当前位置:文档之家› 201205-CRH380B动车组电磁兼容试验报告V4.1

201205-CRH380B动车组电磁兼容试验报告V4.1

201205-CRH380B动车组电磁兼容试验报告V4.1
201205-CRH380B动车组电磁兼容试验报告V4.1

CTCTS3-300T型ATP

与CRH380B型动车组接口型式试验电磁兼容测试报告

北京交通大学电磁兼容实验室

2012年6月20日

摘要

为研究CRH380B动车组所搭载的CTCS3-300T型车载列控设备(ATP)的电磁兼容性指标和性能,并获取车内电磁环境等数据,在郑西客运专线“荥阳南-洛阳龙门”段进行了动车组电磁兼容试验测试。电磁兼容的主要试验项目有:电磁环境测量(分别在ATP设备附近、ATP设备临近车厢进行)、ATP设备主要信号电缆共模和差模骚扰的时域和频域测量。试验情况总结如下:

1.ATP附近电磁环境的测量结果与此前其他车型测量结果类似,均与速度变化无明显关系。其中9kHz-30MHz频段的空间磁场的电磁骚扰在高速时,幅度略有增大(部分频段增大了几个dB,主要是1MHz以下的低频,这主要由于牵引电流的增大)。对于30MHz~2GHz频段空间电场的测量,由于30MHz~1GHz这段频谱已完全被划分使用,背景的频谱分量非常丰富,电气化铁道和列车的辐射骚扰基本和背景噪声重叠,不易区分。考虑到ATP设备按照铁标3073进行辐射抗扰绕度试验时,试验等级为3级(10V/m),即140 dBμV/m,根据现场的测量结果,除机车电台频率450MHz外,应有40dB以上的电磁兼容裕量,因此ATP设备附近空间辐射场电磁环境较好。

2.BTM天线端口、SPD速度传感器端口、STM轨道电路感应线圈端口、MVB 总线电缆上均存在电磁骚扰现象。列车静止时,信号电缆上的共模骚扰电流强度较低,尤其是1MHz以下频段。列车运行时,骚扰强度有所提高,1MHz以下频段较为明显,但骚扰强度测量与速度无明显直接关系,不同速度的测量值在同一数量级内。

3.同稳态频域骚扰相比,过分相、紧急制动等工况引起的上述端口瞬态时域脉冲骚扰影响更大。本次试验进行ATP系统各信号线共模和差模的瞬态同步时域测试,通过差模试验,定量研究了信号线的骚扰电平。一般而言,稳定的频域骚扰即使造成电磁干扰现象,相对易于排查与解决;时域的脉冲骚扰与工况有关,具有偶发性,相对难以发现,应进一步重视研究该类骚扰现象。

4.通过BTM天线端口以及STM轨道电路感应线圈端口所测到的差模骚扰电压均较大的情况表明,车辆运行时车底与轨道之间的空间辐射骚扰较强。尤其当车辆经过分相区时,从BTM天线所接收到的差模骚扰脉冲在BTM上行频带内的包络幅度有可能超过地面应答器的上行信号的包络幅度,如果此时正好经过应答器上方,则会对点式应答设备的车地通信造成干扰。

目录

1试验名称 (1)

2试验目的 (1)

3试验地点 (1)

4试验样品 (1)

5依据标准/ 相关文档 (1)

6性能判据 (1)

7受试系统工作状态 (1)

8试验时间 (1)

9试验信息和条件 (1)

9.1 试验位置 (2)

9.2 试验项目 (2)

9.3 仪器设备 (7)

10试验数据分析 (8)

10.1 ATP设备舱附近电磁环境测量的试验数据分析 (8)

10.2 ATP系统信号端口电磁骚扰的频域测试数据分析 (40)

10.3 ATP系统信号端口电磁骚扰时域试验数据分析 (52)

图表索引............................................................................................ 错误!未定义书签。

1 试验名称

CTCTS3-300T型ATP与CRH380B型动车组接口型式试验:电磁兼容测试报告。

2 试验目的

为研究CRH380B动车组所搭载的CTCS3-300T型车载列控设备(ATP)的电磁兼容性指标和性能,并获取车内电磁环境等数据,在郑西客运专线“荥阳南-洛阳龙门”段进行了动车组电磁兼容试验测试。

3 试验地点

郑西客运专线“荥阳南-洛阳龙门”段。

4 试验样品

CRH-380B动车组、CTCTS3-300T型ATP。

5 依据标准/ 相关文档

IEEE Standard 473 - 1985 Electromagnetic Site Survey (10 kHz to 10 GHz) 非标试验

6 性能判据

本次试验为非标试验,不适用标准中规定的限值或性能判据。

7 受试系统工作状态

动车组运行模式参见《CTCS3-300T型ATP与380B型动车组接口型式试验测试序列(郑西线)》。

8 试验时间

2012.5.20 至2012.5.25

9 试验信息和条件

9.1 试验位置

试验在CRH-380B动车组上进行。电磁环境测量的试验点设在ATP设备舱门正对车厢走廊内;ATP设备主要信号电缆上共模骚扰电流和差模骚扰电压的时域和频域测量的测量传感器试验点在ATP设备的相应信号电缆和端口,测量设备在临近区域。

9.2 试验项目

1)动车组车内ATP电磁环境测量

分别测量动车组在上电待机状态和不同运行速度下的电磁环境。试验点设在ATP 设备舱正对的车厢走廊上,天线架设高度正对设备舱中央位置。试验目的是获取不同速度(包括高速)下ATP设备附近的电磁环境电平的数据和频谱分布。通过与先前其他车型同类试验测量结果比较其差异,进一步研究ATP设备所在的电磁环境的电磁兼容性。测量频段涵括车载列控及信号设备的工作频段,以及GSM-R等无线通信系统的工作频段。

图1. 空间射频磁场测试布置(CRH-380B 8号与7号车厢交界处,9kHz~30MHz)

图2. 空间射频电磁场测试布置(CRH-380B 8号与7号车厢交界处,30MHz~200MHz)

图3. 空间射频电磁场测试布置(CRH-380B 8号与7号车厢交界处,200MHz~500MHz)

图4. 空间射频电磁场测试布置(CRH-380B 8号与7号车厢交界处,500MHz~2GHz)

2)ATP系统信号端口电磁骚扰的频域测试

此项测试主要测试ATP系统各输入信号端口从电磁环境中耦合到的骚扰电压或骚扰电流的频域特性。测试内容包括BTM天线端口的差模电压的频域测试和SPD速度传感器输入电缆、STM轨道电路线圈输入电缆及MVB总线电缆的共模骚扰电流测试。上述测量用于监测动车组在运行期间,尤其是经过电分相区等特殊条件下,从各种信号输入端口直接侵入ATP系统设备的电磁骚扰。另外,BTM天线端口的差模电压能够直接反映车辆运行过程中车下CAU天线单元所处的电磁环境的特征。

