当前位置:文档之家› 中考数学相似(大题培优)附详细答案

中考数学相似(大题培优)附详细答案

中考数学相似(大题培优)附详细答案
中考数学相似(大题培优)附详细答案

一、相似真题与模拟题分类汇编(难题易错题)

1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证:

(1)∠OAE=∠OBE;

(2)AE=BE+ OE.

【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点,

∴OB⊥AC,

∴∠AOB=90°,

∵∠AEB=90°,

∴A,B,E,O四点共圆,

∴∠OAE=∠OBE

(2)证明:在AE上截取EF=BE,

则△EFB是等腰直角三角形,

∴,∠FBE=45°,

∵在等腰Rt△ABC中,O为斜边AC的中点,

∴∠ABO=45°,

∴∠ABF=∠OBE,

∵,

∴,

∴△ABF∽△BOE,

∴ = ,

∴AF= OE,

∵AE=AF+EF,

∴AE=BE+ OE.

【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。

(2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。

2.如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.

(1)猜想DG与CF的数量关系,并证明你的结论;

(2)过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P 是MN上一点,求△PDC周长的最小值.

【答案】(1)解:结论:CF=2DG.

理由:∵四边形ABCD是正方形,

∴AD=BC=CD=AB,∠ADC=∠C=90°,

∵DE=AE,

∴AD=CD=2DE,

∵EG⊥DF,

∴∠DHG=90°,

∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,

∴∠CDF=∠DEG,

∴△DEG∽△CDF,

∴ = = ,

∴CF=2DG

(2)解:作点C关于NM的对称点K,连接DK交MN于点P,连接PC,

此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.

由题意:CD=AD=10,ED=AE=5,DG= ,EG= ,DH= = ,

∴EH=2DH=2 ,

∴HM= =2,

∴DM=CN=NK= =1,

在Rt△DCK中,DK= = =2 ,

∴△PCD的周长的最小值为10+2 .

【解析】【分析】(1)结论:CF=2DG.理由如下:根据正方形的性质得出AD=BC=CD=AB,∠ADC=∠C=90°,根据中点的定义得出AD=CD=2DE,根据同角的余角相等得出∠CDF=∠DEG,从而判断出△DEG∽△CDF,根据相似三角形对应边的比等于相似比即可得出结论;

(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK,由题意得CD=AD=10,ED=AE=5,DG=,

EG=,根据面积法求出DH的长,然后可以判断出△DEH相似于△GDH,根据相似三角形对应边的比等于相似比得出EH=2DH=,再根据面积法求出HM的长,根据勾股定理及矩形的性质及对称的性质得出DM=CN=NK= 1,在Rt△DCK中,利用勾股定理算出DK的长,从而得出答案。

3.如图,在△ABC中,AB=AC,∠BAC=90°,AH⊥BC于点H,过点C作CD⊥AC,连接AD,点M为AC上一点,且AM=CD,连接BM交AH于点N,交AD于点E.

(1)若AB=3,AD= ,求△BMC的面积;

(2)点E为AD的中点时,求证:AD= BN .

【答案】(1)解:如图1中,

在△ABM和△CAD中,∵AB=AC,∠BAM=∠ACD=90°,AM=CD,∴△ABM≌△CAD,

∴BM=AD= ,∴AM= =1,∴CM=CA﹣AM=2,∴S△BCM= ?CM?BA= ×23=3.

(2)解:如图2中,连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.

∵AE=ED,∠ACD=90°,∴AE=CE=ED,∴∠EAC=∠ECA,∵△ABM≌△CAD,∴∠ABM=∠CAD,∴∠ABM=∠MCE,∵∠AMB=∠EMC,∴∠CEM=∠BAM=90°,

∴△ABM∽△ECM,∴,∴,∵∠AME=∠BMC,∴△AME∽△BMC,∴∠AEM=∠ACB=45°,∴∠AEC=135°,易知∠PEQ=135°,∴∠PEQ=∠AEC,∴∠AEQ=∠EQC,∵∠P=∠EQC=90°,∴△EPA≌△EQC,∴EP=EQ,∵EP⊥BP,EQ⊥BC

∴BE平分∠ABC,∴∠NBC=∠ABN=22.5°,∵AH垂直平分BC,∴NB=NC,∴∠NCB=∠NBC=22.5°,∴∠ENC=∠NBC+∠NCB=45°,∴△ENC的等腰直角三角形,∴NC= EC,∴AD=2EC,∴2NC= AD,∴AD= NC,∵BN=NC,∴AD= BN.

【解析】【分析】(1)首先利用SAS判断出△ABM≌△CAD,根据全等三角形对应边相等得出BM=AD= ,根据勾股定理可以算出AM,根据线段的和差得出CM的长,利用

S△BCM= ?CM?BA即可得出答案;

(2)连接EC、CN,作EQ⊥BC于Q,EP⊥BA于P.根据直角三角形斜边上的中线等于斜边的一半得出AE=CE=ED,根据等边对等角得出∠EAC=∠ECA,根据全等三角形对应角相等得出∠ABM=∠CAD,从而得出∠ABM=∠MCE,根据对顶角相等及三角形的内角和得出∠CEM=∠BAM=90°,从而判断出△ABM∽△ECM,由相似三角形对应边成比例得出BM∶

CM= AM∶EM,从而得出BM∶AM= CM∶EM,根据两边对应成比例及夹角相等得出△AME∽△BMC,故∠AEM=∠ACB=45°,∠AEC=135°,易知∠PEQ=135°,故∠PEQ=∠AEC,∠AEQ=∠EQC,又∠P=∠EQC=90°,故△EPA≌△EQC,故EP=EQ,根据角平分线的判定得出BE平分∠ABC,故∠NBC=∠ABN=22.5°,根据中垂线定理得出NB=NC,根据等腰三角形的性质得出∠NCB=∠NBC=22.5°,故∠ENC=∠NBC+∠NCB=45°,△ENC的等腰直角三角形,根据等腰直角三角形边之间的关系得出NC= EC,根据AD=2EC,2NC= AD,AD= NC,又BN=NC,故AD= BN.

4.如图,抛物线y=x2+bx+c经过B(-1,0),D(-2,5)两点,与x轴另一交点为A,点H是线段AB上一动点,过点H的直线PQ⊥x轴,分别交直线AD、抛物线于点Q、P.

