000±300 触头开距 mm11±1 接触行程(触头弹簧压缩长度) mm 3.5±0.5 触头分、合闸不同期性 ms≤2 触头合闸弹跳时间 ms≤2 平均分闸速度 m/s0.9~1.2 平均分闸速度 m/s0.4~0.8 分闸时间最高操作电压下 s≤0.05 最底操作电压下 s≤0.08 合闸时间 s≤0.1 各相主回路电阻 uΩ≤50

金属氧化锌避雷器泄漏电流异常实例分析

金属氧化锌避雷器泄漏电流异常实例分析 文章论述了二起金属氧化锌避雷器泄露电流实例,并从天气原因和避雷器底座绝缘降低两个方面展开分析,文章还提出了运行注意事项,尤其是提出将检查绝缘衬套受潮或脏污纳入状态检修的建议。 标签:避雷器;泄漏电流;异常;实例 前言 金属氧化锌避雷器以其优异的技术性能逐渐取代了其他类型的避雷器,,近年来在电力系统中得到广泛应用。但是如果避雷器本身存在问题,如内部绝缘下降等就会对系统造成极大的危害,会造成母线、主变、进线停电,因此,监测运行中氧化锌避雷器的工作情况,对正确判断其质量状况是非常必要的,现场一般通过氧化锌避雷器泄漏电流表的指示是否正常来判断避雷器的工作状况。文章对氧化锌避雷器泄漏电流异常实例进行分析,提出运行中的注意事项,希望对安全生产有裨益。 1 氧化锌避雷器泄漏电流表回路的工作原理 如图1所示:氧化锌避雷器泄漏电流回路主要由避雷器、屏蔽环、ZnO电阻、泄漏电流表等组成。在氧化锌避雷器运行当中,內部原因和大部分的外部原因都可以通过泄漏电流表来监视。 氧化锌避雷器的泄漏电流分为内部泄漏电流和外部泄漏电流,内部的泄漏电流主要是通过避雷器内部、上底座、引线接入泄漏电流表内,外部泄漏电流主要是通过避雷器瓷套外部、屏蔽环、绝缘衬套、下底座引入地下。因此正常情况下,泄漏电流表监视的是内部泄漏电流,当内部出现受潮导致绝缘被击穿或是下降时,泄漏电流表会异常增大,甚至满偏,并伴有异常声响。此时若不立即停运避雷器,就会扩大为事故。但有时氧化锌避雷器的泄漏电流不是异常增大,而是异常减小,甚至为零,这就为运行人员正常监视避雷器带来了困难,因为这时如果出现内部故障,泄漏电流增大,正好会出现在正常范围内,会造成值班人员的误判断。 2 氧化锌避雷器泄漏电流异常实例 (1)2008年1月10日,漫天大雾,某变电站内场外设备放电声音异常响,值班员在巡视过程中发现1号主变220kV侧避雷器A.C二相泄漏电流为0.4mA,而B相为0.1mA,两相之间差距超过20%,当即汇报上级,决定暂时加强监测(每小时观察一次),同时检修人员因大雾交通不便只能次日来检查处理。次日,天气晴朗,避雷器A.B.C三相泄漏电流自动恢复为0.1mA,检修人员经过仔细的检查试验,发现避雷器一切正常。(2)2006年4月12日,220kV某操作班运行人员在巡视、抄录避雷器泄露电流表过程中,及时发现并处理了某35kV路线B

110kV氧化锌避雷器直流参考电压及泄漏电流测试

110kV氧化锌避雷器直流参考电压及泄漏电流测试 1、检查确认被试品与引线的连接已断开,有明显断开点,具备试验条件。 2、查阅被试品的历史试验数据和缺陷记录,做到心中有数。 3、在背阴、通风的地方摆放合格的温、湿度计。 4、对试品高压端放电并接地。放电要带绝缘手套先通过电阻放电后直接放电。接地要先接接地端后接被试品高压端。 5、布置安全措施:在工作现场设围栏,向外悬挂“止步,高压危险”的标示牌,在被试品上悬挂“在此工作”标示牌。 6、用干燥清洁柔软的布擦去被试品外绝缘表面的脏污,必要时用适当的清洁剂洗净。 7、抄写被试品铭牌并记录天气情况,环境温、湿度。 8、根据被试品选择合适的仪器仪表,并合理摆放,控制台与高压发生器的距离要合适。检查仪器仪表是否有检验合格证、是否在检定周期内,记录仪器仪表的名称、型号、序号、厂家。 9、正确接线。注意被试品底部、控制台、直流高压发生器都要妥善接地,接地要先接接地端。直流高压发生器高压线先不接被试品,悬空。 10、仪器参数设置:两节,过压整定为1.15倍U1mA(约170kV)。 11、试验电源检查:检查试验电源有无明显的断开点;有无漏电保护器,漏电保护器是否有合格证是否在有效期内,检查漏电保护器是否能可靠动作;用万用表检查试验电源电压是否220V。 12、检查试验接线是否正确,开关是否在关位,调压器是否在零位。 13、通知所有人员离开被试品,取得试验负责人许可,空升仪器,检查过压保护是否可靠动作。检查完毕后把调压器降到零,关掉仪器电源开关,拉开电源刀闸。注意升压时要先呼唱,站在绝缘垫上,并有专人监护。 14、把试品的地线摘除,把直流高压发生器的高压线接到试品高压端,高压线与地要有足够距离,必要时可以加屏蔽(加在第二个裙上)。 15、升压,升压要先呼唱,站在绝缘垫上,并有专人监护。升压过程中要精力集中,一旦发现异常应立即断开电源停止试验,查明原因并排除后方可继续试验。合上电源刀闸,打开仪器电源开关,按下“高压通”按钮,旋转调压器粗调旋钮均匀升压,升压时严格监视泄漏电流,当要到1mA时,改为细调,缓慢调节细调旋钮,使泄漏电流达到1mA此时停止升压,待电流表读数稳定后读取1mA下电压值,按下“0.75DC1mA”按钮,读取该电压下的泄漏电流值。 16、将调压器旋钮均旋至零位,按下“高压断”按钮,断开仪器电源开关,拉开电源刀闸。 17、对被试品放电,必要时对周围不接地的物体也要放电。放电要带绝缘手套先通过电阻放电后直接放电。 18、正确记录试验数据、试验日期、试验人,将数据与规程和历史数据比较确认准确无误。 19、拆除试验接线,恢复被试品原状,拆除所做安全措施,把试验仪器放回原处。注意先拆测量线,后拆接地线,接地线先拆试品、仪器端后拆接地端。 20、检查接地线是否拆除、现场是否有遗留物品。