对于BTM天线端口的差模骚扰电压,采用专用的匹配耦合装置(9kHz~50MHz耦合度-20dB)将信号检出,并送入频谱分析仪进行测量,测试过程不影响BTM的正常工作(测试布置);对于SPD速度传感器输入电缆、STM轨道电路线圈输入电缆及MVB 总线电缆的共模骚扰电流,则采用安装在电缆根部的电流钳探头将骚扰电流检出,并送入频谱分析仪进行测量,测试过程不影响上述设备的正常工作。试验位置和探

头的布置见图5 图7。

图5. CRH-380B ATP的BTM天线端口差模电压试验位置

图6. CRH-380B ATP的SPD信号电缆共模电流的试验位置

图7. CRH-380B ATP的STM信号电缆共模电流的试验位置

3)ATP系统信号端口电磁骚扰的时域测试

对ATP系统连接的各种传感器和天线电缆端口进行测试。本项测试不需改变设备的原有接线方式,待测试端口包括BTM天线端口、SPD速度传感器输入端口、STM 轨道电路线圈输入端口以及系统内的MVB总线电缆。

此项测试主要测试ATP系统各输入信号端口从电磁环境中耦合到的骚扰电压或骚扰电流的时域特性。测试内容包括BTM天线端口的差模电压的时域测试和SPD速度传感器输入电缆、STM轨道电路线圈输入电缆及MVB总线电缆的共模骚扰电流测试。上述测量用于监测动车组在运行期间,尤其是经过电分相区等特殊条件下,从各种信号输入端口直接侵入ATP系统设备的电磁骚扰。另外,BTM天线端口的差模电压能够直接反映车辆运行过程中车下CAU天线单元所处的电磁环境的特征。

对于BTM天线端口的差模骚扰电压以及各信号电缆共模骚扰电流的信号检出方式及耦合装置的布置同频域测试的试验布置。对于SPD速度传感器和STM轨道电路感应线圈输入端口的差模骚扰电压,则在ATP系统的配线端子排上将差模电压信号直接取出,利用电压探头送入数字示波器进行测量,测试过程同样不影响ATP系统的正常

工作。试验位置和探头的布置见图5 图8。

图8. SPD、STM输入端口差模电压测试布置

9.3 仪器设备

测量动车组车内电磁环境所需仪器设备见表1:

表1. 测量动车组车内电磁环境所需仪器设备

表2. 信号端口的差模电压/共模电流电磁骚扰项目所需仪器设备

10 试验数据分析

10.1 静态电磁环境测量的试验数据分析

10.1.1 150KHz ~30MHz 频段空间磁场的测量数据分析:

应用EMC6507环天线测量的空间磁场的试验频段为150kHz ~30MHz 频段,分辨率带宽(RBW 3dB )为10kHz 。试验在天线口面分别垂直和平行于ATP 设备舱柜门两种条件下进行。

针对每个测试频段和每种极化方向,测试数据图表以以下方式进行组织,并进行分析说明:①每种设置下测量全过程累积的骚扰频谱最大值、最小值和平均值;②对频谱分布中特征峰值频点的幅度概率分布(APD )统计。 150KHz ~30MHz 频段空间磁场的测量数据分析:

磁场强度(d B u A /m )

频率(MHz)

图9. 150KHz ~30MHz 静态环境磁场强度极值分布图(天线口面垂直舱门)

北京交通大学电磁兼容实验室 第9页

磁场强度(d B u A /m )

频率(MHz)

图10. 150KHz ~30MHz 静态环境磁场强度极值分布图(天线口面平行舱门)

磁场强度(dBuA/m)

A P D 概率

图11. 150KHz ~30MHz 磁场特征峰值频点的APD 分布(天线口面垂直舱门)

北京交通大学电磁兼容实验室 第10页

磁场强度(dBuA/m)

A P D 概率

图12. 150KHz ~30MHz 磁场特征峰值频点的APD 分布(天线口面平行舱门)

10.1.2 30MHz ~2GHz 频段空间电场的测量数据分析

30MHz ~2GHz 频段空间电场的测量分别应用FSH8天线组件实现,因此分为4个频段测量:30MHz ~200MHz 、200MHz ~500MHz ,频谱分析仪的分辨率带宽

(RBW 3dB )均设置为100kHz 。

针对每个测试频段和每种极化方向,测试数据图表以以下方式进行组织,并进行分析说明:①每种测试频段设置下不同极化方向的测量全过程累积的骚扰频谱最大值、最小值和平均值;②对频谱分布中特征峰值频点的幅度概率分布(APD )统计。 30MHz ~200MHz 频段空间电场的测量数据分析:

北京交通大学电磁兼容实验室 第11页

电场强度(d B u V /m )

频率(MHz)

图13. 30MHz ~200MHz

静态环境电场强度极值分布图(垂直极化)

电场强度(d B u V /m )

频率(MHz)

图14. 30MHz ~200MHz 静态环境电场强度极值分布图(水平极化)

电场强度(dBuV/m)

A P D 概率

图15. 30MHz ~200MHz

电场强度特征峰值频点的APD 分布(垂直极化)

电场强度(dBuV/m)

A P D 概率

图16. 30MHz ~200MHz 电场强度特征峰值频点的APD 分布(水平极化)

200MHz ~500MHz 频段空间电磁场的测量数据分析

电场强度(d B u V /m )

频率(MHz)

图17. 200MHz ~500MHz 静态环境电场强度极值分布图(垂直极化)

电场强度(d B u V /m )

频率(MHz)

图18. 200MHz ~500MHz 静态环境电场强度极值分布图(水平极化)

电场强度(dBuV/m)

A P

D 概率

图19. 200MHz ~500MHz 电场强度特征峰值频点的APD 分布(垂直极化)

电场强度(dBuV/m)

A P D 概率

图20. 200MHz ~500MHz 电场强度特征峰值频点的APD 分布(水平极化)

500MHz ~2GHz 频段空间电磁场的测量数据分析

电场强度(d B u V /m )

电场强度(MHz)

图21. 500MHz ~2GHz 静态环境电场强度极值分布图(垂直极化)

电场强度(d B u V /m )

频率(MHz)

图22. 500MHz ~2GHz 静态环境电场强度极值分布图(水平极化)

电场强度(dBuV/m)

A P D 概率

图23. 500MHz ~2GHz 电场强度特征峰值频点的APD 分布(垂直极化)

电场强度(dBuV/m)

A P D 概率

图24. 500MHz ~2GHz 电场强度特征峰值频点的APD 分布(水平极化)

30MHz 2GHz 空间电场环境小结:

对于30MHz ~2GHz 频段空间电场的测量,由于30MHz ~1GHz 这段频谱已完

全被划分使用,背景的频谱分量非常丰富,电气化铁道和列车的辐射骚扰基本和背景噪声重叠,不易区分。415MHz和458MHz附近有较强的载波信号,该频率应为机车电台及试验人员所使用的手持台的工作频率,当车内对讲机靠近测量天线附近时,能够测量到场强明显较大,但如果电台的发射功率未超出批准的允许功率,应属于正常情况。总体来说,除常见的100MHz附近的调频广播信号、450MHz的机车电台和对讲机信号、900MHz附近的GSM及GSM-R信号,以及1800MHz附近的GSM信号,无明显的电磁骚扰信号。30MHz-2GHz内的空间电场骚扰强度与速度无明显直接关系。

10.2 弓附近电磁环境测量的试验数据分析

10.2.1 30MHz~2GHz频段空间电场的测量数据分析

30MHz~2GHz频段空间电场的测量分别应用FSH8天线组件实现,因此分为4个频段测量:30MHz~200MHz、200MHz~500MHz,频谱分析仪的分辨率带宽(RBW3dB)均设置为100kHz。

针对每个测试频段和每种极化方向,测试数据图表以以下方式进行组织,并进行分析说明:①每种测试频段设置下不同极化方向的测量全过程累积的骚扰频谱最大值和最小值;②对频谱分布中特征峰值频点的幅度概率分布(APD)统计;③不同运行速度条件下骚扰频谱的比较。

30MHz~200MHz频段空间电场的测量数据分析:

电磁兼容技术实训报告

电磁兼容技术实训报告 课题:USB电缆线的EMC设计与测试班级: 姓名: 学号: 指导老师: 实训时间:2014.10.27-2014.11.01

一、电磁兼容 1、EMC概念: 电磁兼容性(Electro Magnetic Compatibility,简称EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。 电磁干扰(Electro Magnetic Interference,简称EMI),即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所需要的电磁能量,相对应的测试项目有: ●电源线传导骚扰(CE); ●信号、控制线传导骚扰(CE); ●辐射骚扰(RE); ●谐波电流测量(Harmonic); ●电压波动和闪烁测量(Fluctuation and Flicker); 电磁干扰度(Electro Magnetic Susceptibility,简称EMS),即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规定范围内的电磁能量干扰,相对应的测试项目有: ●静电放电抗扰度(ESD);

●电快速瞬变脉冲群抗扰度(EFT/B); ●浪涌(SURGE); ●辐射抗扰度(RS); ●传导抗扰度(CS); ●电压跌落与中断(DIP); 2、电磁干扰的危害: 电磁干扰有可能使设备或系统的工作性能偏离预期的指标或使工作性能出现不希望的偏差,即工作性能发生了“降级”。甚至还可能使设备或系统失灵,或导致寿命缩短,或使系统效能发生不允许的永久性下降,严重时,还能摧毁设备或系统。而且还将影响人体健康。 3、电磁兼容设计的目的: 电磁兼容设计的目的是使设计的电子设备或系统在预期的电磁环境中实现电磁兼容,其要求是使电子设备或系统满足EMC标准的规定并具有两方面的能力:a.能在预期的电磁环境中正常工作,无性能降低或故障;b.对该电磁环境不是一个污染源。 二、EMC三要素 系统要发生电磁兼容性问题,必须存在三个因素,即电磁干扰源、传播路径(耦合途径)、敏感设备。 1、电磁干扰源 任何形式的自然或电能装置所发射的电磁能量,能使共享同一环境的人或其它生物受到伤害,或使其它设备、分系统或系统发生电磁危害,导致性能降级或失效。

电磁兼容实验报告

实验四电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

自感磁链:11ψ=1N 11Φ 22ψ=2N 22Φ 互感磁链:21ψ=2N 21Φ 12ψ=1N 12Φ 2.伏安关系 耦合线圈中的总磁链:1ψ=11ψ±12ψ=1L 1i ±M 2i 2ψ=22ψ±21ψ=2L 2i ±M 1i 根据法拉第电磁感定律及楞次定律:电路变化将在线圈的两端产生自感,电压U L1,U L2和互感电压U M21,U M12。 于是有: dt di L dt d L U 11111== ψ dt di L dt d L U 2 2 222 == ψ dt di M dt d M U 1 2121== ψ dt di M dt d M U 21212==ψ 两线圈的总电压U1和U2应是自感电压和互感电压的代数和。即: dt di M dt di L M U L U U 211 1211±±=±±= dt di M dt di L M U L U U 1 22 2122±±=±±= 仿真图: 图中,信号源选择sources 中的AC power ,互感线圈选择Basic Virtual 中的TS Virtual 元件 图 10-1 耦合电感 M + _ + _ * * i 1 1L 2L i 2 u 1 u 2 图 10-2 同名端

电磁兼容检测领域中-CNAS

CNAS—GL07 EMC检测领域不确定度的评估指南 中国合格评定国家认可委员会 二〇〇六年六月

电磁干扰测量中不确定度的评定指南 1目的与范围 1.1本指南是采用国际电工委员会下属国际无线电干扰特别委员会(缩写为CISPR)的标准CISPR 16-4(First edition 2002-05)编制而成的,为EMC检测中电磁干扰测量时的不确定度评定提供指南。 1.2在EMC检测中,如需考虑所使用的仪器引入的不确定度对测量结果或符合性判断结论的影响时,可以参考本指南。 1.3本指南的附录A提供了为确定各测量不确定度分量而需要的有关数据信息。附录A不是用户指南,不希望用户在进行不确定度评定时照搬照抄。 1.4本指南在文献目录中列出了部分不确定度评定的参考资料。 2引用文件 JJF1059-1998 《测量不确定度的评定与表示》 JJF1001-1998《通用计量术语及定义》 JJF1049-2003《测量仪器特性的评定》 3术语、定义和符号 本指南采用下列术语、定义和符号。 3.1术语、定义 关于不确定度的术语和定义见JJF1059-1998 《测量不确定度的评定及表示》;计量学通用名词术语和定义见JJF1001-1998 《通用计量术语及定义》。 3.2通用符号 X i:输入量 x i:X i的估计值

u(x i):x i的标准不确定度 c i:灵敏系数 y:测量结果,被测量的估计值,对所有能识别的和明显的系统影响已修正的测量结果 u c(y):y的合成标准不确定度 k:包含因子 U:y的扩展不确定度 3.3被测量 V:电压,dBμV P:骚扰功率,dB PW E:电场强度,dBμV/m 3.4输入量 V r:接收机电压读数,dBμV Lc:接收机与人工电源网络、吸收钳或天线之间的连接网络的衰减量,dB 注:“阻抗稳定网络”-在CISPR 16-4原文中称为“人工电源网络”(Artificial Mains Network),所以采用的缩写符号为AMN。 Lamn:人工电源网络的电压分压系数,dB Lac:吸收钳的插入损耗,dB AF:天线系数,dB(/m) δVsw:对接收机正弦波电压不准确的修正值,dB δVpa:对接收机脉冲幅度响应不理想的修正值,dB δVpr:对接收机脉冲重复频率响应不理想的修正值,dB δVnf:对接收机本底噪声影响的修正值,dB δM:对失配误差的修正值,dB δMD:对电源骚扰造成的误差的修正值,dB δZ:对人工电源网络阻抗不理想的修正值,dB δE:对环境条件影响的修正值,dB δ AFf:对天线系数内插误差的修正值,dB