(1)求抛物线的解析式;

(2)是否存在点P,使∠APB=90°,若存在,求出点P的横坐标,若不存在,说明理由;(3)连接BQ,一动点M从点B出发,沿线段BQ以每秒1个单位的速度运动到Q,再沿线段QD以每秒个单位的速度运动到D后停止,当点Q的坐标是多少时,点M在整个运动过程中用时t最少?

【答案】(1)解:把B(﹣1,0),D(﹣2,5)代入,得:

,解得:,∴抛物线的解析式为:

(2)解:存在点P,使∠APB=90°.

当y=0时,即x2﹣2x﹣3=0,解得:x1=﹣1,x2=3,∴OB=1,OA=3.

设P(m,m2﹣2m﹣3),则﹣1≤m≤3,PH=﹣(m2﹣2m﹣3),BH=1+m,AH=3﹣m,∵∠APB=90°,PH⊥AB,∴∠PAH=∠BPH=90°﹣∠APH,∠AHP=∠PHB,∴△AHP∽△PHB,

∴,∴PH2=BH?AH,∴[﹣(m2﹣2m﹣3)]2=(1+m)(3﹣m),解得m1= ,m2= ,∴点P的横坐标为:或

(3)解:如图,过点D作DN⊥x轴于点N,

则DN=5,ON=2,AN=3+2=5,∴tan∠DAB= =1,∴∠DAB=45°.过点D作DK∥x 轴,则∠KDQ=∠DAB=45°,DQ= QG.

由题意,动点M运动的路径为折线BQ+QD,运动时间:t=BQ+ DQ,∴t=BQ+QG,即运动的时间值等于折线BQ+QG的长度值.

由垂线段最短可知,折线BQ+QG的长度的最小值为DK与x轴之间的垂线段.

过点B作BH⊥DK于点H,则t最小=BH,BH与直线AD的交点,即为所求之Q点.

∵A(3,0),D(﹣2,5),∴直线AD的解析式为:y=﹣x+3,∵B点横坐标为﹣1,∴y=1+3=4,∴Q(﹣1,4).

【解析】【分析】(1)把点B,D的坐标代入二次函数中组成二元一次方程组,解方程组即可得到抛物线的解析式;(2)先按照存在点P使∠APB=90°,先根据抛物线的解析式求得点A,B的坐标,设出点P的坐标,根据点P的位置确定m的取值范围,再证△AHP∽△PHB,从而得到PH2=BH?AH,即可列出关于m的方程,解方程即可得到m即点P的横坐标,且横坐标在所求范围内,从而说明满足条件的点P存在;(3)先证明∠DAB=45°,从而证得DQ= 2 QG,那么运动时间t值等于折线BQ+QG的长度值,再结合垂线段最短确定点Q的位置,再求得点Q的坐标即可.

5.如图,已知:在Rt△ABC中,斜边AB=10,sinA= ,点P为边AB上一动点(不与A,B重合),

PQ平分∠CPB交边BC于点Q,QM⊥AB于M,QN⊥CP于N.

(1)当AP=CP时,求QP;

(2)若四边形PMQN为菱形,求CQ;

(3)探究:AP为何值时,四边形PMQN与△BPQ的面积相等?

【答案】(1)解:∵AB=10,sinA= ,

∴BC=8,

则AC= =6,

∵PA=PC.

∴∠PAC=∠PCA,

∵PQ平分∠CPB,

∴∠BPC=2∠BPQ=2∠A,

∴∠BPQ=∠A,

∴PQ∥AC,

∴PQ⊥BC,又PQ平分∠CPB,

∴∠PCQ=∠PBQ,

∴PB=PC,

∴P是AB的中点,

∴PQ= AC=3

(2)解:∵四边形PMQN为菱形,

∴MQ∥PC,

∴∠APC=90°,

∴ ×AB×CP= ×AC×BC,

则PC=4.8,

由勾股定理得,PB=6.4,

∵MQ∥PC,

∴ = = = ,即 = ,

解得,CQ=

(3)解:∵PQ平分∠CPB,QM⊥AB,QN⊥CP,

∴QM=QN,PM=PN,

∴S△PMQ=S△PNQ,

∵四边形PMQN与△BPQ的面积相等,

∴PB=2PM,

∴QM是线段PB的垂直平分线,

∴∠B=∠BPQ,

∴∠B=∠CPQ,

∴△CPQ∽△CBP,

∴ = = ,

∴ = ,

∴CP=4× =4× =5,

∴CQ= ,

∴BQ=8﹣ = ,

∴BM= × = ,

∴AP=AB﹣PB=AB﹣2BM=

【解析】【分析】(1)当AP=CP时,由锐角三角函数可知AC=6,BC=8,因为PQ平分∠CPB,所以PQ//AC,可知PB=PC,所以点P是AB的中点,所以PQ是△ABC的中位线,PQ =3;

(2)当四边形PMQN为菱形时,因为∠APC=,所以四边形PMQN为正方形,可得

PC=4.8,PB=3.6,因为MQ//PC,所以,可得;

(3)当QM垂直平分PB 时,四边形PMQN的面积与△BPQ的面积相等,此时△CPQ∽△CBP,对应边成比例,可得,所以,因为AP=AB-2BM,所以AP=.

6.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.

(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所

示),连接PB,请直接写出线段PA与PB的数量关系:________.

(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA?PB=k?AB.

【答案】(1)PA=PB

(2)解:把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:

如图②,过C作CE⊥n于点E,连接PE,

∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,

∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,

∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,

在△PAC和△PBE中,∴△PAC∽△PBE,∴PA=PB

(3)解:如图③,延长AP交直线n于点F,作AE⊥BD于点E,

∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;

在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF?BP=AE?BF,

∵AF=2PA,AE=2k,BF=AB,∴2PA?PB=2k.AB,∴PA?PB=k?AB.

【解析】【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P 为线段CD的中点,

∴PA=PB.

