当前位置:文档之家› 图像中直线的提取方法

图像中直线的提取方法

图像中直线的提取方法
图像中直线的提取方法

图像中直线提取以及方法研究

第一节引言

在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分常称为目标或前景(其它部分称为背景),它们一般对应图像中特定的具有独特性质的区域。为了辨识和分析目标,需要将这些有关区域分离出来,在此基础上才有可能对目标进一步处理,如进行特征提取和测量。

随着数字信号处理技术和计算机技术的发展,机器视觉正得到广泛而深入的研究。如何正确、快速地识别目标的特征信息,已成为机器视觉领域的研究热点。直线是图像中物体的基本特征之一,一些人造目标如房屋、道路、桥梁具有明显的直线特征,而一般物体平面图像的轮廓也可以表示为直线及弧线的组合,进而对物体轮廓也可以表示为直线及弧线的组合,进而对物体轮廓的检测可以转化为对这些基本元素的识别和提取。因此,研究图像中直线的检测算法对图像处理和模式识别具有重要意义。本文就图像中直线提取方法为核心主要介绍了图像分割技术、边缘检测以及直线提取的几种常用算法。

第二节图像分割技术

图像分割(image segmentation)就是按照一定的原则将一幅图像或景物分为若干个特定的、具有独特性质的部分或子集,并提取出感兴趣的目标的技术和过程。在对各种图像的研究应用中,人们往往仅对图像中的某些部分感兴趣,这些部分常称为目标或前景(其它部分称为背景),它们往往一般对应图像中某些特定的、具有独特性质的区域。这里的独特性质可以是像素的灰度值、物体的轮廓曲线、颜色、纹理等,也可以是空间频谱或直方图特征等。在图像中用来表示某一物体的区域,其特征都是相近或相同的,但是不同物体的区域之间,特征就会急剧变化。目标可以对应单过区域,也可以对应多个区域。为了辨识和分析目

标,需要将它们分离提取出来,在此基础上才有可能进一步进行图像识别与理解。

图像分割的目的是把图像空间分成一些有意义的区域,例如,一幅航空照片,可以分割成工业区、住宅区、湖泊、森林等;可以以逐个像素为基础去研究图像分割,也可以利用在规定领域中的某些图像信息去分割。图像分割的依据可建立在图像上像素间的“相似性”和“非连续性”两个基本概念之上。所谓像素的“相似性”是指图像中在某个区域内像素具有某种相似的特性,图像素灰度相等或相近,像素排列所形成的纹理相同或相近。所谓的“不连续性”是指像素灰度的不连续,或是指像素排列形成的纹理结构的突变。

图像分割是图像处理领域的一个基本问题,也是自动目标识别技术(ATR)中的一项关键技术,是目标特征提取、识别与跟踪的基础。目前已经提出的图像分割方法和种类很多,以不同的分类标准进行划分,图像分割的方法可以划分为不同的种类。从分割依据的角度来看,图像的分割方法可以分为相似性分割和非连续性分割。相似性分割就是将具有同一灰度级或相同组织结构的像素聚集在一起,形成图像的不同区域;非连续性分割就是首先检测局部不连续性,然后将它们连接在一起形成边界,如基于彩色分量分割、纹理图像分割等。所使用的数学工具和分析手段也不断扩展,从视域信号到频域信号处理,进来小波变换也应用在图像分割中。

图像分割方法又可分为结构分割法和非结构分割法两大类。结构分割方法是根据图像的局部区域像素的特征来实现图像分割,如阈值分割、区域生长、边缘检测、纹理分析等,这些方法是假定事先知道这些区域的特性,或者在处理过程中能够求的这些特性,从而能够寻找各种形态或研究各种像素群;非结构分割法包括统计模式识别、神经网络方法或其他利用景物的先验知识实现的方法等。

第三节边缘检测

边缘检测是所有基于边界分割方法最基本的处理,图像的边缘是图像的最基本特征。图像的边缘部分集中了图像大部分的信息,图像边缘的确定与提取对于整个图像场景的识别与理解是非常重要的。边缘广泛存在于物体与背景之间、物体与物体之间,因此它是图像分割所依赖的重要特征。

