当前位置:文档之家› 高中数学公式大全(理科)

高中数学公式大全(理科)

高中数学公式大全(理科)
高中数学公式大全(理科)

高中数学常用公式及结论

1 元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠??

2 集合12{,,

,}n a a a 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集

有22n

-个.

3 二次函数的解析式的三种形式:

(1) 一般式2()(0)f x ax bx c a =++≠;

(2) 顶点式2()()(0)h f x a a k x =-+≠;(当已知抛物线的顶点坐标(,)h k 时,设为此式) (3) 零点式12()()()(0)f x a x x x a x =--≠;(当已知抛物线与x 轴的交点坐标为12(,0),(,0)x x 时,

设为此式)

(4)切线式:02()()(()),0x kx d f x a x a =-+≠+。(当已知抛物线与直线y kx d =+相切且切点的

横坐标为0x 时,设为此式)

4 真值表: 同真且真,同假或假

5 常见结论的否定形式;

原结论 反设词 原结论

反设词 是 不是 至少有一个 一个也没有 都是 不都是 至多有一个 至少有两个

大于 不大于 至少有n 个 至多有(1n -)个 小于 不小于 至多有n 个 至少有(1n +)个 对所有x ,成立 存在某x ,不成立

p 或q p ?且q ?

对任何x ,不成立 存在某x ,成立

p 且q p ?或q ?

6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)

原命题 互逆 逆命题 若p则q 若q则p 互 互

互 为 为 互 否 否 逆 逆 否 否

否命题 逆否命题 若非p则非q 互逆 若非q则非p

充要条件: (1)、p q ?,则P 是q 的充分条件,反之,q 是p 的必要条件;

(2)、p q ?,且q ≠> p ,则P 是q 的充分不必要条件; (3)、p ≠> p ,且q p ?,则P 是q 的必要不充分条件;

4、p ≠> p ,且q ≠> p ,则P 是q 的既不充分又不必要条件。

7 函数单调性:

增函数:(1)、文字描述是:y 随x 的增大而增大。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212,,x x D x x ∈<且,都有

12()()f x f x <成立,则就叫f (x )在x ∈D 上是增函数。D 则就是f (x )的递增区间。

减函数:(1)、文字描述是:y 随x 的增大而减小。

(2)、数学符号表述是:设f (x )在x ∈D 上有定义,若对任意的

1212,,x x D x x ∈<且,都有

()()21x f x f >成立,则就叫f (x )在x ∈D 上是减函数。D 则就是f (x )的递减区间。

单调性性质:(1)、增函数+增函数=增函数;(2)、减函数+减函数=减函数;

(3)、增函数-减函数=增函数;(4)、减函数-增函数=减函数;

注:上述结果中的函数的定义域一般情况下是要变的,是等号左边两个函数定义域的交集。 复合函数的单调性: 函数 单调 单调性 内层函数 ↓ ↑ ↑ ↓ 外层函数 ↓ ↑ ↓ ↑ 复合函数 ↑

等价关系:

(1)设[]1212,,,x x a b x x ∈≠那么

[]1212()()()0x x f x f x -->?

[]b a x f x x x f x f ,)(0)

()(2

121在?>--上是增函数;

[]1212()()()0x x f x f x --

[]b a x f x x x f x f ,)(0)

()(2

121在?<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数. 8函数的奇偶性:(注:是奇偶函数的前提条件是:定义域必须关于原点对称) 奇函数:

定义:在前提条件下,若有()()()()0f x f x f x f x -=--+=或, 则f (x )就是奇函数。

性质:(1)、奇函数的图象关于原点对称;

(2)、奇函数在x >0和x <0上具有相同的单调区间;

(3)、定义在R 上的奇函数,有f (0)=0 . 偶函数:

定义:在前提条件下,若有()()f x f x -=,则f (x )就是偶函数。 性质:(1)、偶函数的图象关于y 轴对称;

(2)、偶函数在x >0和x <0上具有相反的单调区间; 奇偶函数间的关系:

(1)、奇函数·偶函数=奇函数; (2)、奇函数·奇函数=偶函数;

(3)、偶奇函数·偶函数=偶函数; (4)、奇函数±奇函数=奇函数(也有例外得偶函数的) (5)、偶函数±偶函数=偶函数; (6)、奇函数±偶函数=非奇非偶函数

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. (7)反函数的性质:互为反函数的两个函数的图像关于直线y x =对称

若函数()y f x =与()y g x =的图像关于直线y x =对称,则函数()2y f x =与

()1

2

y g x =

的图像也关于直线y x =对称;

9函数的周期性: 定义:对函数f (x ),若存在T ≠0,使得f (x+T )=f (x ),则就叫f (x )是周期函数,其中,T 是f (x )

的一个周期。

周期函数几种常见的表述形式:

(1)、f (x+T )= - f (x ),此时周期为2T ;(2)、 f (x+m )=f (x+n ),此时周期为2m n - ; (3)、1

()()

f x m f x +=-

,此时周期为2m 。 (4)、若奇函数()f x 对定义域内任意x 都有()(2)f x f x =-,则()f x 为周期函数。 10常见函数的图像:

k<0

k>0

y=kx+b

o

y

x

a<0

a>0

y=ax 2

+bx+c o

y

x

0

a>1

1

y=a x

o

y

x

0

a>1

1y=log a x

o

y

x

11 对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2

b

a x +=;两个函数)(a x f y +=与)(x

b f y -= 的图象关于直线2

b a

x -=对称. 12 分数指数幂与根式的性质: (1)m n m n

a

a =(0,,a m n N *>∈,且1n >).

(2)1

1

m n

m n

m

n

a

a a

-

=

=

(0,,a m n N *

>∈,且1n >).

(3)()n n a a =.

(4)当n 为奇数时,n

n a a =;当n 为偶数时,,0

||,0

n

n

a a a a a a ≥?==?

-

13 指数式与对数式的互化式: log b a N b a N =?=(0,1,0)a a N >≠>.

指数性质: (1)1、1p

p a

a

-=

; (2)、01a =(0a ≠) ; (3)、()mn m n

a a = (4)、(0,,)r s

r s

a a a a r s Q +?=>∈ ; (5)、m n m n

a a = ;

指数函数:

(1)、 (1)x

y a a =>在定义域内是单调递增函数;

(2)、 (01)x

y a a =<<在定义域内是单调递减函数。注: 指数函数图象都恒过点(0,1) 对数性质:

(1)、 log log log ()a a a M N MN += ;(2)、 log log log a a a

M

M N N

-= ; (3)、 log log m

a a

b m b =? ;(4)、 log log m n

a a n

b b m

=

? ; (5)、 log 10a = (6)、 log 1a a = ; (7)、 l o g a b

a

b =

对数函数:

(1)、 log (1)a y x a => 在定义域内是单调递增函数;

(2)、log (01)a y x a =<<在定义域内是单调递减函数;注: 对数函数图象都恒过点(1,0) (3)、 l o g 0

,(0,1),(1,a x a x a x >?∈∈+∞

或 (4)、log 0(0,1)(1,)a x a x

N a

=

(0a >,且1a ≠,0m >,且1m ≠, 0N >).

对数恒等式:log a N

a

N =(0a >,且1a ≠, 0N >).