全桥实验报告

《EDA技术应用》大作 业 --全桥开关电源设计与测试 学院:信息与电子工程学院 班级:13应用电子技术2班 指导老师:严添明 姓名:王浩 学号:1305220147 日期:2015-01-10

目录 全桥电源开关电源的设计与测试 (1) 1.1作业内容 (1) 1.2芯片工作原理 (1) 1.2.1VIPER22A芯片管脚功能 (1) 1.2.2VIPER22A芯片内部构图 (1) 1.2.3TOP246Y芯片管脚功能 (2) 1.2.4TOP246Y芯片内部构图 (2) 1.2.5TL494芯片管脚功能 (3) 1.2.6TL494芯片内部构图 (4) 1.3电路工作原理 (5) 1.3.1高频开关电源的电磁兼容 (5) 1.3.2软开关技术 (5) 1.3.3功率因数校正技术(PFC) (5) 1.3.4低电压大电流技术 (5) 1.3.5整理滤波 (5) 1.3.6填谷式功率因数校正 (5) 1.3.7辅助电源模块设计 (6) 1.3.8PWM脉冲产生模块设计 (7) 1.3.9驱动模块设计 (8) 1.4原理图 (1) 1.5印制板 (3)

1.6元件清单 (3) 1.7调试过程 (5) 1.7.1前级辅助电源调试 (5) 1.7.2TL494 PWM产生调试 (5) 1.7.3死区电压比较电路 (6) 1.7.4输出控制电路 (7) 1.7.5驱动电路和功率变换调试 (8) 1.8总结 (10)

全桥电源开关电源的设计与测试 1.1作业内容 (1)使用DXP2004软件,画出TOP246Y PCB板及元件封装。 (2)熟悉掌握制作PCB板的流程,成功制作出TOP246Y PCB板。 (3)调试TOP246Y电路板。 (4)了解TOP246Y电路的工作原理。 1.2芯片工作原理 1.2.1VIPER22A芯片管脚功能 图1.1 VIPER22A芯片管脚图 1.2.2VIPER22A芯片内部构图 图1.2 VIPER22A 芯片内部构图

电磁兼容课程报告教材

电磁兼容工程应用课程报告

电磁兼容现场测试中的干扰源辨识技术研究引言 在科学发达的今天,广播、电视、通信、导航、雷达、遥测测控及计算机等迅速发展,尤其是信息、网络技术以爆炸性方式增长,电磁波利用的快速扩张,产生了不断增长的电磁污染,带来了严重的电磁干扰。各种电磁能量通过辐射和传导的途径,以电波、电场和电流的形式,影响着敏感电子设备,严重时甚至使电子设备无法正常工作。上述情况对电子设备及系统的正常工作构成了很大的威胁,因此加强电子产品的电磁兼容性设计,使之能在复杂的电磁环境中正常工作已成为当务之急。电磁兼容性(Electromagnetic Compatibility,EMC)是设备或系统在其电磁环境中,能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。它包括电磁干扰(Electromagnetic Interference,EMI)和电磁敏感度(Electromagnetic Susceptibility,EMS)两个方面。电磁兼容测试是验证电子设备电磁兼容设计的合理性以及最终评价、解决电子设备电磁兼容问题的主要手段。通过定量的测量,可以鉴别产品是否符合EMC 相关标准或者规范,找出产品在EMC方面的薄弱环节。 目前很多国家和组织都制定了相关的电磁兼容标准,只有符合相关指标要求的电子和电气产品才能进入市场。要判断某电子产品是否存在电磁兼容性问题,就需要依据相关标准对该产品进行具体的电磁兼容测试。 在目前电磁兼容测试中,针对设备或分系统级的电磁兼容测试与评价有着较为完备的电磁兼容标准或规范体系,不仅规定了测试所使用的仪器设备的具体指标要求,同时还规范了测量方案的组成和环境要求,这是其他标准或规范中所少见的。然而针对系统测试,目前还没有详细具体的标准或规范。已经了解的标准有美军标MIL-E-6051D《系统电磁兼容性要求》(已等效成国军标GJB1389《系统电磁兼容性要求》),又如美军标MIL-STD-1541A《对航天系统的电磁兼容性要求》等。在这些标准中给出了一些应该遵从的原则,但如何将这些原则用于工程,还需要一个实践的过程。 虽然许多实验证明了设备和分系统通过了规定标准的EMC 测量,那么一般情况下是能够保证它们组成的系统可以实现自兼容。但是目前系统集成度越来越高,潜在的电磁干扰大大增加,另外复杂的电子系统往往具备多种工作模式,在设备和分系统试验时很难考虑周全;且研究了整个系统的EMC 试验数据,可以成为系统对设备和分系统EMC 指标验收的根据,有利于防止设备在EMC 设计中的过设计,浪费不必要的资源。所以能够评估系统电磁兼容性能的最直接和有效的方法是对系统在正常工作环境下进行测试即电磁兼容现场测试。由于现场测试面临着电磁环境的复杂性和系统组成的多样性等束缚条件,使得现场测试存在环境干扰严重、评估困难、结果不稳定、测试数据利用率低和干扰源难确定等一系列问题。又由于良好的干扰源定位能力能够对差异信号的辨识和故障诊断

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。

温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样 易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。