由于图像物体中的边缘表现为灰度变化,因此,可通过计算灰度的不连续性

来增强和检测边缘。边缘检测方法很多,主要有空域微分算子、拟合曲面、小波多尺度边缘检测、基于数学形态学的边缘检测等。

一、空域微分算子。是传统的边缘检测方法,由于边缘是图像上灰度变化最剧烈的地方,对应连续情形就是函数梯度较大的地方,所以研究比较好的求导算子就成为一种边缘检测的思路。传统的边缘检测就是利用了这个特点,对图像各个像素点进行一阶或二阶微分来确定边缘像素点。一阶微分图像的峰处对应着图像的边缘点;二阶微分图像的过零点对应着图像的边缘点。边缘检测算子检查每个像素的领域并对灰度变化率进行量化,通常也包括方向的确定。目前已经提出了许多种算子,例如Prewitt算子和Sobel算子等就是比较简单而且常用的边缘检测算子。这些边缘检测算子的区别主要在于所采用的模版和元素系数不同,并且大多数是基于方向导数掩模求卷积的访求。根据数字图像的特点,处理图像中常采用差分来代替导数运算。对于图像的简单一阶导数运算,由于具有固定的方向性,只能检测特定方向的边缘,所以不具有普遍性。

二、拟合曲面。是一种比较直观的方法,该方法利用当前像素领域中的一些像素值你和一个曲面,然后求这个连续曲面在当前像素处的梯度。从统计角度来说,可以通过回归分析得到一个曲面,然后做类似的处理。

三、小波多尺度边缘检测。20世纪90年代,随着小波分析得到迅速发展,小波开始用于边缘检测。作为研究非平稳信号的工具,小波分析在边缘检测方面有得天独厚的优势。

四、基于数学形态学的边缘检测。数学形态学是一种有代表性的非线性数学方法,在图像处理中已经获得了广泛的应用。形态学运算是物体形状集合与结构元素之间的相互作用,对边缘方向不敏感,并能在很大程度上印制噪声和探测真正的边缘,同时数学形态学在图像处理方面还具有直观上的简单性和数学上的严谨性,在描述图像中物体形态特征上有独特的优势。因此,将数学形态学用于边缘检测,既能有效地滤除噪声,又可保留图像中原有的细节信息,是边缘检测技术的一个重大突破。目前常见的较成熟、基于数学形态的边缘检测方法有:基于多尺度形态学的边缘检测、基于数学形态学多级平均的图像边缘检测、基于偏微分方程的形态学边缘检测、基于均衡化和数学形态学的组合边缘检测以及基于坐标逻辑的多结构元图像边缘检测方法等。

第四节直线提取

图像中的线特征是人类视觉感知的重要线索,它常对应于被摄物体的轮廓线或边界线,是图像中“有意义”变化的地方。同时,线特征有是规则物体由其是人造物体的基本要素之一。因此,在基于图像的几何量测量中,提取其线特征,并对其进行高精度定位,无论对于描述测量被摄物体还是解释图像,都非常重要。对于图像线特征的提取通常分为边缘检测和边缘连接两部。

经典的边缘检测算子大多利用图像边缘的梯度极值特性。检测局部一阶导数最大或二阶导数过零点作为边缘点。如第二节中提到的Roberts、Sobel以及Laplacian算子等方法,由于直接进行微分运算,所以它们的抗噪声干扰能力比较低。在经典的边缘检测算子基础上发展起来的LOG(Laplacian of gauss)算子、Canny算子、小波变换尺度边缘检测方法都在不同程度上对原有的边缘检测方法进行了改进,但其边缘检测的定位精度通常只能达到像素级。随着基于图像的工业测量等领域对测量精度要求的提高,人们开始转向更高精度检测方法——子像素细分算法的研究。子像素特征定位算法最早由于起峰在基于图像的精密测量与运动测量中提出,现已发展为插值拟合法、空间灰度法和数字相关定位法等多种检测方法,但采用插值方法对噪声非常敏感,鲁棒性差。