【分析】(1)根据直角三角形斜边上的中线等于斜边上的一半;

(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,根据直角三角形斜边上的中线等于斜边上的一半得出PD=PE=PC,根据等边对等角得出∠CDE=∠PEB,根据二直线平行,内错角相等得出∠CDE=∠PCA,故∠PCA=∠PEB,根据夹在两平行线间的平行线相等得出AC=BE,然后利用SAS判断出△PAC∽△PBE,根据全等三角形的对应边相等得出PA=PB;

(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,根据平行线分线段成比例定理得出AP=PF,根据线段垂直平分线上的点到线段两个端点的距离相等得出BF=AB;然后判断出△AEF∽△BPF,根据相似三角形的对应边成比例即可得出AF?BP=AE?BF,根据等量代换得出2PA?PB=2k.AB,即PA?PB=k?AB.

7.在平面直角坐标系中,点 A 点 B 已知满足

.

(1)点A的坐标为________,点B的坐标为________;

(2)如图1,点E为线段OB上一点,连接AE,过A作AF⊥AE,且AF=AE,连接BF交轴于点D,若点D(-1,0),求点E的坐标;

(3)在(2)的条件下,如图2,过E作EH⊥OB交AB于H,点M是射线EH上一点(点M不在线段EH上),连接MO,作∠MON=45°,ON交线段BA的延长线于点N,连接MN,探究线段MN与OM的关系,并说明理由。

【答案】(1)(-4,0);(0,-4)

(2)解:作FH⊥OA于H,

∵AF⊥AE,

∴∠FAE=∠AHF=∠AOE=90°,

∴∠FAH+∠OAE=90°,∠FAH+∠AFH=90°,∴∠AFH=∠OAE,

∵AF=OA,

∴△AFH≌△EAO,

∴FH=OA,

∵点A(-4,0),点B(0,-4)

∴FH=OA=OB=4,

∵∠FHD=∠BOD=90°,∠FDH=∠BDO,

∴△FDH≌△BDO,

∴OD=DH=1,

∴AH=OH=OE=2,

∴E(0,-2)

(3)解:结论:MN=OM,MN⊥OM,

理由:连接OH,OM与BN交于G,

∵OA=OB,∠AOB=45°,

∴∠OAB=45°

∵OE=EB=2,EH∥OA,

∴AH=BH,OH⊥AB,∠AHM=∠OAB=45°,

∵∠MON=45°

∴∠GON=∠GHM,

∵∠NGO=∠MGH,

∴△NGO∽△MGH,

∴ = ,

∴ = ,

∵∠NGM=∠OGH,

∴△NGM∽△OGH,

∴∠NMG=∠OHG=90°,

∴△OMN是等腰直角三角形

∴MN=OM,MN⊥OM.

【解析】【解答】(1)∵ =0,

∴a=-4,b=-4,

∴点A的坐标为(-4,0),点B的坐标为(0,-4)

【分析】(1)先将式子变形为完全平方公式的形式,再根据平方的非负性求解;(2)如图1中,作FH⊥OA于H,由△AFH≌△EAO,推出FH=OA,由△FDH≌△BDO,推出

AH=OH=OE=2;(3)连接OH,OM与BN交于G,由△NGO∽△MGH,推出 = ,再推出

= ,再得出△NGM∽△OGH,推出∠NMG=∠OHG=90°,推出△OMN是等腰直角三角形即可解决问题.

8.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.

(1)证明与推断:

①求证:四边形CEGF是正方形;②推断: AG∶BE的值为:

(2)探究与证明:

将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:

(3)拓展与运用:

正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=2 ,则BC=________.

【答案】(1)证明:∵四边形ABCD是正方形,

∴∠BCD=90°,∠BCA=45°,

∵GE⊥BC、GF⊥CD,

∴∠CEG=∠CFG=∠ECF=90°,

∴四边形CEGF是矩形,∠CGE=∠ECG=45°,

∴EG=EC,

∴四边形CEGF是正方形

(2)解:连接CG,

由旋转性质知∠BCE=∠ACG=α,

在Rt△CEG和Rt△CBA中,

=cos45°= 、 =cos45°= ,

∴ = ,

∴△ACG∽△BCE,

∴,

∴线段AG与BE之间的数量关系为AG= BE

(3)

【解析】【解答】(1)②由①知四边形CEGF是正方形,

∴∠CEG=∠B=90°,∠ECG=45°,

∴,GE∥AB,

∴,

故答案为:;

( 3 )∵∠CEF=45°,点B、E、F三点共线,

∴∠BEC=135°,

∵△ACG∽△BCE,

∴∠AGC=∠BEC=135°,

∴∠AGH=∠CAH=45°,

∵∠CHA=∠AHG,

∴△AHG∽△CHA,

∴,

设BC=CD=AD=a,则AC= a,

则由得,

∴AH= a,

则DH=AD﹣AH= a,CH= = a,

∴由得,

解得:a=3 ,即BC=3 ,

故答案为:3 .

【分析】(1)①根据正方形的性质得出∠BCD=90°,∠BCA=45°,根据垂直的定义及等量代换得出∠CEG=∠CFG=∠ECF=90°,根据三个角是直角的四边形是矩形得出四边形CEGF是矩形,根据三角形的内角和得出∠CGE=∠ECG=45°,根据等角对等边得出EG=EC,根据有一组邻边相等的矩形是正方形即可得出四边形CEGF是正方形;②根据正方形的性质得出GE∥∥CD,根据平行于同一直线的两条直线互相平行得出GE∥AB,根据平行线分线段成比例定理得出GC∶EC=AG∶BE,根据等腰直角三角形的边之间的关系得出GC∶EC=,从而得出答案;

(2)连接CG,由旋转性质知∠BCE=∠ACG=α,根据余弦函数的定义得出

,,从而判断出△ACG∽△BCE,根据相似三角形对应边的比等于相似比即可得出结论线段AG与BE之间的数量关系为AG= BE ;

( 3 )根据∠CEF=45°,点B、E、F三点共线,由邻补角定义得出∠BEC=135°,根据△ACG∽△BCE,得出∠AGC=∠BEC=135°,故∠AGH=∠CAH=45°,然后判断出△AHG∽△CHA,根据相似三角形对应边成比例得出AG∶AC=GH∶AH=AH∶CH,设BC=CD=AD=a,则AC= a,根据比例式得出关于AH的方程,求解AH的值,根据DH=AD ﹣AH表示出DH,根据勾股定理表示出CH,根据前面的比例式得出关于a的方程,求解得出a的值,从而得出BC的值。

9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB

对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE

(1)求证:直线CG为⊙O的切线;

(2)若点H为线段OB上一点,连接CH,满足CB=CH;

①求证:△CBH∽△OBC;

②求OH+HC的最大值.