推论 log log m n

a a n

b b m

=

(0a >,且1a ≠, 0N >). 15对数的四则运算法则:若a >0,a ≠1,M >0,N >0,则

(1)log ()log log a a a MN M N =+; (2) log log log a a a M

M N N

=-; (3)log log ()n a a M n M n R =∈; (4) log log (,)m

n a a n

N N n m R m

=∈。

16 平均增长率的问题(负增长时0p <):

如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x

y N p =+. 17 等差数列:

通项公式: (1) 1(1)n a a n d =+- ,其中1a 为首项,d 为公差,n 为项数,n a 为末项。

(2)推广: ()n k a a n k d =+-

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和: (1)1()

2

n n n a a S +=

;其中1a 为首项,n 为项数,n a 为末项。 (2)1(1)

2

n n n S na d -=+

(3)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用) (4)12n n S a a a =++

+ (注:该公式对任意数列都适用)

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a +=+ ;

注:若,m n p a a a 是的等差中项,则有2m n p a a a =+?n 、m 、p 成等差。 (2)、若{}n a 、{}n b 为等差数列,则{}n n a b ±为等差数列。

(3)、{}n a 为等差数列,n S 为其前n 项和,则232,,m m m m m S S S S S --也成等差数列。 (4)、,,0p q pq a qa p a +

===则 ;

(5) 1+2+3+…+n=

2

)

1(+n n

等比数列:

通项公式:(1) 1

*11()n n

n a a a q

q n N q

-==

?∈ ,其中1a 为首项,n 为项数,q 为公比。 (2)推广:n k n k a a q -=?

(3)1(2)n n n a S S n -=-≥ (注:该公式对任意数列都适用)

前n 项和:(1)1(2)n n n S S a n -=+≥ (注:该公式对任意数列都适用)

(2)12n n S a a a =++

+ (注:该公式对任意数列都适用)

(3)1

1(1)(1)

(1)

1n n na q S a q q q =??

=-?≠?-?

常用性质:(1)、若m+n=p+q ,则有 m n p q a a a a ?=? ;

注:若,m n p a a a 是的等比中项,则有 2

m n p a a a =??n 、m 、p 成等比。

(2)、若{}n a 、{}n b 为等比数列,则{}n n a b ?为等比数列。

18分期付款(按揭贷款) :每次还款(1)(1)1

n n

ab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 19三角不等式:

(1)若(0,)2

x π

∈,则sin tan x x x <<.

(2) 若(0,

)2

x π

∈,则1sin cos 2x x <+≤. (3) |sin ||cos |1x x +≥.

20 同角三角函数的基本关系式 :2

2

sin cos 1θθ+=,tan θ=θ

θ

cos sin , 21 正弦、余弦的诱导公式(奇变偶不变,符号看象限) 22 和角与差角公式

sin()sin cos cos sin αβαβαβ±=±;

cos()cos cos sin sin αβαβαβ±=;

tan tan tan()1tan tan αβ

αβαβ±±=.

sin cos a b αα+=22sin()a b α?++

(辅助角?所在象限由点(,)a b 的象限决定,tan b

a

?=

).

23 二倍角公式及降幂公式

sin 2sin cos ααα=22tan 1tan α

α

=

+.

2

2

2

2

cos 2cos sin 2cos 112sin ααααα=-=-=-22

1tan 1tan α

α

-=+. 22tan tan 21tan ααα=-. sin 21cos 2tan 1cos 2sin 2αα

ααα-==+

221cos 21cos 2sin ,cos 22

αα

αα-+==

24 三角函数的周期公式

函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0)的周期

2||T πω=

;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0)的周期||

T π

ω=.

三角函数的图像:

-1

1

y=sinx

-2π2π

3π/2

π

π/2

-3π/2

-π/2

o

y

x

-1

1

y=cosx

-2π2π

3π/2π

π/2

-3π/2

-π/2

o

y

x

25 正弦定理 :

2sin sin sin a b c

R A B C

===(R 为ABC ?外接圆的半径). 2sin ,2sin ,2sin a R A b R B c R C ?===::sin :sin :sin a b c A B C ?=

26余弦定理:

2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.

27面积定理:

(1)111

222a b c S ah bh ch =

==(a b c h h h 、、分别表示a 、b 、c 边上的高). (2)111

sin sin sin 222S ab C bc A ca B ===.

(3)221

(||||)()2

OAB S OA OB OA OB ?=?-?. 2,2

a b c S r r a b c ?

??+==++斜边内切圆直角内切圆-

28三角形内角和定理 :

在△ABC 中,有()A B C C A B ππ++=?=-+

222

C A B π+?

=-222()C A B π?=-+. 29实数与向量的积的运算律:设λ、μ为实数,那么: (1) 结合律:λ(μa )=(λμ) a ;

(2)第一分配律:(λ+μ) a =λa +μa ;

(3)第二分配律:λ(a +b )=λa +λb .

30a 与b 的数量积(或内积):a ·b =|a ||b |cos θ。 31平面向量的坐标运算:

(1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --.

(3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.

(4)设a =(,),x y R λ∈,则λa =(,)x y λλ.

(5)设a =11(,)x y ,b =22(,)x y ,则a ·b =1212()x x y y +. 32 两向量的夹角公式:

121222221

1

2

2

cos ||||

x x y y a b

a b x y x y

θ+?=

=

?+?+(a =11(,)x y ,b =22(,)x y ).

33 平面两点间的距离公式:

,A B d =||AB AB AB =

?222121()()x x y y =-+-(A 11(,)x y ,B 22(,)x y ).

34 向量的平行与垂直 :设a =11(,)x y ,b =22(,)x y ,且b ≠0,则:

a ||

b ?b =λa 12210x y x y ?-=.(交叉相乘差为零)

a ⊥

b (a ≠0)? a ·b =012120x x y y ?+=.(对应相乘和为零)

35 线段的定比分公式 :设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,

则12

1

211x x x y y y λλλλ+?=??+?+?=?+?

?1

21OP OP OP λλ+=+ ?12(1)OP tOP t OP =+-(

1

1t λ

=+). 36三角形的重心坐标公式: △ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC

的重心的坐标是1

23123

(,)33

x x x y y y G ++++. 37三角形五“心”向量形式的充要条件:

设O 为ABC ?所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则

(1)O 为ABC ?的外心222

OA OB OC ?==. (2)O 为ABC ?的重心0OA OB OC ?++=.

(3)O 为ABC ?的垂心OA OB OB OC OC OA ??=?=?. (4)O 为ABC ?的内心0aOA bOB cOC ?++=. (5)O 为ABC ?的A ∠的旁心aOA bOB cOC ?=+. 38常用不等式:

(1),a b R ∈?2

2

2a b ab +≥(当且仅当a =b 时取“=”号).

(2),a b R +

∈?

2

a b

ab +≥(当且仅当a =b 时取“=”号). (3)333

3(0,0,0).a b c abc a b c ++≥>>>

(4)b a b a b a +≤+≤-.

(5)22

222

ab a b a b ab a b ++≤≤≤

+(当且仅当a =b 时取“=”号)。 39极值定理:已知y x ,都是正数,则有

(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值24

1s . (3)已知,,,a b x y R +

∈,若1ax by +=则有

21111()()2()by ax ax by a b a b ab a b x y x y x y

+=++=+++≥++=+。

(4)已知,,,a b x y R +∈,若1a b

x y

+=则有 2()()2()a b ay bx

x y x y a b a b ab a b x y x y

+=++=+++≥++=+

40 一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠?=->,如果a 与2

ax bx c ++同号,则

其解集在两根之外;如果a 与2

ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异

号两根之间.即:

121212()()0()x x x x x x x x x <?--><或.