电磁兼容性测试报告

泉海科技电磁兼容性(EMC)测试报告(电源电压:24V)机 型QH7101H2图 号 DZ93189781020状 态正常生产 失效模式等级的定义(依据ISO 7637-3附页A): A等级:在干扰照射期间和照射后,器件或系统所有功能符合设计要求。 B等级:在干扰照射期间,器件或系统所有功能符合设计要求,但部分指标超差,在照射移开后,超差的指标能自动恢复正常,记忆功能应保持A级。 C等级:在照射期间,器件或系统有一个功能不符合设计要求,但在照射移开后,能自动恢复正常操作。 D等级:在照射期间,器件或系统有一个功能不符合设计要求,在照射移开后,不能自动恢复正常操作,需通过简单的操作,器件或系统才能复位。 E等级:在照射期间和照射后,器件或系统有多个功能不能符合设计要求,需要修理或替换器件或系统才能恢复正常。 测试项目测试条件等级要求 测试结果备注 脉冲1Ua: 27 V Us: -600 V t1: 5 s t2: 200 ms t3: ≤100 μs td: 2ms tr: ≤(3+0/1.5)μs Ri: 50 Ω 脉冲数量: 5000 。 B级 符合要求B级 本报告由泉海公司实验室提供 脉冲2a Ua:27 V Us: +50 V t1: 5 s t2: 200 ms td: 0.05ms tr: ≤(3+0/1.5)μs Ri: 2 Ω 脉冲数量:5000个 B级 符合要求B级 脉冲2b Ua:27 V Us: +20 V td:0.2~2s tr: 1ms ±0.5ms Ri: 0.05Ω t12: 1ms ±0.5ms t6: 1ms ±0.5ms 脉冲数量:10个 B级符合要求B级 脉冲3a Ua:27 V Us: -200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h。 A级 符合要求A级 脉冲3b Ua: 27 V Us:+200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h A级 符合要求A级 脉冲4Ub: 27 V Us: -16V Ua: -5~12V V t7: 100 ms t8: ≤50 ms t9: 20s t10:10ms t11: 100 ms Ri: 0.02 Ω 脉冲数量:9000个(其中t8=100ms, 3000个t8=1s,3000个,t8=5s,3000个) B级符合要求B级 脉冲5a Ua: 27 V Us: +174 V td: 350 ms tr: 10 ms Ri: 2 Ω 周期:1min 脉冲数量:10个B级符合要求B级 测试员:何秀英 测试日期:2013.1.12 报告编号:qh-js-1201003

电磁兼容实验报告3-4

电磁兼容实验报告 学院:信息科学与工程学院 班级: 姓名: 学号:

实验三电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

电子常识-GB-T17626-电磁兼容试验简介

标准-GB/T 17626 电磁兼容试验全标准 电磁兼容性测试(简称EMC,是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电 磁干扰的能力。EMC设计与EMC测试是相辅相成的。EMC设计的好坏是要通过EMC测试来衡量的。只有在产品的EMC设计和研制的全过程中,进行EMC的相容性预测和评估,才能及早发 现可能存在的电磁干扰,并采取必要的抑制和防护措施,从而确保系统的电磁兼容性。 GB/T 17626 电磁兼容试验和测量技术系列标准包括以下部分:GB/T 17626.1-2006 电磁兼容试验和测量技术抗扰度试 验总论 GB/T 17626.2-2006 电磁兼容试验和测量技术静电放电 抗干扰度试验 GB/T 17626.3-2006 电磁兼容试验和测量技术射频电磁 场辐射抗干扰度试验 GB/T 17626.4-2008 电磁兼容试验和测量技术电快速瞬 变脉冲群抗扰度试验 GB/T 17626.5-2008 电磁兼容试验和测量技术浪涌(冲击)抗扰度试验

应的传导骚扰抗扰度 GB/T 17626.7-2008 电磁兼容试验和测量技术供电系统 及所连设备谐波、谐间波的测量和测量仪器导则 GB/T 17626.8-2006 电磁兼容试验和测量技术工频磁场 抗扰度试验 GB/T 17626.9-1998 电磁兼容试验和测量技术脉冲磁场 抗扰度试验 GB/T 17626.10-1998 电磁兼容试验和测量技术阻尼振荡 磁场抗扰度试验 GB/T 17626.11-2008 电磁兼容试验和测量技术电压暂降、短时中断和电压变化的抗扰度试验 GB/T 17626.12-1998 电磁兼容试验和测量技术振荡波抗 扰度试验 GB/T 17626.13-2006 电磁兼容试验和测量技术交流电源 端口谐波、谐间波及电网信号的的低频抗扰度试验 GB/T 17626.14-2005 电磁兼容试验和测量技术电压波动 抗扰度试验 GB/T 17626.17-2005 电磁兼容试验和测量技术直流电源 输入端口纹波抗扰度试验 GB/T 17626.27-2006 电磁兼容试验和测量技术三相电压 不平衡抗扰度试验

电磁兼容EMC设计及测试技巧

电磁兼容EMC设计及测试技巧 摘要:针对当前严峻的电磁环境,分析了电磁干扰的来源,通过产品开发流程的分解,融入电磁兼容设计,从原理图设计、PCB设计、元器件选型、系统布线、系统接地等方面逐步分析,总结概括电磁兼容设计要点,最后,介绍了电磁兼容测试的相关内容。 当前,日益恶化的电磁环境,使我们逐渐关注设备的工作环境,日益关注电磁环境对电子设备的影响,从设计开始,融入电磁兼容设计,使电子设备更可靠的工作。 电磁兼容设计主要包含浪涌(冲击)抗扰度、振铃波浪涌抗扰度、电快速瞬变脉冲群抗扰度、电压暂降、短时中断和电压变化抗扰度、工频电源谐波抗扰度、静电抗扰度、射频电磁场辐射抗扰度、工频磁场抗扰度、脉冲磁场抗扰度、传导骚扰、辐射骚扰、射频场感应的传导抗扰度等相关设计。 电磁干扰的主要形式 电磁干扰主要是通过传导和辐射方式进入系统,影响系统工作,其他的方式还有共阻抗耦合和感应耦合。 传导:传导耦合即通过导电媒质将一个电网络上的骚扰耦合到另一个电网络上,属频率较低的部分(低于 30MHz)。在我们的产品中传导耦合的途径通常包括电源线、信号线、互连线、接地导体等。 辐射:通过空间将一个电网络上的骚扰耦合到另一个电网络上,属频率较高的部分(高于30MHz)。辐射的途径通过空间传递,在我们电路中引入和产生的辐射干扰主要是各种导线形成的天线效应。 共阻抗耦合:当两个以上不同电路的电流流过公共阻抗时出现的相互干扰。在电源线和接地导体上传导的骚扰电流,多以这种方式引入到敏感电路。 感应耦合:通过互感原理,将在一条回路里传输的电信号,感应到另一条回路对其造成干扰。分为电感应和磁感应两种。 对这几种途径产生的干扰我们应采用的相应对策:传导采取滤波(如我们设计中每个IC的片头电容就是起滤波作用),辐射干扰采用减少天线效应(如信号贴近地线走)、屏蔽和接地等措施,就能够大大提高产品的抵抗电磁干扰的能力,也可以有效的降低对外界的电磁干扰。 电磁兼容设计 对于一个新项目的研发设计过程,电磁兼容设计需要贯穿整个过程,在设计中考虑到电磁兼容方面的设计,才不致于返工,避免重复研发,可以缩短整个产品的上市时间,提高企业的效益。 一个项目从研发到投向市场需要经过需求分析、项目立项、项目概要设计、项目详细设计、样品试制、功能测试、电磁兼容测试、项目投产、投向市场等几个阶段。 在需求分析阶段,要进行产品市场分析、现场调研,挖掘对项目有用信息,整合项目发展前景,详细整理项目产品工作环境,实地考察安装位置,是否对安装有所限制空间,工作环境是否特殊,是否有腐蚀、潮湿、高温等,周围设备的工作情况,是否有恶劣的电磁环境,是否受限与其他设备,产品的研制成功能否大大提高生产效率,或者能否给人们的生活或工作环境带来很大的方便,操作使用方式能否容易被人们所