【答案】(1)证明:由题意可知:∠CAB=∠GAF,

∵AB是⊙O的直径,

∴∠ACB=90°

∵OA=OC,

∴∠CAB=∠OCA,

∴∠OCA+∠OCB=90°,

∵∠GAF=∠GCE,

∴∠GCE+∠OCB=∠OCA+∠OCB=90°,

∵OC是⊙O的半径,

∴直线CG是⊙O的切线;

(2)证明:①∵CB=CH,

∴∠CBH=∠CHB,

∵OB=OC,

∴∠CBH=∠OCB,

∴△CBH∽△OBC

解:②由△CBH∽△OBC可知:

∵AB=8,

∴BC2=HB?OC=4HB,

∴HB= ,

∴OH=OB-HB=

∵CB=CH,

∴OH+HC=

当∠BOC=90°,

此时BC=

∵∠BOC<90°,

∴0<BC<

令BC=x

∴OH+HC= = =

当x=2时,

∴OH+HC可取得最大值,最大值为5

【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,

从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:

,所以HB= ,

由于BC=HC,所以OH+HC=

利用二次函数的性质即可求出OH+HC的最大值.

10.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.

(1)求线段AB的长度;

(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.

①当⊙N与x轴相切时,求点M的坐标;

②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求

点P的坐标.

【答案】(1)解:当x=0时,y=4,

∴A(0,4),

∴OA=4,

当y=0时,- x+4=0,

x=3,

∴B(3,0),

∴OB=3,

由勾股定理得:AB=5

(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,

tan∠OAB= ,

∴设EM=3x,AE=4x,则AM=5x,

∴M(3x,-4x+4),

由旋转得:AM=AN,∠MAN=90°,

∴∠EAM+∠HAN=90°,

∵∠EAM+∠AME=90°,

∴∠HAN=∠AME,

∵∠AHN=∠AEM=90°,

∴△AHN≌△MEA,

∴AH=EM=3x,

∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,

∴NG=OH,

则5x=3x+4,

2x=4,

x=2,

∴M(6,-4);

②如图2,由①知N(8,10),

∵AN=DN,A(0,4),

∴D(16,16),

设直线DM:y=kx+b,

把D(16,16)和M(6,-4)代入得:

解得:,

∴直线DM的解析式为:y=2x-16,

∵直线DM交x轴于E,

∴当y=0时,2x-16=0,

x=8,

∴E(8,0),

由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,

∵∠QAP=∠OAB=∠DCE,

∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:

i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,

∵∠QNA=∠DNF,

∴∠NFD=∠QAN=90°,

∵AO∥NE,

∴△ACO∽△NCE,

∴,

∴,

∴CO= ,

连接BN,

∴AB=BE=5,

∵∠BAN=∠BEN=90°,

∴∠ANB=∠ENB,

∵EN=ND,

∴∠NDE=∠NED,

∵∠CNE=∠NDE+∠NED,

∴∠ANB=∠NDE,

∴BN∥DE,

Rt△ABN中,BN= ,

sin∠ANB=∠NDE= ,

∴,

∴NF=2 ,

∴DF=4 ,

∵∠QNA=∠DNF,

∴tan∠QNA=tan∠DNF= ,

∴,

∴AQ=20,

∵tan∠QAH=tan∠OAB= ,

设QH=3x,AH=4x,则AQ=5x,

∴5x=20,

x=4,

∴QH=3x=12,AH=16,

∴Q(-12,20),

同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);

ii)当△DCE∽△PAQ时,如图3,

∴∠APN=∠CDE,

∵∠ANB=∠CDE,

∵AP∥NG,

∴∠APN=∠PNE,

∴∠APN=∠PNE=∠ANB,

∴B与Q重合,

∴AN=AP=10,

∴OP=AP-OA=10-4=6,

∴P(0,-6);

综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)

【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB

的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;

②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:

i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:

tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);

ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).

11.如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三

浙教版初中数学中考培优题(含答案)

1、在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积是1.28 ㎡,已知床单的长是2 m ,宽是1.2 m ,求花边的宽度. 解:设花边的宽度是x m. ()()28.122.122=--x x 028.06.12=+-x x ()36.08.02 =-x 2.01=x ,4.12=x (舍去) 答:花边的宽度是0.2 m. 2、某商场将进货价为30元的台灯以 40 元售出,平均每月能售出600个。调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个。 ⑴ 为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个? ⑵ 台灯的售价应定为多少时销售利润最大? 解:⑴ 设台灯的售价为x 元,(x ≥40)根据题意得 [(600-10×(x -40))](x -30)=10000 解得:x 1=80 x 2=50 当x =80时 进台灯数为600-10×(x -40)=200 当x =50时 600-10×(x -40)=500 ⑵ 设台灯的售价定为x 元时,销售利润最大,利润为y y =[600-10(x -40)]·(x -30) 答:⑴ 台灯的售价为80元,进台灯数为200个,台灯的售价为50元时,进台灯数为500个。 ⑵ 3、学校有若干个房间分配给九年级(1)班的男生住宿,已知该班男生不足50人。若每间住4人,则余15人无住处;若每间住6人,则恰有一间不空也不满(其余均住满),那么该班男生人数是多少? 解:设有x 间,每间住4人,4x 人,15人无处住 所以有4x +15人 每间住6人,则恰有一间不空也不满 所以x -1间住6(x -1)=6x -6人 还有4x +15-6x +6=-2x +21人 不空也不满 所以0<-2x +21<6 -6<2x -21<0 15<2x <21 7.5<x <10.5 所以x =8, x =9, x =10 不到50人 一共4x +15<50 所以x =8 所以应该是4×8+15=47人

初三数学中考培优试题

初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于 点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

中考数学 专题 四边形培优试题

四边形 1、如图,在正方形ABCD中,点E是CD边上的一点,过C作AE的垂线交AE的延长线于点F,连结DE,过点D作DF的垂线交AF于点G。 (1)求证:AG=CF。 (2)连结BG,若BG⊥AE,取BC的中点H,试判断线段BD与线段EH的数量关系和位置关系,并给出证明。 2、(1)如图1,已知正方形ABCD,E是边CD上一点,延长CB到点F,使BF=DE,作∠EAF 的平分线交边BC于点G,求证:BG+DE=E G。 (2)如图2,已知△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=2,CD=1,求△ABC的面积。