41 含有绝对值的不等式 :当a> 0时,有

22x a x a a x a

22x a x a x a >?>?>或x a <-.

42 斜率公式 :

21

21

y y k x x -=

-(111(,)P x y 、222(,)P x y ).

43A 直线的五种方程:

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).

(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式

11

2121

y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (1212,x x y y ≠≠)).

两点式的推广:211211()()()()0x x y y y y x x -----=(无任何限制条件!)

(4)截距式 1x y

a b

+=(a b 、分别为直线的横、纵截距,00a b ≠≠、)

(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

直线0Ax By C ++=的法向量:(,)l A B '=,方向向量:(,)l B A =-

43B .四种常用直线系方程

(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数. (2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为

111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.

(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.

(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,

λ是参变量. 44 夹角公式:

(1)21

21

tan |

|1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-)

(2)12

21

1212

tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2

π

.

45 1l 到2l 的角公式:

(1)21

21

tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)

d

d

d

相离外切相交

内切内含r 1+r 2

r 2-r 1

o

d

(2)1221

1212

tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2

π

.

46 点到直线的距离 :0022||

Ax By C d A B

++=+(点00(,)P x y ,直线l :0Ax By C ++=).

47 圆的四种方程:

(1)圆的标准方程 222()()x a y b r -+-=.

(2)圆的一般方程 220x y Dx Ey F ++++=(2

2

4D E F +->0).

(3)圆的参数方程 cos sin x a r y b r θ

θ

=+??

=+?.

(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).

48点与圆的位置关系:点00(,)P x y 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种:

若2200()()d a x b y =-+-,则d r >?点P 在圆外; d r =?点P 在圆上; d r

49直线与圆的位置关系:直线0=++C By Ax 与圆2

22)()(r b y a x =-+-的位置关系有三种

(2

2

B

A C

Bb Aa d +++=

):

0相离r d ;0=???=相切r d ;0>???<相交r d .

50 两圆位置关系的判定方法:设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21,则:

条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

条公切线相交22121??+<<-r r d r r ; 条公切线内切121??-=r r d ; 无公切线内含??-<<210r r d .

51 椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ

=??=?. 离心率2

21c b e a a ==-,

准线到中心的距离为2a c

,焦点到对应准线的距离(焦准距)2b p c =。

过焦点且垂直于长轴的弦叫通经,其长度为:2

2b a

.

52 椭圆22

221(0)x y a b a b

+=>>焦半径公式及两焦半径与焦距构成三角形的面积:

21()a PF e x a ex c

=+=+,2

2()a PF e x a ex c =-=-;1221||tan 2F PF P F PF S c y b ?∠==。

53椭圆的的内外部:

(1)点00(,)P x y 在椭圆22

221(0)x y a b a b +=>>的内部22

00

221x y a b ?

+<. (2)点00(,)P x y 在椭圆22

221(0)x y a b a b

+=>>的外部2200

22

1x y a b ?

+>. 54 椭圆的切线方程:

(1) 椭圆22

221(0)x y a b a b

+=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=.

(2)过椭圆22

221x y a b

+=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b +=.

(3)椭圆22221(0)x y a b a b

+=>>与直线0Ax By C ++=相切的条件是22222

A a

B b c +=.

55 双曲线22221(0,0)x y a b a b -=>>的离心率2

21c b e a a

==+,准线到中心的距离为2a c ,焦点到对应

准线的距离(焦准距)2

b p c

=。过焦点且垂直于实轴的弦叫通经,其长度为:22b a .

焦半径公式21|()|||a PF e x a ex c

=+=+,2

2|()|||a PF e x a ex c =-=-,

两焦半径与焦距构成三角形的面积122

1cot 2

F PF F PF S b ?∠=。

56 双曲线的方程与渐近线方程的关系:

(1)若双曲线方程为12222=-b

y a x ?渐近线方程:22220x y a b -=?x a b

y ±=.

(2)若渐近线方程为x a b

y ±=?0=±b y a x ?双曲线可设为λ=-2222b

y a x .

(3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22

22b

y a x

(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 。

57双曲线的切线方程:

(1)双曲线22

221(0,0)x y a b a b

-=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.

(2)过双曲线22

221x y a b

-=外一点00(,)P x y 所引两条切线的切点弦方程是00221x x y y a b -=.

(3)双曲线22221x y a b -=与直线0Ax By C ++=相切的条件是22222

A a

B b c -=.

58抛物线px y 22

=的焦半径公式:

抛物线2

2(0)y px p =>焦半径02

p CF x =+.

过焦点弦长p x x p

x p x CD ++=+++=21212

2.

59二次函数22

24()24b ac b y ax bx c a x a a

-=++=++(0)a ≠的图象是抛物线: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-; (3)准线方程是241

4ac b y a

--=.

60 直线与圆锥曲线相交的弦长公式 221212()()AB x x y y =

-+-

或222221211212(1)[()4]||1tan ||1t AB k x x x x x x y y co αα=

++-?=-+=-+

(弦端点A ),(),,(2211y x B y x ,由方程???=+=0

)y ,x (F b kx y 消去y 得到02

=++c bx ax

0?>,α为直线AB 的倾斜角,k 为直线的斜率,2121212||()4x x x x x x -=+-.

61证明直线与平面的平行的思考途径:

(1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.

62证明直线与平面垂直的思考途径:

(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面。 63证明平面与平面的垂直的思考途径:

(1)转化为线面垂直;

(2)转化为判断二面角是直二面角; 64.共面向量定理

向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+.

推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++.

65对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ?平面ABC ,则P 、A 、B 、C 四点不共面.

C A B 、、、

D 四点共面?AD 与AB 、AC 共面?AD xAB yAC =+?

(1)OD x y OA xOB yOC =--++(O ?平面ABC ).

66空间向量基本定理

如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .

推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++.122. 67A 向量的直角坐标运算

设a =123(,,)a a a ,b =123(,,)b b b 则

(1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则

AB OB OA =-= 212121(,,)x x y y z z ---.

67B 空间的线线平行或垂直

设,()()222221,,,,,z y x b z y x a ==则

b a //?()

0≠=b b a λ?12121

2x x y y z z

λλλ=??

=??=?;

0=??⊥b a b a ?1212120x x y y z z ++=.

67C 夹角公式

设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉=

1122332222221

2

3

123

a b a b a b a a a

b b b

++++++.

推论 2222222

112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.

67D 四面体的对棱所成的角

四面体ABCD 中, AC 与BD 所成的角为θ,则

2222|()()|

cos 2AB CD BC DA AC BD

θ+-+=?.

67E 异面直线所成角

cos |cos ,|a b θ=r r

b a ,cos cos =θ=

22

22

22

21

21

21

212121z

y x z y x z z y y x x b

a b a ++?++++=??

(其中θ(090θ<≤o

o

)为异面直线a b ,

所成角,b a ,分别表示异面直线a b ,的方向向量) 67F 直线AB 与平面所成角

sin

||||

AB m

arc AB m β?=(m 为平面α的法向量).

67G 若ABC ?所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ?的两个内角,则

2222212sin sin (sin sin )sin A B θθθ+=+.

特别地,当90ACB ∠=时,有

22212sin sin sin θθθ+=.