氧化锌避雷器绝缘电阻、泄漏电流的测量方法

图1 兆欧表测量绝缘电阻 图中:R1、R2:串联电阻;E:摇表接地电极;G:摇表屏蔽电极; L:摇表高压电极;A、B、C:三相电缆的三个单相端头。

图2 测量三相电缆的泄漏电流 图中:T1:调压器;T2:高压试验变压器;D:高压整流硅堆; R:保护电阻;C:滤波电容;V2:静电电压表;R2:测量电阻;V1:电压表;T、O:试 品 四试验步骤 1.检验摇表,不接试品,摇动手柄指针指向“∞”;短接L,E两端缓缓摇动手柄指针应指零。 2.按图1接线,经检查无误之后,以每分钟120转的速度摇动摇表手柄。 3.读取15秒及60秒时的读数,即为R15及R60 4.对电容较大的试品,在试验快结束时候,应设法在摇表仍处于额定转速时断开L 或者E引线,以免摇表停止转动时,试品向摇表放电而冲击指针,造成摇表指针的损坏。 5.摇表停转后,对试品进行放电,然后分别将B相和C相作为被试对象,重复步骤2、3。 6.按图2接线,经检查无误后,合闸平稳升压,当电压升至试验电压时,保持1分钟,再读取微安表读数。 7.将调压器退至零位,断开电源,对A相放电后,再分别对B、C两相进行上述步骤6。 五试验数据处理 1.根据绝缘电阻值求取试品的吸收比,判断电缆是否受潮。吸收比是指设备绝缘60秒时的绝缘电阻与15秒时的绝缘电阻的比值。对于未受潮的电气设备吸收比应在1.3~2

范围内,电气设备受潮时,此比值近与1。对于电容量不大,绝缘正常的试品,因吸收比不显著,故无实用价值。 2.将试验结果与“电气设备预防性试验规程”比较,判断试品绝缘状况。规程摘录见表1 表1 油浸电力电缆长度为250m及以下时的泄漏电流参考值(μA) 六注意事项 1.在所有直流试验及测量前后,都要将试品短接接地。 2.注意屏蔽端的接法,观察有无屏蔽的影响。

电压谐波对金属氧化物避雷器泄漏电流及其阻性分量的影响(一)

电压谐波对金属氧化物避雷器泄漏电流及其阻性分量的影响(一) 邵涛1,2,周文俊3,闫华光4,孙广生1,徐小宇1,2 (1.中国科学院电工研究所,北京100080; 2.中国科学院研究生院,北京100039; 3.武汉大学电气工程学院,湖北省武汉市430072; 4.中国电力科学研究院,北京100085) INFLUENCEOFVOLTAGEHARMONICSONLEAKAGECURRENTANDITS RESISTIVECOMPONENTOFMOA SHAOTao1,2,ZHOUWen-jun3,YANHua-guang4,SUNGuang-shen1,XUXiao-yu1,2 (1.ElectricalEngineeringInstituteofChineseAcademyof Science,Beijing100080,China;2.GraduateSchoolofChineseAcademyofSciences,Beijing100039,China;3.SchoolofElectricalEngineering,WuhanUniversity,Wuhan 430072,HubeiProvince,China;4.ChinaElectricPowerResearchInstitute,Beijing100085,China)

ABSTRACT:OnthebasisofMOA’scharacteristicsofACvoltagevsresistivecurrenttheinfluen ceofvoltageharmonicsonresistivecomponentinleakagecurrentisanalyzed.Si mulationresultsshowthattheinfluenceofvoltageharmoniccomponentonMO A’sresistivecomponentinleakagecurrentisobvious,whenthecontentofvoltag eharmonicsaresame,theinfluenceofthephasesoftheharmonicsonresistivecu rrentanditsharmoniccomponentsisstrongerandtheinfluencesofdifferentord ersofharmonicsaredifferent.ThefundamentalcomponentinMOA’sresistivecu rrentisslightlyinfluencedbythevoltageharmonicsandthe3rdorderofharmoni csinMOA’sresistivecurrentisstronglyinfl uencedbyvoltageharmonics.Thesea nalysisresultsareverifiedbytestsofhighvoltagevalveelements. KEYWORDS:MOA;Leakagecurrent;Voltageharmonics;Powersystem 摘要:根据金属氧化物避雷器(MOA)的交流电压?阻性电流特性分析了电压谐波对泄漏电流阻性分量的影响。仿真结果表明电压谐波对MOA泄漏电流阻性分量影响明显,电压谐波含量相同时,谐波相位对阻性电流及其谐波分量的影响较大,不同次谐波,其相位的影响不同,MOA阻性电流基波分量受电压谐波影响最小,3次谐波分量受电压谐波影响最大。对高压阀片进行的谐波试验结果验证了以上分析结果。关键词:MOA;泄漏电流;电压谐波;电力系统

相关主题
文本预览
相关文档 最新文档