3、如图1,摆放矩形AB CD与矩形ECGF,使B,C,G三点在一条直线上,CE在边CD上,连结AF,若M为AF的中点,连结DM、ME,猜想DM与ME的关系,并证明你的结论。 拓展与延伸: (1)若将图1中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM 和ME的关系为。 (2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立。

4、在正方形ABCD中,动点E、F分别从D、C两点同时出发,以相同速度在直线DC、CB上移动。 (1)如图1,当点E在线段CD上,点F在线段BC上时,连结AE和DF交于点P,请写出AE与DF的关系,并说明理由。 (2)如图2,点E、F分别移动到边DC、CB的延长线上时,连结AE和DF,(1)中的结论还成立吗?真接写出结论,无需证明。 (3)如图3,当点E、F分别在CD、BC的延长线上移动时,连结AE与D F,(1)的结论还成立吗?请说明理由。 (4)如图4,当点E、F分别在边DC、CB上移动时,连结AE和DF交于点P,由于点E、F 的移动,使得点P也随之移动,请画出点P的运动路径的草图,若AD=2,试求出线段CP的最小值。

人教中考数学平行四边形(大题培优易错试卷)附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.问题发现: (1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长. 问题探究: (2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度. 问题解决: (3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点 (1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由. 【答案】(1)作图见解析;(2)25y x =-,353)(0,0)E ,(5,5)F . 【解析】 试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分. (2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分. (3)存在,直线y x =平分五边形OABCD 面积、周长. 试题解析:(1)作图如下:

(2)∵(6,7)P ,(4,3)O ', ∴设:6PO y kx =+', 67{43k b k b +=+=,2{5 k b ==-, ∴25y x =-, 交x 轴于5,02N ?? ??? , 交BC 于11,62M ?? ???, 2 211563522MN ??=+-= ???. (3)存在,直线y x =平分五边形OABCD 面积、周长. ∵(1052,102)P --在直线y x =上, ∴连OP 交OA 、BC 于点E 、F , 设:BC y kx b =+,(8,2)(2,8)B C , 82{28k b k +=+=,1{10 k b =-=, ∴直线:10BC y x =-+, 联立10{y x y x =-+=,得55x y =??=? , ∴(0,0)E ,(5,5)F .

中考数学培优专题复习相似练习题及答案

中考数学培优专题复习相似练习题及答案 一、相似 1.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O. (1)判定直线AC是否是⊙O的切线,并说明理由; (2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值; (3)在(2)的条件下,设的半径为3,求AC的长. 【答案】(1)解:AC是⊙O的切线 理由:, , 作于, 是的角平分线, , AC是⊙O的切线 (2)解:连接, 是⊙O的直径, ,即 . . 又 (同角) , ∽ ,

(3)解:设 在和中,由三角函数定义有: 得: 解之得: 即的长为 【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的. 2.如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题: (1)求证:△BEF∽△DCB; (2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值; (3)当t为何值时,△PQF为等腰三角形?试说明理由. 【答案】(1)解:∵四边形ABCD是矩形, ∴ AD∥BC, 在中, ∵别是的中点, ∴EF∥AD, ∴ EF∥BC,

中考数学培优专题复习圆的综合练习题附详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S △CDO = 1 2 ×6×4=12, ∴平行四边形OABC 的面积S=2S △CDO =24. 2.已知 O 的半径为5,弦AB 的长度为m ,点C 是弦AB 所对优弧上的一动点. ()1如图①,若m 5=,则C ∠的度数为______; ()2如图②,若m 6=. ①求C ∠的正切值; ②若ABC 为等腰三角形,求ABC 面积. 【答案】()130;()2C ∠①的正切值为3 4 ;ABC S 27=②或 432 25 . 【解析】 【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论; ()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结 论; ②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论. 【详解】 ()1如图1,连接OB ,OA ,

中考数学总复习 培优专题精选经典题

专项训练一 一元二次方程 一、选择题 1.(2016·新疆中考)一元二次方程x 2-6x -5=0配方后可变形为( ) A .(x -3)2=14 B .(x -3)2=4 C .(x +3)2=14 .(x +3)2=4 2.(2016·攀枝花中考)若x =-2是关于x 的一元二次方程x 2+3 2ax -a 2=0的一个根,则a 的值为( ) A .-1或4 B .-1或-4 C .1或-4 D .1或4 3.(2016·凉山州中考)已知x 1、x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( ) A .-43 B.83 C .-83 D.43 4.(2016·随州中考)随州市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次, 2016年约为28.8万人次,设观赏人数年均增长率为x ,则下列方程中正确的是( ) A .20(1+2x )=28.8 B .28.8(1+x )2=20 C .20(1+x )2=28.8 D .20+20(1+x )+20(1+x )2=28.8 5.(2016·潍坊中考)关于x 的一元二次方程x 2-2x +sin α=0有两个相等的实数根,则锐角α等于( ) A .15° B .30° C .45° D .60° 6.已知三角形两边的长是3和4,第三边长是方程x 2-12x +35=0的根,则该三角形的周长是( ) A .14 B .12 C .12或14 D .以上都不对 7.(2016·深圳中考)给出一种运算:对于函数y =x n ,规定y ′=nx n - 1.例如:若函数y =x 4,则有y ′=4x 3.已知函数y =x 3,则方程y ′=12的解是( ) A .x 1=4,x 2=-4 B .x 1=2,x 2=-2 C .x 1=x 2=0 D .x 1=23,x 2=-2 3 8.★关于x 的一元二次方程x 2+2mx +2n =0有两个整数根且乘积为正,关于y 的一元二次方程y 2+2ny +2m =0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都是负根;②(m -1)2+(n -1)2≥2;③-1≤2m -2n ≤1,其中正确结论的个数是( ) A .0个 B .1个 C .2个 D .3个 二、填空题 9.(2016·菏泽中考)已知m 是关于x 的方程x 2-2x -3=0的一个根,则2m 2-4m =________. 10.方程(2x +1)(x -1)=8(9-x )-1的根为____________. 11.(2016·聊城中考)如果关于x 的一元二次方程kx 2-3x -1=0有两个不相等的实数根,那么k 的取值范围是______________. 12.(2016·黄石中考)关于x 的一元二次方程x 2+2x -2m +1=0的两实数根之积为负,则实数m 的取值范围是________. 13.关于x 的反比例函数y = a +4 x 的图象如图所示,A 、P 为该图象上的点,且关于原点成中心对称.△P AB 中,PB ∥y 轴,AB ∥x 轴,PB 与AB 相交于点B .若△P AB 的面积大于12,则关于x 的方程(a -1)x 2-x +1 4 =0的根的情况是______________. 14.一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这