67H 若ABC ?所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、

2θ,''A B 、为ABO ?的两个内角,则

222'2'212tan tan (sin sin )tan A B θθθ+=+.

特别地,当90AOB ∠=时,有

22212sin sin sin θθθ+=. 67I 二面角l αβ--的平面角

cos

||||m n arc m n θ?=或cos ||||

m n

arc m n π?-(m ,n 为平面α,β的法向量).

67J 三余弦定理

设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.

67K 三射线定理

若夹在平面角为?的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ?θθθθθ?=+- ;

1212||180()θθ?θθ-≤≤-+(当且仅当90θ=时等号成立).

67L 空间两点间的距离公式

若A 111(,,)x y z ,B 222(,,)x y z ,则

,A B d =||AB AB AB =

?222212121()()()x x y y z z =-+-+-.

67M 点Q 到直线l 距离

221

(||||)()||

h a b a b a =

-?(点P 在直线l 上,直线l 的方向向量a=PA ,向量b=PQ ). 67N 异面直线间的距离

||

||

CD n d n ?=

(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

67O 点B 到平面α的距离

||

||

AB n d n ?=

(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 67P.异面直线上两点距离公式

2222cos d h m n mn θ=++.

222'2cos ,d h m n mn EA AF =++-.

2222cos d h m n mn ?=++-('E AA F ?=--).

(两条异面直线a 、b 所成的角为θ,其公垂线段'

AA 的长度为h.在直线a 、b 上分别取两点E 、F ,

'A E m =,AF n =,EF d =).

67Q 三个向量和的平方公式

2

2

2

2()222a b c a b c a b b c c a ++=+++?+?+?

2

2

2

2||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++?+?+?

67R 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有

222

2123l l l l =++222123cos cos cos 1θθθ?++=222123sin sin sin 2θθθ?++=.

(立体几何中长方体对角线长的公式是其特例). 141. 面积射影定理

'

cos S S θ

=.

(平面多边形及其射影的面积分别是S 、'

S ,它们所在平面所成锐二面角的为θ). 68球的半径是R ,则其体积34

3

V R π=

,其表面积24S R π=. 69A 球的组合体:

(1)球与长方体的组合体: 长方体的外接球的直径是长方体的体对角线长.

(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体

的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3)球与正四面体的组合体: 棱长为a 的正四面体的内切球的半径为612

a (正四面体高

63a 的14),外接球的半径为64a (正四面体高63a 的34

). 69B 欧拉定理(欧拉公式)

2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).

(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:1

2

E n

F =

; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:1

2

E mV =

.

70 分类计数原理(加法原理):12n N m m m =++

+. 分步计数原理(乘法原理):12n N m m m =???.

71排列数公式 :m

n A =)1()1(+--m n n n =!

!)(m n n -.(n ,m ∈N *,且m n ≤).规定1!0=.

72组合数公式:m n C

=

m n m

m

A A =m m n n n ???+-- 21)1()1(=!!!)(m n m n -?(n ∈N *

,m N ∈,且m n ≤). 组合数的两个性质:(1)m n C =m n n C - ;(2) m n C +1-m n C =m n C 1+.规定10

=n C .

73单条件排列

以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”

①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着

眼位置)11111----+=m n m m n A A A (着眼元素)种.

(2)紧贴与插空(即相邻与不相邻)

①定位紧贴:)(n m k k ≤≤个元在固定位的排列有k

m k n k k A A --种.

②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;

③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨

近的所有排列数有k h h h A A 1+种.

(3)两组元素各相同的插空

m 个大球n 个小球排成一列,小球必分开,问有多少种排法?

当1+>m n 时,无解;当1+≤m n 时,有n m n n

n m C A A 11

++=种排法.

(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为n

n m C +. 74分配问题

(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有

m

n

n n n n n mn n n mn n mn n mn C C C C C N )!()!

(22=

?????=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共

m

n n

n n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=

????=--. (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有

!

!...!!

!! (212)

11m n n n n p n p n n n m p m C C C N m m

=??=-.

(4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n +

+n 个物体分给m 个人,物件必须被分

完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分

配方法数有!...!!! (2)

11c b a m C C C N m m

n n n n p n p ??=

- 12!!

!!...!(!!!...)

m p m n n n a b c =

.

(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件

无记号的m 堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!

!...!!

21m n n n p N =.

(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m

n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有

!...)

!!(!!...!!

21c b a n n n p N m =

.

(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个

人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m

个数是否全相异或不全相异其分配方法数恒有

!

!...!!

(212)

11m n n n n p n p n n n p C C C N m m

=?=-.

75“错位问题”及其推广

贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为

1111()![

(1)]2!3!4!!

n f n n n =-+-+-. 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为 1234

(,)!(1)!(2)!(3)!(4)!

(1)()!(1)()!

m m m m p

p

m

m m

m

f n m n C n C n C n C n C n p C n m =--+---+--+--+

+--

12341224![1(1)(1)]p m p

m

m m m m

m

m

p m n n n n n

n

C C C C C C n A A A A A A =-+-+-

+-+

+-.

76.二项式定理 n

n n r r n r n n n n n n n n b C b a C b a C b a C a C b a ++++++=+--- 222110)( ;

二项展开式的通项公式

r

r n r n r b a C T -+=1)210(n r ,,,

=. 77等可能性事件的概率

()m

P A n

=

. 78.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).

79.n 个互斥事件分别发生的概率的和

P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 79独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).

80A.n 个独立事件同时发生的概率

P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 80B.n 次独立重复试验中某事件恰好发生k 次的概率

()(1).k k

n k n n P k C P P -=-

80C.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥=; (2)121P P ++=. 80D.数学期望

1122n n E x P x P x P ξ=++

++

80E.数学期望的性质

(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=.

(3) 若ξ服从几何分布,且1

()(,)k P k g k p q p ξ-===,则1E p

ξ=

. 80F.方差

()()()22

2

1122n n D x E p x E p x E p ξξξξ=-?+-?+

+-?+

80G.标准差

σξ=ξD .

80H.方差的性质

(1)()2D a b a D ξξ+=;

(2)若ξ~(,)B n p ,则(1)D np p ξ=-.

(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则2q D p

ξ=. 80I.方差与期望的关系

()2

2D E E ξξξ=-.

80J.正态分布密度函数

()()()2

2

261

,,26

x f x e x μπ--

=

∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均

数与标准差.

80K.标准正态分布密度函数

()()22

1

,,26

x f x e x π-

=

∈-∞+∞. 80L.对于2(,)N μσ,取值小于x 的概率

()x F x μσ-??

=Φ ???

.

()()()12201x x P x x P x x x P <-<=<< ()()21F x F x =-

21x x μμσσ--????=Φ-Φ ? ?????

.

80M.回归直线方程

y a bx =+,其中()()()1122

2

1

1

n n

i i i i

i i n n

i i

i i x x y y x y nx y

b x x x

nx a y bx

====?

---?

?==

?

--??

=-?∑∑∑∑.

80N.相关系数

()()

1

2

2

1

1

()()

n

i

i

i n n

i

i

i i x x y y r x x y y ===--=

--∑∑∑ ()()

1

22221

1

()()

n

i

i

i n n

i i i i x x y y x nx y ny ===--=

--∑∑∑.

|r|≤1,且|r|越接近于1,相关程度越大;|r|越接近于0,相关程度越小. 80O.特殊数列的极限

(1)0||1lim 1

1||11

n

n q q q q q →∞

不存在或.