电磁兼容天线仿真实验报告

电磁场与电磁兼容 实验报告 学号: 姓名: 院系: 专业: 教师: 05月20日

半波对称振子天线阵最大辐射方向控制 实验工具 ?Expert MININEC Classic电磁场数值仿真软件 实验目的 根据要求的参数,利用仿真软件设计和分析自由空间或地面上的细、直线天线的电磁场数值,并完成以下要求: ?改变每幅天线馈电电流的相位控制最大增益的方向:要求的最大增益方向是:1. 00 ;2. 400;3. 800 (选择与自己学号后2位数最近的度数) ?根据运行结果指出: 1.增益方向性图; 2.最大增益; 3.最大增益方向。 实验参数 ?频率 f = 300MHz,波长λ = 1m ?四分之一波长单极子天线L=0.25λ,四个半波长对称振子排列在一条直线上,相邻两幅天线的间隔是四分之一波长 实验过程 ?建立几何模型:点—> 线,尺寸,环境,坐标等 半波对称振子放在 YOZ 平面内,相邻振子的间距是四分之一波长 0.25m。

图1 问题描述图2 –图4 几何模型 图3 图4 ?定义电特性:频率,电压,当前节点 ZENITH(DEG) 对应球坐标系中的θ, AZIMUTH (DEG) 对应球坐标系中的φ 图5 电特性—频率图6 馈电电流相位设置

图7 球坐标参数θ、ψ以及间隔设置 ?选择模式:辐射模式 ?求解项:近场 ?调试、运行 表格中出现“No detected violations ”表明设置正确 图8 选择运行平面图9 调试结果 ?显示结果 3D display 显示所设计天线的图形 天线增益方向性图中给出了最大增益值和最大增益方向、以及半功率增益带宽的计算结果。

电磁兼容实验室简介

电磁兼容实验室简介 在我们的生活空间里各种干扰信号无处不在,它们时时刻刻都在产生干扰,影响着电子设备的正常运行。由于安防产品现场工作环境的复杂性,就更容易受到来自线路和来自空间各种形式的干扰。为了验证产品的抗扰度适应性,本实验室依据GB/T17626系列电磁兼容标准建立了电快速瞬变脉冲群、周波跌落、雷击浪涌、静电放电、射频辐射、射频传导等抗扰度试验项目,用以验证电子电气产品的抗干扰能力。 1.电快速瞬变脉冲群试验:本实验目的是验证电气和电子设备对来 自切换瞬态过程(切断感性负载、继电器触点弹跳等)的各种类型瞬态骚扰的抗扰度,是将一种由许多快速瞬变脉冲组成的脉冲群耦合到电气和电子设备的电源端口、信号和控制端口的实验。 实践中,这类脉冲成群出现、重复频率较高、脉冲上升时间短暂,它们使设备产生误动作的,死机等情况经常可见。本试验装置符合GB/T 17626.4-1998《电快速瞬变脉冲群抗扰度试验》 2.周波跌落试验:本试验是模拟由电网、变电设施的故障或负荷突 然出现大的变化所引起的供电电压短时跌落、中断及电压变化。 试验目的是评估电气和电子设备在经受电压暂降、短时中断和电压变化时的抗干扰能力。本试验装置符合GB/T 17626.11-1999《电压暂降、短时中断和电压变化抗扰度试验》 3.雷击浪涌试验:实验目的是评价产品在规定的工作状态下工作时, 对由开关或雷电作用产生的有一定危害电平的浪涌(冲击)电压

的抵抗能力。本试验符合GB/T17626.5-1999《浪涌(冲击)抗扰度试验》。 4.静电放电试验:试验目的是评估电气和电子设备遭受静电放电时 的性能以及人体到靠近关键设备的物体之间可能发生的静电放电。本试验符合GB/T17626.2-2006《静电放电抗扰度试验》。5.射频辐射试验:试验目的是为评价电气和电子设备的抗射频辐射 电子磁场干扰的能力建立一个共同的依据。本测试系统主要由标准信号源、功率放大器、场强监视器、计算机及操控软件和GTEM 室体组成,系统在80MHZ~1GHZ频率范围内产生的试验场强可达30V/m,可满足GB/T17626.3-2006《射频电磁场辐射抗扰度试验》中规定的全部试验等级。 6.射频传导试验:试验目的是评价电气和电子设备对由射频场感应 所引起的传导骚扰的抗扰度。测试系统主要由标准信号源、功率放大器、定向耦合器、功率计、单相电源CDN、电磁钳组成,系统在150KHZ~230MHZ频段产生10Vemf的试验电平,通过CDN 或电磁钳耦合至被试样品,以确定产品的抗干扰能力。本试验符合GB/T17626.6-1998《射频电磁场辐射抗扰度试验》。

如何顺利通过电磁兼容试验

如何顺利通过电磁兼容试验 接地设计:一旦发生了静电放电,应该让其尽快旁路人地,不要直接侵入内部电路。例如内部电路如用金属机箱屏蔽,则机箱应良好接地,接地电阻要尽量小,这样放电电流可以由机箱外层流入大地,同时也可以将对周围物体放电时形成的骚扰导入大地,不会影响内部电路。对金属机箱,通常机箱内的电路会通过I/O电缆、电源线等接地,当机箱上发生静电放电时,机箱的电位上升,而内部电路由于接地,电位保持在地电位附近。这时,机箱与电路之间存在着很大的电位差。这会在机箱与电路之间引起二次电弧。使电路造成损坏。通过增加电路与外壳之间的距离可以避免二次电弧的发生。当电路与外壳之间的距离不能增加时,可以在外壳与电路之间加一层接地的金属挡板,挡住电弧。如果电路与机箱连在一起,则只应通过一点连接。防止电流流过电路。线路板与机箱连接的点应在电缆入口处。对塑料机箱,则不存在机箱接地的问题。 ?电缆设计: ?一个正确设计的电缆保护系统可能是提高系统ESD非易感性的关键。作为大多数系统中的最大的“天线”— I/O电缆特别易于被ESD干扰感应出大的电压或电流。从另一方面,电缆也对ESD干扰提供低阻抗通道,如果电缆屏蔽同机壳地连接的话。通过该通道ESD干扰能量可从系统接地回路中释放,因而可间接地避免传导耦合。为减少ESD干扰辐射耦合到电缆,线长和回路面积要减小,应抑制共模耦合并且使用金属屏蔽。对于输入/输出电缆可采用使用屏蔽电缆、共模扼流圈、过压箝位电路及电缆旁路滤波器措施。在电缆的两端,电缆屏蔽必须与壳体屏蔽连接。在互联电缆上安装一个共模扼流圈可以使静电放电造成的共模电压降在扼流圈上,而不是另一端的电路上。两个