初三数学中考培优试题

2013级初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

2020年中考数学培优 专题讲义 第17讲 二次函数与面积

第17讲 二次函数与面积 解这类问题一般用到以下与面积相关的知识:图形割补、等积转换、等比转化. 【例题讲解】 例题1 如图1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ABC S △=1 2 ah ,即三角形面积等于水平宽与铅垂高乘积的一半. 解答问题: 如图2,顶点为C (1,4)的抛物线y =ax 2+bx +c 交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式; (2)点P 是抛物线(在第一象限内)上的一个动点,连接P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S △; ②是否存在抛物线上一点P ,使PAB S △=CAB S △?若存在,求出P 点的坐标;若不存在,请说明理由. C B 1把A (3,0)代入解析式求得a =-1, 所以1y =-(x -1)2+4=-x 2+2x +3, 设直线AB 的解析式为:2y =kx +b 由1y =-x 2+2x +3求得B 点的坐标为(0,3) 把A (3,0),B (0,3)代入2y =kx +b 中 解得:k =-1,b =3 所以2y =-x +3; (2)①因为C 点坐标为(1,4) 所以当x =1时,1y =4,2y =2 所以CD =4-2=2 CAB S △= 1 2 ×3×2=3(平方单位);

②假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h ,则h =1y -2y =(-x 2+2x +3)-(-x +3)=-x 2+3x 由PAB S △=CAB S △ 得: 1 2 ×3×(-x 2+3x )=3 化简得:x 2-3x +2=0, 解得:1x =1,2x =2, 将1x =1代入1y =-x 2+2x +3中, 解得P 点坐标为(1,4). 将2x =2代入1y =-x 2+2x +3中, 解得P 点坐标为(2,3). ∵点P 是抛物线(在第一象限内)上的一个动点, 综上所述,P 点的坐标为(1,4),(2,3). 模型讲解 竖切 面积公式均为1 = 2 S dh C B h C B h C B 横切 面积公式均为1 = 2 S dh D 【总结】 这种“铅垂高×水平宽的一半”的求解方法可过三角形的任意一点,并且“横竖”均可.而在选择时,如何选用,取决于点D 的坐标哪种更易求得. 例题2 已知一次函数y =(k +3)x +(k -1)的图像与x 轴、y 轴分别相交于点A 、B ,P (-1,-4).

初三数学培优试题(含答案)

初三数学培优试题一 学校: 班级: 姓名: 分数: 一.选择题 1、下列函数:① 3y x =-,②21y x =-,③() 1 0y x x =-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( ) (A )4个 (B )3个 (C )2个 (D )1个 2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1) x y –1–2–3–41 2 34 1 234 567B C A A' C 'B' O 3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656, 则满足条件的x 的不同值最多有( ) (A )2个 (B )3个 (C )4个 (D )5个

4、已知关于x 的不等式组1 2 x a x a ->-?? -或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或 2a ≤- 5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。 若O 的半径长为,则AP BP +的最小值为( ) (A )2 (B )3 (C )2 (D ) 6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( ) A . B . C . D . B A

中考数学总复习培优专题精选经典题

初三数学中考总复习培优资料一 一、选择题(本大题共有12小题,每小题2分,共24分.) 1.-2的绝对值是 A .-2 B .- 12 C .2 D .12 2.下列运算正确的是 A .x 2+ x 3= x 5 B .x 4·x 2= x 6 C .x 6÷x 2 = x 3 D .( x 2)3 = x 8 3.下面四个几何体中,俯视图为四边形的是 4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5 D .5 5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 6.对于反比例函数y =1 x ,下列说法正确的是 A .图象经过点(1,-1) B .图象位于第二、四象限 C .图象是中心对称图形 D .当x <0时,y 随x 的增大而增大 7.某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30 B .众数为29 C .中位数为31 D .极差为5 8.小亮从家步行到公交车站台,等公交车去学校. 折线表示小亮的行程s (km)与所花时间t (min)之间的函数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 9.一元二次方程x x 22 =的根是( ) A .2=x B .0=x C .2,021==x x D .2,021-==x x 10.如图,将一个可以自由旋转的转盘等分成甲、乙、丙、丁四个扇形区域,若指针固定不变,转动这个转盘一次(如果指针指在等分线上,那么重新转动,直至指针指在某个扇形区域内为止),则指针指在甲区域内的概率是( ) A .1 B . 21 C .31 D .4 1 A B C D (第8题图)

2019中考数学培优试题

2019级初三数学中考培优试题 一.解答题: 1.如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合 (1)直接写出点A、B的坐标:A(_________,_________)、B(_________,_________); (2)若抛物线y=﹣x2+bx+c经过A、B两点,则这条抛物线的解析式是_________; (3)若点M是直线AB上方抛物线上的一个动点,作MN⊥x轴于点N,问是否存在点M,使△AMN与△ACD相似?若存在,求出点M的横坐标;若不存在,说明理由; (4)当≤x≤7时,在抛物线上存在点P,使△ABP得面积最大,求△ABP面积的最大值. 2.如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点.将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB.过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D.运动时间为t秒. (1)当点B与点D重合时,求t的值; (2)设△BCD的面积为S,当t为何值时,S=? (3)连接MB,当MB∥OA时,如果抛物线y=ax2﹣10ax的顶点在△ABM内部(不包括边),求a的取值范围.

3.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”. (1)“抛物线三角形”一定是_________三角形; (2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O 为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由. 4.如图,抛物线y=ax2+bx﹣3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限 且为抛物线的顶点.P到x轴的距离为,到y轴的距离为1.点C关于直线l的对称点为 A,连接AC交直线l于B. (1)求抛物线的表达式; (2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于 点E,且DE:BE=4:1.求直线y=x+m的表达式; (3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由.