(2)1101100()lim ()()k k k k t

t t n t t k

k t a n a n a a k t b n b n b b k t ---→∞-?

+++?==?+++??>?

不存在 .

(3)(

)111lim

11n

n a q a S q

q

→∞

-==

--(S 无穷等比数列}{

1

1n a q - (||1q <)的和). 80P. 函数的极限定理

lim ()x x f x a →=?0

lim ()lim ()x x x x f x f x a -+→→==.

80Q.函数的夹逼性定理

如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤;

(2)0

lim (),lim ()x x x x g x a h x a →→==(常数),

则0

lim ()x x f x a →=.

本定理对于单侧极限和∞→x 的情况仍然成立. 80R.几个常用极限

(1)1

lim

0n n

→∞=,lim 0n n a →∞=(||1a <);

(2)00lim x x x x →=,00

11

lim x x x x →=.

80S.两个重要的极限 (1)0sin lim

1x x

x

→=;

(2)1lim 1x

x e x →∞

??

+= ???

(e=2.718281845…).

80T.函数极限的四则运算法则

若0

lim ()x x f x a →=,0

lim ()x x g x b →=,则

(1)()()0lim x x f x g x a b →±=±????;

(2)()()0

lim x x f x g x a b →?=?????; (3)()()()0

lim

0x x f x a

b g x b

→=≠. 80U.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞

→∞

==,则

(1)()lim n n n a b a b →∞±=±;

(2)()lim n n n a b a b →∞

?=?; (3)()lim

0n n n

a a

b b b →∞=≠

(4)()lim lim lim n n n n n c a c a c a →∞

→∞

→∞

?=?=?( c 是常数). 80 )(x f 在0x 处的导数(或变化率):

00000()()()lim

lim x x x x f x x f x y

f x y x x

=?→?→+?-?''

===??.

瞬时速度:00()()()lim

lim t t s s t t s t s t t t

υ?→?→?+?-'===??.

瞬时加速度:00()()()lim lim t t v v t t v t a v t t t

?→?→?+?-'===??.

81 函数)(x f y =在点0x 处的导数的几何意义:

函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 82 几种常见函数的导数:

(1) 0='C (C 为常数).(2) 1()()n n x nx n Q -'=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='. (5) x x 1

)(ln =';1(log )log a a x e x

'=. (6) x x e e =')(; a a a x x ln )(='. 83 导数的运算法则:

(1)'

'

'

()u v u v ±=±.(2)'

'

'

()uv u v uv =+.(3)''

'2

()(0)u u v uv v v v

-=≠. 84 判别)(0x f 是极大(小)值的方法:

当函数)(x f 在点0x 处连续时,

(1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值;

(2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值. 85 复数的相等:,a bi c di a c b d +=+?==.(,,,a b c d R ∈) 86 复数z a bi =+的模(或绝对值)||z =||a bi +=22a b +. 87 复平面上的两点间的距离公式:

22122121||()()d z z x x y y =-=-+-(111z x y i =+,222z x y i =+).

88实系数一元二次方程的解

实系数一元二次方程2

0ax bx c ++=,

①若2

40b ac ?=->,则21,242b b ac

x a -±-=;

②若2

40b ac ?=-=,则122b x x a

==-;

③若2

40b ac ?=-<,它在实数集R 内没有实数根;在复数集C 内有且仅有两个共轭复数根

22(4)(40)2b b ac i x b ac a

-±--=-<.

高中数学公式提升

一、集合、简易逻辑、函数

1. 研究集合必须注意集合元素的特征即三性(确定,互异,无序); 已知集合A={x,xy,lgxy},集合

B={0,|x |,y},且A=B,则x+y=

2. 研究集合,首先必须弄清代表元素,才能理解集合的意义。已知集合M={y |y=x 2 ,x ∈R},N={y |

y=x 2+1,x ∈R},求M ∩N ;与集合M={(x,y )|y=x 2 ,x ∈R},N={(x,y)|y=x 2

+1,x ∈R}求M ∩N 的区别。 3. 集合 A 、B ,?=?B A 时,你是否注意到“极端”情况:?=A 或?=B ;求集合的子集B

A ?时是否忘记?. 例如:()()012222<--+-x a x a 对一切R x ∈恒成立,求a 的取植范围,你讨论了a =2的情况了吗?

4. 对于含有n 个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为,n

2,12-n

,12-n .22-n

如满足条件}4,3,2,1{}1{??M 的集合M 共有多少个

5. 解集合问题的基本工具是韦恩图; 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人,表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 6. 两集合之间的关系。},14{},,12{Z k k x x N Z k k x x M ∈±==∈+==

7. (C U A)∩( C U B) = C U (A ∪B) (C U A)∪( C U B) = C U (A ∩B);B B A = A B ??; 8、可以判断真假的语句叫做命题. 逻辑连接词有“或”、“且”和“非”.

p 、q 形式的复合命题的真值表: (真且真,同假或假)

p q P 且q P 或q 真 真 真 真 真 假 假 真 假 真 假 真 假 假 假 假

9、 命题的四种形式及其相互关系:

互 逆

互 互

互 为 互 否 逆 逆 否 否 否 否 否

否 互 逆

原命题与逆否命题同真同假;逆命题与否命题同真同假.

10、你对映射的概念了解了吗?映射f :A →B 中,A 中元素的任意性和B 中与它对应元素的唯一性,哪

几种对应能够成映射? 11、函数的几个重要性质:

①如果函数()x f y =对于一切R x ∈,都有()()x a f x a f -=+或f (2a-x )=f (x ),那么函数

()x f y =的图象关于直线a x =对称.

②函数()x f y =与函数()x f y -=的图象关于直线0=x 对称; 函数()x f y =与函数()x f y -=的图象关于直线0=y 对称;

原命题 若p 则q 逆命题 若q 则p

否命题 若﹃p则﹃q 逆否命题

若﹃q则﹃p

函数()x f y =与函数()x f y --=的图象关于坐标原点对称.

③若奇函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上也是递增函数. ④若偶函数()x f y =在区间()+∞,0上是递增函数,则()x f y =在区间()0,∞-上是递减函数. ⑤函数()a x f y +=)0(>a 的图象是把函数()x f y =的图象沿x 轴向左平移a 个单位得到的;函数

()a x f y +=()0(

a 个单位得到的;

函数()x f y =+a )0(>a 的图象是把函数()x f y =助图象沿y 轴向上平移a 个单位得到的;函数

()x f y =+a )0(

12、求一个函数的解析式和一个函数的反函数时,你标注了该函数的定义域了吗? 13、求函数的定义域的常见类型记住了吗?函数y=

2

)3lg()4(--x x x 的定义域是 ;

复合函数的定义域弄清了吗?函数)(x f 的定义域是[0,1],求)(log 5.0x f 的定义域. 函数)(x f 的定义域

是[b a ,],,0>->a b 求函数)()()(x f x f x F -+=的定义域

14、一个函数的奇偶性时,你注意到函数的定义域是否关于原点对称这个必要非充分条件了吗? 在公共

定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个奇函数与一个偶函数的乘积是奇函数;

15、据定义证明函数的单调性时,规范格式是什么?(取值, 作差, 判正负.)可别忘了导数也是判定函数

单调性的一种重要方法。 16、函数()0>+

=a x

a x y 的单调区间吗?(该函数在(]a -

∞-,和

[)+∞,a 上单调递增;在[)

0,a -

和(]

a ,0上单调递减)这可是一个应用广泛的函数!