一种优秀的直线提取算法应具有下列特性:(1)提取直线的分辨率要高;(2)能提取低对比度的直线;(3)能消除共线的短直线之间的间隔;(4)计算简单且参数容易选择;(5)对噪声不太敏感;(6)具有良好的局部特性。下面根据设计目标,讨论了一种像素级图像直线段提取的算法,并从抗噪声能力与提取精度两方面对其进行了验证。

Hough变换实现一种从图像空间到参数空间的映射关系。其基本思想是点-线的对偶性,即图像空间共线的点对应在参数空间里相交的线;反过来,在参数空间中相交于同一点的所有直线在图像空间都有共线的点与之对应。如用点-正弦曲线对偶变换解决该问题,直角坐标x-y中的一点(x,y)经过点-正弦曲线对偶变换(1),式中:为从原点引到直线的垂线长度;为垂线与x轴正向的夹角。

在极坐标中变为一条正弦曲线,直角坐标x-y中直线上的点经过Hough 变换后,它们的正弦曲线在极坐标中有一个公共交点。在实际应用中,Hough

变换算法是根据方程(1)将图像空间每一点映射到Hough空间中的一组累加器,满足上式的每一点,将使对应所有累加器中的值加1,如果图像中包含一条直线,则有一个对应的累加器会出现局部最大值,通过检测Hough空间中的局部最大值,即可确定与该条直线对应的一对参数,实现直线的检测。

从以上可以看出,Hough变换具有明了的几何解析性、一定的抗干扰能力和易于实现并行处理等特点然而也有一些缺陷,例如计算量大,精度不高(一些离散的伪线伪点都可能被认为是检测线)。通过设置阈值,可以避免将一些相距较远的点被认为是同一条直线上的点,还可以避免将一些离散的点误认为是被检测的线。这里用matlab语言对算法进行了编程验证,对比如下图:

通过检测可以发现相对于其它方法,该处讨论的改进Hough变换法可以显著的提高直线提取的精度。一些局限性仍然存在,伪点和伪线仍然大量存在,消除Hough变换中产生的伪线与过连接线的问题,检测的结果不是直线,而是具有确定长度和端点的线段,可以通过设置阈值的方法提高直线提取的精度,阈值的确定也需要反复计算和设计。

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

视频会议视频调试技术与技巧

视频会议视频调试技术与技巧 视频会议是图像、声音的有机结合,为了获得理想的效果,必须按照操作规程做好前期的准备和调试工作。在实际应用中还有许多不尽人意的地方,主要表现在参数设置和实际操作等方面。如何做到心中有数、得心应手?本文就相关技术问题进行探讨,提出不同的解决方法和应用技巧。在视频调试过程中,常见的问题是图像无彩色和图像偏色。对于图像无彩色现象,可通过会议终端控制软件中的参数设置来加以解决;对于图像偏色现象,要通过白 视频会议是图像、声音的有机结合,为了获得理想的效果,必须按照操作规程做好前期的准备和调试工作。在实际应用中还有许多不尽人意的地方,主要表现在参数设置和实际操作等方面。如何做到心中有数、得心应手?本文就相关技术问题进行探讨,提出不同的解决方法和应用技巧。 在视频调试过程中,常见的问题是图像无彩色和图像偏色。对于图像无彩色现象,可通过会议终端控制软件中的参数设置来加以解决;对于图像偏色现象,要通过白平衡调整来校正因光源的色温变化而引起的图像偏色。会场中应避免使用混合光(室内照明光源、室外阳光的直射和散射)作为照明光源,不同色温的光源混合使用,将得不到理想的色彩还原,因此要尽量避免在会场中存在两种以上不同色温的光源。若使用视频会议摄像机,可通过重启的方法加以排除;若使用专业摄像机,可通过白平衡调整来加以解决,具体方法是:根据会场照明光源的色温选择合适的色温滤色片,采用自动白平衡调整,以保证准确的色彩还原。 在召开会议期间,要显示各地分会场的画面,若分会场采用“推”、“拉”、“摇”技巧来拍摄,存在问题的具体表现为运动画面不连贯、运动速度不均匀、落幅画面不到位。“推”是把视线逐渐接近被摄对象,由整体引向局部,突出整体中的某一部分;“拉”是由局部引向整体,说明某一局部所处的环境;“摇”分为左摇和右摇。“推”和“拉”是在同一镜头内包含有特写、近景、中景、全景画面,强调落幅,因此落幅的画面构图尤其重要,这是衡量画面是否到位的标准。不论采用哪种拍摄技巧,都要确保画面的稳定性和连续性,都要以稳定的画面作为起幅,并以稳定的画面作为落幅,并要有足够长的时间来保证画面的相对静止,这是人们心理要求和镜头组接所需要的。无目的地急推、急拉、突然变速、中途停止等,都会使观众造成视觉感受异常和动荡不安的感觉,其主要原因是操作失误和画面延滞效应所造成的。 对于采用会议终端控制软件进行控制的,要采用手动方式进行。比如,若要进行“推”(或拉)的动作,先构好落幅的画面,然后“拉”(或推)到全景,当总控室切换到本端的画面后,再按下鼠标,在落幅处松开鼠标;若要进行“摇”的动作,先构好落幅的画面,当总控室切换到本端的画面后,再按下鼠标进行左摇或右摇,在落幅处松开鼠标。但在实际操作中,由于摄像机的机位所限制,“摇”动作的落幅画面不太理想。对于采用专业摄像机控制的,要采用电动变焦方式进行,按下T(推)或W(拉)即可完成所需要的拍摄技巧。由于按压变焦钮