手机辐射测量实验报告

手机辐射测量实验 课程名称:电磁兼容设计任课教师:实验教师: 班级:姓名: 同组同学: 一、实验目的 现代社会手机越来越普及,人们在享受方便快捷的同时,也在遭受手机信号产 生的电磁辐射的危害。打电话时手机离人脑很近,手机信号很容易被脑部组织吸收,产生一些难以预料的后果,因此用实验的方法了解手机辐射的大小分布;了解不同 制式、不同通话状态、不同使用条件下手机辐射大小的变化,对于我们正确防护至 关重要。 不同品牌的手机通信质量、信号强度总有差异,不同型号手机辐射强度大小、 不同网络之间的辐射差异以及不同距离的辐射强度大小究竟如何都是值得关心的问题。 二、实验设备 测量系统组成:(如右图) Agilent EMI接收机 E7405A 喇叭天线 3115 复合天线 3142 指针式电场测量仪 VUFM1670 电磁辐射分析仪NBM-550 各向同性电场探头EF0391 该系统可进行30M~18GHz频段的辐射发射测试。 手机信号的频段也在此范围内。 三、实验内容 1、测量手机的电磁辐射强度与距离的关系。测量距离分别取1.5 米、2 米和 2.5 米,测量时注意手机的位置保持不变,记录测量数据,比较其大小,分析原 因。 2、测量手机不同方位的辐射强度,测量取手机距复合天线1.5 米。取前面、 背面和侧面,手机放垂直方向。 3、测量手机不同状态的辐射强度变化,如待机、开机、关机、拨通瞬间和 正常通话几种状态,使用指针式电场测量仪,为减小测量误差可测三次取平均, 测量时尽量保持手机位置不变。尽量减少周围人员走动。 4、测量手机发短信、收短信时、浏览网页时的电场强度,记录测量数据。 5、测量使用手机耳机时辐射强度的变化,并解释“辐射强度变小”的原因, 用指针式电场测量仪测。 6、测量使用蓝牙时手机辐射的强度、信号弱与强时手机辐射强度的变化、不 同制式手机的辐射强度差异。 7、网络上流传在密闭空间打手机,如电梯间、小汽车内,信号强度会大几千倍,是真的吗?请设计实验验证。 四、实验数据及分析 1、测量手机的电磁辐射强度与距离的关系

《电磁兼容原理实验》指导书

《电磁兼容原理》实验指导书

目录 实验一静电放电抗扰度实验 (3) 实验二电快速瞬变脉冲群抗扰度实验 (5) 实验三浪涌抗扰度实验 (7) 实验四开关电源传导骚扰测试实验 (9) 实验五电子镇流器的传导骚扰测试实验 (11) 实验六辐射骚扰测试实验 (13)

实验一静电放电抗扰度实验 概述 引用标准:GB/T17626.2(IEC61000-4-2) 标准的依据:人体放电 试验等级:空气放电、接触放电四级。 一、实验目的 1.掌握静放电试验的步骤和要求。 2.掌握静电放电试验的试验室配置。 3.了解静电放电枪功能及使用方法。 二、实验设备: 静电放电枪、接地系统、试验台、水平和垂直耦合板、绝缘垫、耦合板放电线 三、实验内容: 1.介绍试验的标准配置要求。 接地系统、设备要求(位置、接地、线缆)、耦合板 台式设备:收音机等 2.介绍静电放电枪的功能及使用。 结构及附件:接地线、放电头、主机 功能及使用联接 3.试验的实施 试验应根据试验计划进行。试验计划内容包括: ——受试设备的典型工作条件; ——受试设备是按台式还是按落地式设备进行试验; ——确定施加放电点; ——在每个点上,是采用接触放电还是空气放电; ——所使用的试验等级 ——符合性试验中在每个点施加放电的次数(至少施加十次单次放电(以最敏感的极性),连续单次放电的时间间隔至少1秒。 ——是否还进行安装后的试验 直接放电试验:空气放电、接触放电 静电放电试验等级表

I.选择放电试验点、面 II.选择放电方式及要求: 选择空气放电或接触放电。 空气放电和接触放电的放电要求。 间接放电试验:对水平耦合、垂直耦合板的接触放电。放电位置及要求。 四、实验报告要求 对多波段收音机测试并记录以下表格数据: 1.直接放电试验情况

集成电路的电磁兼容测试

集成电路的电磁兼容测试 罗德施瓦茨上海代表处丁丁 摘要:本文介绍了集成电路电磁兼容性的基本概念及其在电路设计中的重要性,着重论述了集成电路的电磁发射和抗扰度的测试方法及相关的测试标准,阐述了集成电路电磁兼容的现状和未来趋势,最后介绍了R&S公司针对集成电路电磁兼容的解决方案。 关键词:集成电路;电磁兼容;芯片; Abstract: This paper has focused on the characterization of the electromagnetic compatibility of integrated circuits and its importance in electric product design. The main measurement methods for emission and immunity, which are proposed in relative standards, have been explained. The general conditions and tendency of the emission and the immunity measurements have been described. And the measurement solution of R&S has been introduced in detail. Keywords: IC, electromagnetic compatibility,EMC, chip, 1引言 当今,集成电路的电磁兼容性越来越受到重视。电子设备和系统的生产商努力改进他们的产品以满足电磁兼容规范,降低电磁发射和增强抗干扰能力。过去,集成电路生产商关心的只是成本,应用领域和使用性能,几乎很少考虑电磁兼容的问题。即使单片集成电路通常不会产生较大的辐射,但它还是经常成为了电子系统辐射发射的根源,当大量的数字信号瞬间同时切换时便会产生许多的高频分量。尤其是近年来,集成电路的频率越来越高,集成的晶体管数目越来越多,集成电路的电源电压越来越低,加工芯片的特征尺寸进一步减小,越来越多的功能,甚至是一个完整的系统都能够被集成到单个芯片之中,这些发展都使得芯片级电磁兼容显得尤为突出。现在,集成电路生产商也要考虑自己产品电磁兼容方面的问题[10]。 2集成电路电磁兼容的标准化 由于集成电路的电磁兼容是一个相对较新的学科,尽管对于电子设备及子系统已经有了较详细的电磁兼容标准,但对于集成电路来说其测试标准却相对滞后。国际电工委员会第47A技术分委会(IEC SC47A)早在1990年就开始专注于集成电路的电磁兼容标准研究;此外,北美的汽车工程协会也开始制定自己的集成电路电磁兼容测试标准SAE J 1752,主要是发射测试的部分。1997年,IEC SC47A下属的第九工作组WG9成立,专门负责集成电路电磁兼容测试方法的研究,参考了各国的建议,至今相续出版了150kHz-1GHz的集成电路电磁发射测试标准IEC61967和集成电路电磁抗扰度标准IEC62132 ,此外,在脉冲抗扰度方面,WG9也正在制定对应的标准IEC62215。[11]目前,IEC61967标准用于频率为150kHz到1GHz的集成电路电磁发射测试,包括以下六个部分: 第一部分:通用条件和定义;参考SAE J1752.1 第二部分:辐射发射测量方法——TEM小室法;参考SAE J1752.3 第三部分:辐射发射测量方法——表面扫描法;参考SAE J1752.2 第四部分:传导发射测量方法——1:/150:直接耦合法; 第五部分:传导发射测量方法——法拉第笼法WFC(workbench faraday cage); 第六部分:传导发射测量方法——磁场探头法。