中考数学二轮 旋转 专项培优易错试卷及答案

一、旋转真题与模拟题分类汇编(难题易错题) 1.在平面直角坐标系中,四边形AOBC是矩形,点O(0,0),点A(5,0),点B(0,3).以点A为中心,顺时针旋转矩形AOBC,得到矩形ADEF,点O,B,C的对应点分别为D,E,F. (1)如图①,当点D落在BC边上时,求点D的坐标; (2)如图②,当点D落在线段BE上时,AD与BC交于点H. ①求证△ADB≌△AOB; ②求点H的坐标. (3)记K为矩形AOBC对角线的交点,S为△KDE的面积,求S的取值范围(直接写出结果即可). 【答案】(1)D(1,3);(2)①详见解析;②H(17 5 ,3);(3) 30334 - ≤S≤30334 + . 【解析】 【分析】 (1)如图①,在Rt△ACD中求出CD即可解决问题; (2)①根据HL证明即可; ②,设AH=BH=m,则HC=BC-BH=5-m,在Rt△AHC中,根据AH2=HC2+AC2,构建方程求出m即可解决问题; (3)如图③中,当点D在线段BK上时,△DEK的面积最小,当点D在BA的延长线上时,△D′E′K的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中, ∵A(5,0),B(0,3),

∴OA=5,OB=3, ∵四边形AOBC是矩形, ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°, ∵矩形ADEF是由矩形AOBC旋转得到, ∴AD=AO=5, 在Rt△ADC中,CD=22 AD AC -=4, ∴BD=BC-CD=1, ∴D(1,3). (2)①如图②中, 由四边形ADEF是矩形,得到∠ADE=90°, ∵点D在线段BE上, ∴∠ADB=90°, 由(1)可知,AD=AO,又AB=AB,∠AOB=90°, ∴Rt△ADB≌Rt△AOB(HL). ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC, ∴∠CBA=∠OAB, ∴∠BAD=∠CBA, ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m, 在Rt△AHC中,∵AH2=HC2+AC2, ∴m2=32+(5-m)2, ∴m=17 5 , ∴BH=17 5 , ∴H(17 5 ,3). (3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1 2 ?DE?DK= 1 2 ×3× (34 ) 30334 -

备战中考数学平行四边形(大题培优易错试卷)附详细答案

备战中考数学平行四边形(大题培优易错试卷)附详细答案 一、平行四边形 1.在平面直角坐标系中,四边形AOBC 是矩形,点O (0,0),点A (5,0),点B (0,3).以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F . (1)如图①,当点D 落在BC 边上时,求点D 的坐标; (2)如图②,当点D 落在线段BE 上时,AD 与BC 交于点H . ①求证△ADB ≌△AOB ; ②求点H 的坐标. (3)记K 为矩形AOBC 对角线的交点,S 为△KDE 的面积,求S 的取值范围(直接写出结果即可). 【答案】(1)D (1,3);(2)①详见解析;②H (175,3);(3)303344-≤S ≤303344 +. 【解析】 【分析】 (1)如图①,在Rt △ACD 中求出CD 即可解决问题; (2)①根据HL 证明即可; ②,设AH=BH=m ,则HC=BC-BH=5-m ,在Rt △AHC 中,根据AH 2=HC 2+AC 2,构建方程求出m 即可解决问题; (3)如图③中,当点D 在线段BK 上时,△DEK 的面积最小,当点D 在BA 的延长线上时,△D′E′K 的面积最大,求出面积的最小值以及最大值即可解决问题; 【详解】 (1)如图①中, ∵A (5,0),B (0,3),

∴OA=5,OB=3, ∵四边形AOBC是矩形, ∴AC=OB=3,OA=BC=5,∠OBC=∠C=90°, ∵矩形ADEF是由矩形AOBC旋转得到, ∴AD=AO=5, 在Rt△ADC中,CD=22 AD AC -=4, ∴BD=BC-CD=1, ∴D(1,3). (2)①如图②中, 由四边形ADEF是矩形,得到∠ADE=90°, ∵点D在线段BE上, ∴∠ADB=90°, 由(1)可知,AD=AO,又AB=AB,∠AOB=90°, ∴Rt△ADB≌Rt△AOB(HL). ②如图②中,由△ADB≌△AOB,得到∠BAD=∠BAO,又在矩形AOBC中,OA∥BC, ∴∠CBA=∠OAB, ∴∠BAD=∠CBA, ∴BH=AH,设AH=BH=m,则HC=BC-BH=5-m, 在Rt△AHC中,∵AH2=HC2+AC2, ∴m2=32+(5-m)2, ∴m=17 5 , ∴BH=17 5 , ∴H(17 5 ,3). (3)如图③中,当点D在线段BK上时,△DEK的面积最小,最小值=1 2 ?DE?DK= 1 2 ×3× (34 ) 30334 -

2020年中考数学 专题培优 圆 解答题(含答案)

2020年中考数学专题培优圆解答题 1.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C, E是BC的中点,连接DE并延长与AB的延长线交于点F. (1)求证:DF是⊙O的切线; (2)若OB=BF,EF=4,求AD的长. 2.如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连结 DE并延长交BC的延长线于点F. (1)求证:∠BDF=∠F; (2)如果CF=1,sinA=0.6,求⊙O的半径.

3.如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM⊥AB于点O,分别交AC、CN于D、M两 点. (1)求证:MD=MC; 4,求MC的长. (2)若⊙O的半径为5,AC=5 4.如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取的中点D,连接AD交BC于点 E,过点E作EH⊥AB于H. (1)求证:△HBE∽△ABC; (2)若CF=4,BF=5,求AC和EH的长.

5.如图,已知AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB对称的两个点,连接OC、AC,且 ∠BOC<90°,直线BC和直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD 相交于点G,且∠GAF=∠GCE (1)求证:直线CG为⊙O的切线; (2)若点H为线段OB上一点,连接CH,满足CB=CH. ①△CBH∽△OBC;②求OH+HC的最大值. 6.如图,AB是以O为圆心的半圆的直径,半径CO⊥AO,点M是弧AB上的动点,且不与点A、C、B重合, 直线AM交直线OC于点D,连结OM与CM. (1)若半圆的半径为10. ①当∠AOM=60°时,求DM的长; ②当AM=12时,求DM的长. (2)探究:在点M运动的过程中,∠DMC的大小是否为定值?若是,求出该定值;若不是,请说明理由.