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

基于直线检测算法的卫星图片中建筑物轮廓提取

收稿日期:2007-11-22;修回日期:2008-01-15。 作者简介:庞池海(1982-),男,浙江天台人,硕士研究生,主要研究方向:计算机仿真、图像处理; 李光耀(1965-)男,安徽安庆人,研究员,博士生导师,主要研究方向:计算机仿真、图像处理; 赵洁(1983-),女,江苏南通人,硕士研究生,主要研究方向:计算机仿真、图像处理;朱恒晔(1978-),男,江苏镇江人,博士,主要研究方向:系统仿真、虚拟样机。 文章编号:1001-9081(2008)S1-0190-03 基于直线检测算法的卫星图片中建筑物轮廓提取 庞池海,李光耀,赵 洁,朱恒晔 (同济大学CAD 研究中心,上海201804) (tcp ch @sohu .com ) 摘 要:提出一种方法,可以从卫星图像中自动检测建筑物。介绍了直线提取和直线合并的算法,分别讨论算法的实现结果和对结果的评价。建筑物检测的结果为矢量的二维候选数据,缩短了原始图像数据和最后对图像理解之 间的差距。 关键词:建筑物检测;直线检测;Canny 算子;霍夫变换;边缘检测中图分类号:T P391.41 文献标志码:A Buildi ng figure extracti on i n satellite i m ages based on li ne detecti on algorithm PANG Ch-i ha,i LI Guang -yao ,Z HAO Jie ,ZHU H eng -ye (CAD Re se a rch C e n te r,T ongji Universit y,S hangha i 201804,C hina ) Abstract :In o rder to g enerate t he 3D-model of constructi on ,usi ng t he m ethod based on i m ag e pro cessi ng,au t om ated techn i ques w ere proposed to replace the curren t manua l work .A n approach for auto m atic bu ildi ng detection w as put for w ard from sate llite i m agery .F irstl y,the algo rith m s o f li ne ex tracti on and li ne m erg i ng w ere presen ted .T hen ,t he i m p l ementation of the m e t hod and resu lt quantitative qua lity assess m ent we re discussed respecti ve l y .The resu lt of bu il d i ng detecti on prov i des the vector i a l and t w o -di m ens i on cand i date data ,w hich sho rten the d ifference be t w een or i g i na l i m ag e data and fi nal understandi ng . K ey words :buil d i ng detection ;li ne de tecti on ;C anny opera t o r ;H ough transf o r m;edge detection 0 引言 从城市航空影像中提取关键地物的研究主要集中于建筑 物和道路两个方面。