EMC电磁兼容测试

EMC(电磁兼容)测试 作为专业化的日用电器EMC检测中心,具备按GB、IEC、EN、FCC标准进行EMC检测能力,满足按欧共体CE标志所要求的EMC测试、EMC评估与培训。 国家日用电器质量监督检验中心(以下简称"我中心")EMC试验室被授权承担EMC认证和检验等工作,可为企业提供EMC认证服务。同时,我中心EMC实验室也获德国认证机构和挪威认证机构的授权,可同时提供欧洲CE认证等服务。我中心将本着公正、独立、优质、快捷的方针为广大企业提供检验与认证服务。 国家日用电器质量监督检验中心EMC实验室简介 国家日用电器质量监督检验中心(以下简称"我中心")EMC实验室始建于1975年,目前已得到国内外多个认可与认证机构的认可与授权,如:国家实验室认可委员会、国家出入境检验检疫局、中国电磁兼容认证中心、中国电工产品认证委员会和中国环境标志认证中心。1997年得到挪威认证机构NEMKO的授权;1998年得到德国认证机构TüV RHEINLAND的授权。我中心的EMC测试报告不仅在国内具有权威地位,还得到欧洲、澳洲国家的认可。近几年,我中心为国内众多企业的产品出口、特别是为国内一些著名的家电生产企业的产品出口进行过CE认证,得到国内生产企业与国外销售商的信任与好评。 同时我中心还是国际CB实验室,出具的CB测试报告能得到30多个国家的认证机构的认可。企业在我中心进行检验,可以达到进行一次检验、获得多种证书的方便、简捷的目的。 为您提供全方位的EMC服务: ?家用电器产品电磁兼容认证 检测 ?全权委托、目击委托检测 ?委托方的研究检测、整改检测 ?认证、认可和仲裁检测 ?EMC测试设备比对试验 ?EMC标准和测试方法的培训 ?EMC符合性证书、EMC和CE 标志的检测 测试能力:

电磁兼容EMC测试

灯具做CE认证时的电磁兼容测试 灯具做CE认证时的电磁兼容测试 CE-EMC认证是CE认证关于电磁兼容方面的认证,灯具的EM C认证的测试包括以下方面: 1、静放电(ESD) 2、射频干扰(RI) 3、工频磁场(HI) 4、快速脉冲群(EFT) 5、电流注入(CI) 6、浪涌(Surge) 7、电压跌落(VD) 关于目前EMC测试项目说明: EMI(CISPR 15): 1,骚扰电压(Disturbance voltage) 2,辐射电磁骚扰(Radiated electromagnetic disturbance) 3,插入损耗(电感镇流器)(Insertion loss) EMS(IEC 61000-4-6): 1,传导抗扰度(Conducted immunity) 备注(Remark):电子变压器、电子镇流器需要做上述EMI中的1、2项即可,电感镇流器只需要做上述EMI中的第3项即可,电子感应器、电子调光器需要做上述EMI、EMS中的所有项目。 抗干扰标准简介 如果打算把电子产品销往国外,就不但要了解一些有关抗干扰方面的问题,还要知道用哪些测试方法和设备才能使产品符合欧盟(EU)的标准。 欧盟的EMC标准要求所有的电子产品都要进行抗干扰试验,包括认为干扰和自然干扰两种。标准还要求产品不能发射出有害的信号,因为这种信号会干扰其他产品的正常工作。 产品是否符合EMC要求,应根据欧洲标准(EN-European Norms)进行测试。欧洲标准由电子技术标准化委员会颁布,而EN的抗干扰标准则是由国际电工技术委员会(IEC-International Electrotechnical Commission)制定而成,并从1997年1月起,采用与EN同样的编号。如IEC1000-4-2变成IEC61000-4-2,这和EN61000-4-2的静电放电(ESD-Electrostatic Discharge)标准是相同的。 由IEC制定的抗干扰标准有一定的设备要求,并与放射标准有明显的差别,对于美国厂商销售产品会带来一些问题。因此,选择正确的设备和了解正确的测试方法具有同样的重要性,最终的目的是使产品符合要求。 本文介绍四种抗干扰标准: 1.IEC61000-4-2静电放电测试:这是一项对产品的一般性测试,目的是考察仪器在ESD条件下的 性能。放电在人与仪器附近的目标之间进行,或者使放电干扰直接传到仪器中去。 在IEC61000-4-2中,要求一个人手持一金属物(如改锥等)去接近仪器的某个部位。该标准规定了空气放电方式和直流放电方式。在空气放电方式下,从ESD信号发生器的测试探头发出的火花传向待测的设备(EUT)。测试探头必须能提供8kV的可调充电电压。直流放电方式要求用ESD 信号发生器的冲击脉冲,当信号发生器的探头尖部接触到EUT时,发生放电。在这种方式下,信号发生器应能提供4kV的可调电压。 2.IEC61000-4-3辐射电磁场测试: 这项测试是考察电子产品对辐射EMI场的敏感度。例如,考察一台计算机在非常靠近一个辐射能量的天线时的性能。该标准规定了产品在保持正常工作的情况下所能承受的辐射能量等级。例如,产品经受得住手提无线电收发信机、荧光、工业焊机或半地TV天线等产生的强电磁场的电磁干扰。 测试过程和测试等级由标准加以规定,并作为测试设备的共同标准。测试频率为80MHz-1000MHz,调制度为80%,到EUT的距离为3米。

相关主题
文本预览
相关文档 最新文档