17、函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论呀. 18、换底公式及它的变形,你掌握了吗?(b b a

b

b a n a

c c a n log log ,log log log ==) 19、你还记得对数恒等式吗?(b a

b

a =log )

20、“实系数一元二次方程02=++c bx ax 有实数解”转化为“042

≥-=?ac b ”,你是否注意到必

须0≠a ;当a=0时,“方程有解”不能转化为042

≥-=?ac b .若原题中没有指出是“二次”方

程、函数或不等式,你是否考虑到二次项系数可能为零的情形? 二、三角、不等式

21、三角公式记住了吗?两角和与差的公式________________; 二倍角公式:________________;解题

时本着“三看”的基本原则来进行:“看角,看函数,看特征”,基本的技巧有:巧变角,公式变形使用,

化切割为弦,用倍角公式将高次降次, 22、在解三角问题时,你注意到正切函数、余切函数的定义域了吗?正切函数在整个定义域内是否为单

调函数?你注意到正弦函数、余弦函数的有界性了吗? 23、在三角中,你知道1等于什么吗?(x x x x 2

2

2

2

tan sec cos sin 1-=+=

====?=0cos 2

sin

4

tan

cot tan π

π

x x 这些统称为1的代换) 常数 “1”的种种代换有着广

泛的应用.(还有同角关系公式:商的关系,倒数关系,平方关系; 诱导公试:奇变偶不变,符号看象限)

24、在三角的恒等变形中,要特别注意角的各种变换.(如,)(αβαβ-+=,)(αβαβ+-=

??

?

??--??? ??-=+βαβαβ

α222

等)

25、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值

的式子,一定要算出值来)

26、你还记得三角化简的通性通法吗?(切割化弦、降幂公式、用三角公式转化出现特殊角. 异角化同

角,异名化同名,高次化低次);你还记得降幂公式吗?cos 2x=(1+cos2x)/2;sin 2

x=(1-cos2x)/2 27、你还记得某些特殊角的三角函数值吗?

高中数学公式史上最全大全

高中数学公式大全 (最全面,最详细) 高中数学公式大全 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

(完整版)文科高中数学公式大全(超全完美)

高 中文科数学公式总结 一、函数、导数 1.元素与集合的关系:U x A x C A ∈??,U x C A x A ∈??.A A ??≠?? 集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有21n -个;非空子集有21n -个;非空的真子集有 22n -个. 2. 真值表 常 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.) 3. 充要条件(记p 表示条件,q 表示结论) (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4. 全称量词?表示任意,?表示存在;?的否定是?,?的否定是?。 例:2 ,10x R x x ?∈++> 的否定是 2 ,10x R x x ?∈++≤ 5. 函数的单调性

(1)设2121],,[x x b a x x <∈、那么 ],[)(0)()(21b a x f x f x f 在?<-上是增函数; ],[)(0)()(21b a x f x f x f 在?>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数. 6. 复合函数)]([x g f y =单调性判断步骤: (1)先求定义域 (2)把原函数拆分成两个简单函数)(u f y =和)(x g u = (3)判断法则是同增异减(4)所求区间与定义域做交集 7. 函数的奇偶性 (1)前提是定义域关于原点对称。 (2)对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。 (3)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 8.若奇函数在x =0处有意义,则一定存在()00f =; 若奇函数在x =0处无意义,则利用 ()()x x f f -=-求解; 9.多项式函数1 10()n n n n P x a x a x a --=++?+的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 10. 常见函数的图像: 11. 函数的对称性 (1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)对于函数)(x f y =(R x ∈),)()(x a f x a f -=+恒成立,则函数)(x f 的对称轴是a x = (3)对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是2 b a x +=; 12. 由 )(x f 向左平移一个单位得到函数)1(+x f 由)(x f 向右平移一个单位得到函数)1(-x f 由 )(x f 向上平移一个单位得到函数1)(+x f 由)(x f 向下平移一个单位得到函数1)(-x f 若将函数)(x f y =的图象向右移a 、再向上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线 0),(=y x f 的图象向右移a 、向上移b 个单位,得到曲线0),(=--b y a x f 的图象. 13. 函数的周期性 (1))()(a x f x f +=,则)(x f 的周期T a =||; (2)()()f x a f x +=-,则)(x f 的周期2T a =|| (3)1 ()() f x a f x += ,则)(x f 的周期2T a =|| (4)()()f x a f x b +=+,则)(x f 的周期T a b =|-|; 14. 分数指数 (1)m n a =0,,a m n N *>∈,且1n >).

高中数学公式大全 文科

第1页(共11页) 高中数学公式及知识点速记 (文科55个) 一、函数、导数 1、函数的单调性 (1)设2121],,[x x b a x x 、那么 ],[)(0)()(21b a x f x f x f 在 上是增函数; ],[)(0)()(21b a x f x f x f 在 上是减函数. (2)设函数)(x f y 在某个区间内可导,若0)( x f ,则)(x f 为增函数;若0)( x f ,则)(x f 为减函数. 2、函数的奇偶性 对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f ,则)(x f 是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。 3、函数)(x f y 在点0x 处的导数的几何意义 函数)(x f y 在点0x 处的导数是曲线)(x f y 在))(,(00x f x P 处的切线的斜率)(0x f ,相应的切线方程是))((000x x x f y y .

第2页(共11页) 4、几种常见函数的导数 ①'C 0 ;②1')( n n nx x ; ③x x cos )(sin ' ;④x x sin )(cos ' ; ⑤a a a x x ln )(' ;⑥x x e e ')(; ⑦a x x a ln 1)(log ' ;⑧x x 1)(ln ' 5、导数的运算法则 (1)' ' ' ()u v u v . (2)' ' ' ()uv u v uv . (3)'' '2()(0)u u v uv v v v . 6、会用导数求单调区间、极值、最值 7、求函数 y f x 的极值的方法是:解方程 0f x .当 00f x 时: (1) 如果在0x 附近的左侧 0f x ,右侧 0f x ,那么 0f x 是极大值; (2) 如果在0x 附近的左侧 0f x ,右侧 0f x ,那么 0f x 是极小值. 二、三角函数、三角变换、解三角形、平面向量 8、同角三角函数的基本关系式 22sin cos 1 ,tan = cos sin . 9、正弦、余弦的诱导公式 k 的正弦、余弦,等于 的同名函数,前面加上把 看成锐角时该函数的符号; 2 k 的正弦、余弦,等于 的余名函数,前面加上把 看成锐角时该函数的符号。

(完整版)高中数学公式大全最新整理

高 中 数 学 公 式 大 全(简化版)

目录 1 集合与简易逻辑 (01) 2 函数 (03) 3 导数及其应用 (09) 4 三角函数 (11) 5 平面向量 (13) 6 数列 (14) 7 不等式 (15) 8 立体几何与空间向量 (17) 9 直线与圆 (20) 10圆锥曲线 (23) 11排列组合与二项式定理 (25) 12统计与概率 (26) 13复数与推理证明 (29)

§01. 集合与简易逻辑 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且I 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈? ∈ B A B B A B A A B A ??=??=Y I 注:数形结合---文氏图、数轴 4. 包含关系 A B A A B B =?=I U U U A B C B C A ????U A C B ?=ΦI U C A B R ?=U 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6. 真值表 7. 常见结论的否定形式

8. 四种命题 原命题:若p 则q 逆命题:若q 则p 否命题:若p ?则q ? 逆否命题:若q ?则p ? 原命题与逆否命题真假相同 否命题与逆命题真假相同 9. 充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.