已有的匹配的方法,对于现代城市中具有重要意义且形状复杂的高层建筑物和主干道,还不能形成有效的提取。 然而人类却能几乎在瞬间辨识出这些物体的存在和位置[1] 。航空影像的复杂性使目标检测变得十分困难。以往对建筑的检测方法可以分为以下3类:1)使用立体影像匹配的方法,这种方法可以提供建筑物准确的空间信息,使建筑物通过空间信息被检测出来[2]。不过这种方法需要额外的信 息,如DE M 信息。2)使用直线分析。首先从图片中检测出直线,将它们归类并且建模出矩形,推算出候选的建筑物[3]。直线可以通过使用感知的视觉数据组织的方法分类,许多报告已经使用这种方法进行了建筑物检测实验[4]。不过该方法对于大规模的检测效果不是很好。3)辅助信息的方法。如阴影或直线的透视效果,也可作为建筑物检测的重要手段。 作为一种低层次视觉技术,线段提取是一项很基本的任务。它的处理对象是边缘图像,输出是线段。其输出经常作为更高层处理(形状描述、目标识别、立体匹配等)的输入。由于线段提取的重要性,很多研究者在这方面做了大量工作。归纳起来,可分为3类:1)传统的H ough 变换;2)首先提取基本线段(e l ementary li ne segm ent ,ELS),再进行线段合并;3)利用梯度信息将边缘像素组成线段[3]。本文结合前两种方法,利用局部的H ough 变换,先抽取出直线,然后利用附有信息的直线分析图像中的对象,构建直线图的数据结构,并利用这些信息生成建筑物的候选集。 1 主要准则 通常将图像理解系统划分成几个阶段从而简化整个问题的难度。主要流程包括图像预处理,图像分割,特征提取,特征描述和识别。至今,对于各类应用还没有一个统一的方法。对于不同的项目的方法大相径庭。本文着眼于卫星图片中的建筑物检测。首先定义一些策略或思想准则作为解决这个问题的指导。 层次化 图像数据在计算机中以孤立点的信息形式存在。图像处理的目的是要对这些点尽可能地按照图像的原意进行分类,最后抽象出同类点集的含义。所有工作,包括前处理、图像分割、特征提取等,都是为了实现这一目标。在本文的研究中,首先将点归类成线,然后将线组合成几何形状。称之为点线面的变换。 整合方法 一些信息,比如颜色和方向,对图像中的元素来说是非常重要的,但不少方法忽略了这些信息的利用。在本文的研究中,将取得的颜色信息作为线和面对象的附属信息,或者称之为权重。这些信息可以帮助改善的检测过程。 局部化假设 假设物体,包括颜色、线的位置、面的位置以及图像中的所有元素,只和其一定范围内的邻域元素存在相应的关系。这个假说可以减少处理所花费的时间,从而得出各种可行的统计(现在的图像分析方法主要是基于数学统计的)。这个假设使得分治的方法能够得以实施,从而降低计算难度。 2 建筑物检测算法 整个检测算法主要分为以下4个阶段。 第28卷2008年6月 计算机应用 C o mpu ter App lications Vo.l 28June 2008

图像特征提取及识别过程

纹理特征是一种重要的视觉线索,是图像中普遍存在而又难以描述的特征。纹理分类与分割是图像处理领域一个经久不衰的热点研究领域,纹理特征提取作为纹理分类与分割的首要问题,一直是人们关注的焦点,各种纹理特征提取方法层出不穷。 本文在广泛文献调研的基础上,回顾了纹理特征提取方法的发展历程,分析了其研究现状,对纹理特征提取方法进行了较为全面的综述和分类,最后重点研究了基于灰度共生矩阵的图像纹理提取方法,研究如何有效地提取图像纹理特征来对图像进行描述,通过特征值来对图像进行识别。 灰度共生矩阵是一种简单有效的图像纹理特征描述方法,该方法的优势在于:它能利用了图像中像素相对位置的空间信息更加准确地描述图像的纹理,本 文就是利用图像灰度共生矩阵的这一特性,从该矩阵中提取相应的统计参量作为纹理特征来实现对图像的识别。 关键字:灰度共生矩阵,纹理特征提取,图像识别