初中数学培优题库试题11附答案

初中数学培优题库试题11附答案 第Ⅰ卷(选择题共36分) 一、选择题(本大题共12个小题,每小题3分,共36分) 1.一个多边形的内角和是720°,这个多边形的边数是( ) A.4 B.5 C.6 D.7 2.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( ) A.20° B.30°C.40° D.50° 3.如果三角形的两边长分别为3和5,则周长L的取值范围是( ) A.6<L<15 B.6<L<16 C.11<L<13 D.10<L<16 4.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( ) A.CB=CD B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D=90° 5.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4 m,AB=1.6 m,CO=1 m,则栏杆C端应下降的垂直距离CD为( ) A.0.2 m B.0.3 m C.0.4 m D.0.5 m 6.如图,?ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( ) A.6 B.8 C.10 D.12 7.如图,矩形ABCD中,AB=10,BC=5,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( ) A.5 5 B.10 5 C.10 3 D.15 3 8.如图,在△AB C中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )

中考数学专题--正方形经典题型(培优提高)

正方形的性质及判定 知识归纳 1.正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质 正方形是特殊的平行四边形、矩形、菱形.它具有前三者的所有性质: ①边的性质:对边平行,四条边都相等. ②角的性质:四个角都是直角. ③对角线性质:两条对角线互相垂直平分且相等,每条对角线平分一组对角. ④对称性:正方形是中心对称图形,也是轴对称图形. 平行四边形、矩形、菱形和正方形的关系:(如图) 3.正方形的判定 判定①:有一组邻边相等的矩形是正方形. 判定②:有一个角是直角的菱形是正方形. 4.重点:知晓正方形的性质和正方形的判定方法。 难点:正方形知识的灵活应用 例题讲解 一、正方形的性质 例1:如图,已知正方形ABCD的面积为256,点F在CD上,点E在CB的延长线上,且20 AE AF AF ⊥= ,,则BE的长为 F E D C B A 变式1:如图,在正方形ABCD中,E为AB边的中点,G,F分别为AD,BC边上的点,若1 AG=,2 BF=,90 GEF ∠=?,则GF的长为. 正 方 形 菱形 矩形 平行四边形

变式2:将n 个边长都为1cm 的正方形按如图所示摆放,点12...n A A A ,,,分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为 例2:如图,E 是正方形ABCD 对角线BD 上的一点,求证:AE CE =. E D C B A 变式1:如图,P 为正方形ABCD 对角线上一点,PE BC ⊥于E ,PF CD ⊥于F .求证: AP EF =. F E P D C B A 例3:如图,已知P 是正方形ABCD 内的一点,且ABP ?为等边三角形,那么DCP ∠= P D C B A 变式1:如图,已知E 、F 分别是正方形ABCD 的边BC 、CD 上的点,AE 、AF 分别与对角线BD 相交于M 、N ,若50EAF ∠=?, 则CME CNF ∠+∠= . N M F E D C B A

人教中考数学培优易错试卷(含解析)之反比例函数含答案

一、反比例函数真题与模拟题分类汇编(难题易错题) 1.已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形. (1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长; (2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式; (3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________. 【答案】(1)解:如图1, 当点A在x轴正半轴,点B在y轴负半轴上时, ∵OC=0D=1, ∴正方形ABCD的边长CD= ;∠OCD=∠ODC=45°, 当点A在x轴负半轴、点B在y轴正半轴上时, 设小正方形的边长为a, 易得CL=小正方形的边长=DK=LK,故3a=CD= . 解得a= ,所以小正方形边长为, ∴一次函数y=x+1图象的伴侣正方形的边长为或 (2)解:如图2,作DE,CF分别垂直于x、y轴,

易知△ADE≌△BAO≌△CBF 此时,m<2,DE=OA=BF=m,OB=CF=AE=2﹣m, ∴OF=BF+OB=2, ∴C点坐标为(2﹣m,2), ∴2m=2(2﹣m),解得m=1. 反比例函数的解析式为y= . (3)(3,4);y=﹣ x2+ ;偶数 【解析】【解答】解:(3)实际情况是抛物线开口向上的两种情况中,另一个点都在(3,4)的左侧,而开口向下时,另一点都在(3,4)的右侧,与上述解析明显不符合 ①当点A在x轴正半轴上,点B在y轴正半轴上,点C坐标为(3,4)时:另外一个顶点 为(4,1),对应的函数解析式是y=﹣ x2+ ; ②当点A在x 轴正半轴上,点 B在 y轴正半轴上,点D 坐标为(3,4)时:不存在, ③当点A 在 x 轴正半轴上,点 B在 y轴负半轴上,点C 坐标为(3,4)时:不存在 ④当点A在x 轴正半轴上,点B在y轴负半轴上,点D坐标为(3,4)时:另外一个顶点 C为(﹣1,3),对应的函数的解析式是y= x2+ ; ⑤当点A在x轴负半轴上,点B在y轴负半轴上,点D坐标为(3,4)时,另一个顶点C 的坐标是(7,﹣3)时,对应的函数解析式是y=﹣; ⑥当点A在x轴负半轴上,点B在y轴负半轴上,点C坐标为(3,4)时,另一个顶点D 的坐标是(﹣4,7)时,对应的抛物线为y= x2+ ; ∵由抛物线的伴侣正方形的定义知,一条抛物线有两个伴侣正方形,是成对出现的, ∴所求出的任何抛物线的伴侣正方形个数为偶数. 【分析】解答此题时,要特别注意认真读题,分析题意,注意已知条件点A,B分别是x 轴、y轴上的动点,点C,D是某个函数图象上的点。 (1)一次函数y=x+1的图像与两坐标轴围成的图形是等腰直角三角形,正确画出图形,再利用正方形的性质确定相关点的坐标,从而计算出正方形的边长; (2)由于ABCD是正方形,添加辅助线,作DE,CF分别垂直于x、y轴,得到的等腰直角三角形都是全等的,再利用点D(2,m)的坐标表示出点C的坐标,从而可以求解;

相关主题
文本预览
相关文档 最新文档