高中数学公式大全(完整版)

高中数学常用公式及常用结论 1.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 2.集合12{,, ,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2 个. 3.充要条件 (1)充分条件:若p q ?,则p 是q 充分条件. (2)必要条件:若q p ?,则p 是q 必要条件. (3)充要条件:若p q ?,且q p ?,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然. 4.函数的单调性 (1)设[]2121,,x x b a x x ≠∈?那么 []1212()()()0x x f x f x -->? []b a x f x x x f x f ,)(0) ()(2 121在?>--上是增函数; []1212()()()0x x f x f x --'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函 数. 5.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数 )(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 7.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2 b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2 b a x += 对称. 8.几个函数方程的周期(约定a>0) (1))()(a x f x f +=,则)(x f 的周期T=a ; (2),)0)(()(1 )(≠=+x f x f a x f ,或1()() f x a f x +=-(()0)f x ≠,则)(x f 的周期T=2a ; 9.分数指数幂 (1)m n a = (0,,a m n N * >∈,且1n >).(2)1m n m n a a - = (0,,a m n N * >∈,且1n >). 10.根式的性质 (1 )n a =.(2)当n a =;当n ,0 ||,0a a a a a ≥?==? -∈.(2) ()(0,,)r s rs a a a r s Q =>∈.(3)()(0,0,)r r r a b a b a b r Q =>>∈. 12.指数式与对数式的互化式 log b a N b a N =?=(0,1,0)a a N >≠>. ①.负数和零没有对数,②.1的对数等于0:01log =a ,③.底的对数等于1:1log =a a , ④.积的对数:N M MN a a a log log )(log +=,商的对数:N M N M a a a log log log -=,

高中数学公式大全完整版

高中数学常用公式及常用结论 1. 包含关系 A B A A B B A B C U B C U A A C U B C U ABR 2 .集合 { a 1, a 2 , , a n } 的子集个数共有 2n 个;真子集有 2n – 1 个;非空子集有 2n – 1 个;非空的真子集有 2n – 2 个 . 3.充要条件 ( 1)充分条件:若 ( 2)必要条件:若 ( 3)充要条件:若 p q ,则 p 是 q 充分条件 . q p ,则 p 是 q 必要条件 . p q ,且 q p ,则 p 是 q 充要条件 . 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然 . 4. 函数的单调性 (1) 设 x 1 x 2 a,b , x 1 x 2 那么 (x 1 x 2 ) f ( x 1 ) f ( x 2 ) f ( x 1 ) f ( x 2 ) 0 f (x)在 a,b 上是增函数; x 2 x 1 (x x ) f ( x ) f ( x ) f ( x 1 ) f ( x 2 ) f ( x)在 a, b 上是减函数 . 1 2 1 2 x 1 x 2 (2) 设函数 y f ( x) 在某个区间内可导,如果 f (x) 0 ,则 f (x) 为增函数;如果 f ( x) 0 ,则 f ( x) 为减函 数 . f ( x) 和 g( x) 都是减函数 , , 和函数 f ( x) g( x) 也是减函数 ; 5. 如果函数 则在公共定义域内 如果函数 y f (u) 和 u g (x) 在其对应的定义域上都是减函数 , 则复合函数 y f [ g( x)] 是增函数 . 6.奇偶函数的图象特征 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称 ; 反过来,如果一个函数的图象关于原点对称,那么 这个函数是奇函数;如果一个函数的图象关于 y 轴对称,那么这个函数是偶函数. 7. 对于函数 y f (x) ( x R ), f (x a) f (b x) 恒成立 , 则函数 f ( x) 的对称轴是函数 a b x ; 两个函 a b 2 数 y f (x a) 与 y f (b x) 的图象关于直线 x 对称 . 2 8. 几个函数方程的周期 ( 约定 a>0) ( 1) f (x) f (x a) ,则 f (x) 的周期 T=a ; ( 2), f ( x a) 1 ( f ( x) 0) ,或 f (x a) 1 f ( x) ( f (x) 0) , 则 f ( x) 的周期 T=2a ; f (x) 9. 分数指数幂 m 1 m 1 (1) a n ( a 0, m, n N ,且 n 1 ) .(2) a n 0, m, n N ,且 n 1) . n a m m ( a a n 10.根式的性质 ( ) ( n a )n a . ( 2)当 n 为奇数时, n n a ;当 n 为偶数时, n a n | a | a, a 0 . 1 a a, a 0 11.有理指数幂的运算性质 (1) a r a s a r s ( a 0, r , s Q ) .(2) (a r ) s a rs (a 0, r , s Q) .(3) (ab)r a r b r (a 0, b 0, r Q) . 12. 指数式与对数式的互化式log a N b a b N (a 0, a 1, N 0) . ①.负数和零没有对数,② .1 的对数等于 0: log a 1 0 ,③ .底的对数等于 1: log a a 1 , ④ .积的对数: log a (MN ) log a M log a N ,商的对数: log a M log a M log a N , N n log a b 幂的对数: log a M n nlog a M ; log a m b n m

高中大学高等数学公式集锦

高学高等数学公式集锦 常用导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高一数学公式大全

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 降幂公式 (sin^2)x=1-cos2x/2 (cos^2)x=i=cos2x/2 万能公式 令tan(a/2)=t sina=2t/(1+t^2) cosa=(1-t^2)/(1+t^2) tana=2t/(1-t^2) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα

最全面高中数学公式大全最全-高中数学公式大全总结(精华版)

高中数学常用公式及结论 元素与集合的关系 : x A x C U A , x C U A x A . 1 ? A A 2 n 2 n 2 n 1个;非空子集有 2 1 个;非空的真子集有 集合 { a ,a , , a } 的子集个数共有 个;真子集有 1 2 n n 2 2 个. 3 二次函数的解析式的三种形式: ax 2 (1) 一般式 f (x) bx c(a 0) ; h)2 (2) 顶点式 f (x) a(x k(a 0) ; (当已知抛物线的顶点坐标 (h, k ) 时,设为此式) (3) 0) ;(当已知抛物线与 x 轴的交点坐标为 零点式 f (x) a(x x 1 )( x x 2 )(a ( x 1,0),( x 2 ,0) 时,设 为此式) 2 a(x x 0 ) ( 4)切线式: f ( x) (kx d ), (a 0) 。(当已知抛物线与直线 y kx d 相切且切点的横 坐标为 x 0 时,设为此式) 4 5 真值表: 同真且真,同假或假 ; 常见结论的否定形式 原结论是 都是大于 小于 反设词 不 是 不都是不大于不小于 存在某 存在某 原结论 至少有一个至多有一个至少有 n 个至多有 n 个 p 或 q p 且 q 反设词 一个也没有至少有两个 n n q q 1)个 1)个 至多有( 至少有( p 且 p 或 x ,成立 x ,不成立 x ,不成立 x ,成立 对所有 对任何 6 ( 下图 ): ( 原命题与逆否命题同真同假;逆命题与否命题同真同假 . ) 四种命题的相互关系 原命题 若p则q 互逆 逆命题 若q则p 互 互 互 否 为 为 互 否 逆 逆 否 否 否命题 若非p则非q 逆否命题 若非q则非p 互逆 p p q ,则 q ,且 充要条件: (1) P 是 q 的充分条件,反之, q 是 p 的必要条件; 、 ( 2)、 q ≠> p ,则 P 是 q 的充分不必要条件; (3) 、p ≠ > p ,且 q p ,则 P 是 q 的必要不充分条件; 4、p ≠ > p ,且 q ≠ > p ,则 P 是 q 的既不充分又不必要条件。 7 函数单调性 : 增函数: (1) y 随 x 的增大而增大。 、文字描述是:

(完整版)高中数学公式大全

高中数学公式大全.txt鲜花往往不属于赏花的人,而属于牛粪。。。道德常常能弥补智慧的缺陷,然而智慧却永远填补不了道德空白人生有三样东西无法掩盖:咳嗽贫穷和爱,越隐瞒,就越欲盖弥彰。抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式: S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

高中数学公式大全(最全面,最详细)

高中数学公式大全(最全面,最详细) 高中数学公式大全 抛物线:y = ax *+ bx + c 就是y等于ax 的平方加上bx再加上c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x+h)* + k 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3) 面积=(pi)(r^2) 周长=2(pi)r 圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 (一)椭圆周长计算公式 椭圆周长公式:L=2πb+4(a-b) 椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。 (二)椭圆面积计算公式 椭圆面积公式:S=πab 椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*高 三角函数: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cota cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式: sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4) 五倍角公式: sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4) 六倍角公式:

高中数学公式大全【全面】

高中数学常用公式及常用结论 1.元素与集合的关系 x 三A 二x C u A, x 三C u A 二x A. 2.德摩根公式 C U(A B^C U A C U B;C U (A B^C U A C u B . 3.包含关系 A B = A :二A B = B :二A —B :二C u B —C u A =A CjB = ::」u C u A B 二R 4.容斥原理 card (A B) =cardA cardB — card (A B) card(A B C) =cardA cardB cardC -card (A B) -card (A B)-card(B C)-card(C A) card (A B C). 5?集合{a1,a2/ ,a n}的子集个数共有2n个;真子集有2n- 1个;非空子集有2n- 1个;非空的真子集有2n- 2个. 6.二次函数的解析式的三种形式 (1)一般式f (x)二ax1 2 bx c(a = 0); (2)顶点式f(x)二a(x-h)2 k(a = O); ⑶零点式f(x) =a(x-xj(x-x2)(a =0). 7.解连不等式N :::f (x) ::: M常有以下转化形式 ::f(x) :: M = [ f (x) —M ][ f (x) — N] :: 0 M - f(x)

8.方程f(x)=0在(k「k2)上有且只有一个实根,与f (kjf(k2)::: 0不等价,前者是后 者的一个必要而不是充分条件?特别地,方程ax2 bx 0(a = 0)有且只有一个实根在 b k t + k2 (k i,k2)内,等价于f (kjf(k2):: 0,或f(kJ = 0 且k i - -,或f(k2)=0 且 2a 2 k t k2 b , k2. 2 2a 9?闭区间上的二次函数的最值 二次函数f (x) =ax2 bx - c(a =0)在闭区间〔p,q〕上的最值只能在x —处及区 2a 间的两端点处取得,具体如下: ⑴当a>0 时,若X 二-f lp,q L 则fx> nm f( -)jfx xmm =(f)p)fq ?; 2a 2a b ' '-P,q L f (x)max 二max C f (P), f (q)^,f(X)min 二min f (P), f 9) ? 2a ⑵当a<0 时,若X 二-卫〔P,q 1 ,则f ( x m i n mfi nf p( f, q (若) 2a x 二-兰」p,q L 则f &爲=max1f(p), f (q)1, f(x)m^ -min「f(p), f(q)L 2a 10.一元二次方程的实根分布 依据:若f (m) f (n) :::0,则方程f(x) =0在区间(m,n)内至少有一个实根. 设f (x) = X2 px q,则 / 2 p _ 4q 启0 (1)方程f(x)=0在区间(m,^)内有根的充要条件为f(m)=0或< p; > m u 2 f(m) 0 |f(n)>0 (2)方程f (x) =0在区间(m,n)内有根的充要 条件为 f (m) f (n) 或* p2 _4q启。 p m £—上< n I 2 f(m) =0 f(n )=0 或或 af (n) 0 af(m) 0

高中数学常用公式大全

高中数学常用公式大全 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==I U U I . 3.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 4.二次函数的解析式的三种形式 (1)一般式2 ()(0)f x ax bx c a =++≠; (2)顶点式2 ()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 5.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈- =,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?- =,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则 {}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 7.真值表

高中数学公式大全完整版

高中数学常用公式及常用结论 1. 元素与集合的关系 U x A x C A ∈??,U x C A x A ∈??. 2.德摩根公式 ();()U U U U U U C A B C A C B C A B C A C B ==. 3.包含关系 A B A A B B =?=U U A B C B C A ???? U A C B ?=ΦU C A B R ?= 4.容斥原理 ()()card A B cardA cardB card A B =+- ()()card A B C cardA cardB cardC card A B =++- ()()()()card A B card B C card C A card A B C ---+. 5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个. 6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠. 7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <- ? 11 ()f x N M N >--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(210时,若[]q p a b x ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; []q p a b x ,2?-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p a b x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p a b x ,2?-=,则 {}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =. 10.一元二次方程的实根分布 依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 . 设q px x x f ++=2)(,则

高中数学公式及知识点总结大全(精华版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 高中数学公式及知识点总结大全(精华版) ?中?科数学公式及知识点速记?、函数、导数1、函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,若,则为增函数;若数. 2、函数的奇偶性对于定义域内任意的,都有,则是偶函数;对于定义域内任意的,都有,则是奇函数。 奇函数的图象关于原点对称,偶函数的图象关于 y 轴对称。 3、函数在点处的导数的?何意义函数在点处的导数是曲线在处的切线的斜率程是.*?次函数:(1)顶点坐标为 4、?种常?函数的导数①;②;③;(2)焦点的坐标为;④;⑤;⑥;⑦;⑧ 5、导数的运算法则(1). (2). (3) 6、会?导数求单调区间、极值、最值 7、求函数的极值的?法是:解?程.当. 时:(1) 如果在附近的左侧,右侧,那么是极?值;(2) 如果在附近的左侧指数函数、对数函数分数指数幂(1)((2)(,右侧,那么是极?值.,且). ,且).,则为减函,相应的切线?1 1/ 15

根式的性质(1)当为奇数时,当为偶数时,; .有理指数幂的运算性质(1).(2).(3).注:若 a>0,p 是?个?理数,则 ap 表示?个确定的实数.上述有理指数幂的运算性质,对于?理数指数幂都适?..指数式与对数式的互化式:..对数的换底公式 :(,且 ,,且 ,).对数恒等式:推论(,且,).(,且,).常?的函数图象?、三?函数、三?变换、解三?形、平?向量 8、同?三?函数的基本关系式,=.9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)的正弦、余弦,等于的同名函数,前?加上把看成锐?时该函数的符号;的正弦、余弦,等于的余名函数,前?加上把看成锐?时该函数的符号。 ,,.,,.,,.2

相关主题
文本预览
相关文档 最新文档