ABSTRACT Texture is a kind of importa nt visual clues in images , it is widespread but cannot easy to be described . Texture classification and segmentation is a enduring popular research field in image process ing area. Texture feature extract ion has bee n the focus of attention,due to its priority to texture classification and image segmentation. all sorts of texture feature extracti on methods has bee n emerged in en dlessly. On the basis of exte nsive literature inv estigati on, we review the texture feature extract ion methods, an alyze the developme nt of the research status of the texture feature extracti on methods and make a comprehe nsive review of its classificati on . Fin ally ,based on gray symbiotic matrix image problem extracti on methods,we research how to effectively extract image texture feature described by the image characteristic value to image recog niti on. Graylevel co-occurre nee matrix is a simple and effective image texture descripti on method.This method's advantage is: it can use the image pixels relative positions of the spatial in formatio n more to accurately describe the texture image.This paper use the graylevel co-occurre nee matrix of the properties to extract statistics from the matrix corresp onding as texture feature parameters to realize image recog niti on. KEY WORDS : graylevel co-occurrenee matrix, texture feature extraction, image recog niti on

利用matlab进行图像检测--直线提取

H a r b i n I n s t i t u t e o f T e c h n o l o g y 图像工程导论 课程名称:图像工程导论 设计题目:《图像检测:直线提取》院系: 班级: 设计者: 学号: 哈尔滨工业大学教务处 图像工程导论任务书 二〇一五年柒月哈尔滨工业大学

一、课题详细描述: 提取图像中所有长度>8,<80像素的水平、垂直和对角直线。 二、课题设计思路: 读取图片后将其转化为灰度图后记为二值图像,对其进行边缘检测后通过霍夫变换检测直线,并将符合像素要求的水平、垂直和对角直线绘制在屏幕上。 三、代码清单及注释 x=imread('D:2.jpg');%读取图片 BW=rgb2gray(x);%转化为灰度图 imshow(BW); thresh=[0.01,0.17]; sigma=2; %定义高斯参数 f=edge(double(BW),'canny',thresh,sigma);%canny边缘检测 figure,imshow(f); [H,T,R]=hough(f,'ThetaResolution',89,'RhoResolution',10); %霍夫变换 P=houghpeaks(H,400,'Threshold',80,'NHoodSize',[1,1]); lines=houghlines(f,T,R,P,'FillGap',1,'Minlength',8); for k = 1:length(lines) xy = [lines(k).point1; lines(k).point2]; len = norm(lines(k).point1 - lines(k).point2); Len(k)=len if ( len > 8& len < 80) %限定像素范围 plot(xy(:,1),-xy(:,2),'LineWidth',2,'color','Red'); %绘制图像 hold on;

图像特征提取综述

图像特征提取的定位是计算机视觉和图像处理里的一个概念,表征图像的特性。输入是一张图像(二维的数据矩阵),输出是一个值、一个向量、一个分布、一个函数或者是信号。提取特征的方法千差万别,下面是图像特征的一些特性: 边缘 边缘是两个区域边界的像素集合,本质上是图像像素的子集,能将区域分开。边缘形状是任意的,实践中定义为大的梯度的像素点的集合,同时为了平滑,还需要一些算法进行处理。角 顾名思义,有个突然较大的弧度。早起算法是在边缘检测的基础上,分析边缘的走向,如果突然转向则被认为是角。后来的算法不再需要边缘检测,直接计算图像梯度的高度曲率(合情合理)。但会出现没有角的地方也检测到角的存在。 区域 区域性的结构,很多区域检测用来检测角。区域检测可以看作是图像缩小后的角检测。 脊 长形的物体,例如道路、血管。脊可以看成是代表对称轴的一维曲线,每个脊像素都有脊宽度,从灰梯度图像中提取要比边缘、角和区域都难。 特征提取 检测到特征后提取出来,表示成特征描述或者特征向量。 常用的图像特征:颜色特征、 纹理特征 形状特征 空间关系特征。 1.颜色特征 1.1特点:颜色特征是全局特征,对区域的方向、大小不敏感,但是不能很好捕捉局部特征。 优点:不受旋转和平移变化的影响,如果归一化不受尺度变化的影响。 缺点:不能表达颜色空间分布的信息。 1.2特征提取与匹配方法 (1)颜色直方图 适用于难以自动分割的图像,最常用的颜色空间:RGB和HSV。 匹配方法:直方图相交法(相交即交集)、距离法、中心距法、参考颜色表法、累加颜色直方图法。 对颜色特征的表达方式有许多种,我们采用直方图进行特征描述。常见的直方图有两种:统计直方图,累积直方图。我们将分别实验两种直方图在图像聚类和检索中的性能。 统计直方图 为利用图像的特征描述图像,可借助特征的统计直方图。图像特征的统计直方图实际是一个1-D的离散函数,即: 上式中k代表图像的特征取值,L是特征可取值个数,是图像中具有特征值为k的像素的个数,N是图像像素的总数,一个示例如下图:其中有8个直方条,对应图像中的8种灰度像素在总像素中的比例。

图像纹理检测与特征提取技术研究综述

龙源期刊网 https://www.doczj.com/doc/613283247.html, 图像纹理检测与特征提取技术研究综述 作者:李秀怡 来源:《中国管理信息化》2017年第23期 [摘要] 图像纹理作为图像数据的重要信息,是符合人类视觉特征的重要信息之一。纹理 检测与特征提取是纹理分类与分割的基础前提,可以应用到医疗、工业、农业、天文等多个领域,也是近几十年来一个经久不衰的热点研究。随着图像处理领域各种技术的发展,纹理特征分析提取方法也得到不断创新。文章在对相关文献进行调研的基础上,叙述了纹理特征提取方法的发展历程及研究现状,并重点对近十年纹理特征提取方法进行了论述,最后指出了该领域的发展趋势及问题。 [关键词] 图像纹理;特征提取;小波;支持向量机 doi : 10 . 3969 / j . issn . 1673 - 0194 . 2017. 23. 088 [中图分类号] TP311 [文献标识码] A [文章编号] 1673 - 0194(2017)23- 0175- 04 1 引言 随着大数据时代的到来,相对于一般数据,图像信息作为一种更直观更形象的数据表现形式,其应用已经深入到医学、工业、航空、农业等各行业领域中。而纹理作为图像的重要特征之一,可以充分反映图像的整体特征,因此也成为了诸多图像后处理技术所必备的研究条件。但是,纹理的复杂多样性使得研究者们对其分析和准确识别是非常困难。而解决这个困难的方法之一是对图像提取纹理,然后对提取的纹理进行分析研究。这也是模式识别、图像检索、和计算机视觉等研究的基础。在纹理研究的每个阶段内,随着国内外学者研究对图像纹理提取模型及算法的不断创新,以及纹理提取的广泛的应用价值,促使着大家对这一领域进行更深入的研究。 2 纹理的基本定义及特性 目前,人们对纹理的精确定义还没有完全统一,当前几个类别的定义基本上按不同的应用类型形成相对的定义。一般认为,纹理是图像色彩或者灰度在空间上的重复或变化形成纹理。通常,人们将组成纹理的基本单元称为纹理基元或纹元(texture element)。 尽管关于纹理的定义尚未统一,但人们对纹理信息所具有的如下特性达成共识: (1)纹理基元是纹理存在的基本元素,并一定是按照某种规律排列组合形成纹理;(2)纹理信息具有局部显著性,通常可以表现为纹理基元序列在一定的局部空间重复出现;(3)纹理有周期性、方向性、密度、强度和粗糙程度等基本特征,而与人类视觉特征相一致的周期

(完整版)图像特征特点及常用的特征提取与匹配方法

图像特征特点及常用的特征提取与匹配方法 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡 的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩

图像轮廓线提取

数学实验报告 实验二图像轮廓线提取技术 学院 专业 姓名 学号 成绩单序号 提交日期

一、实验目的 1.了解对matlab的图像处理功能,掌握基本的图像处理方式; 2.掌握imread,imshow,imwrite,subplot,title等的基本使用方法。 3.掌握图像轮廓线提取的简单方法并上机实现。 4.了解matlab自带的边界检测算子的使用,提高对复杂图像处理的能力。 二、实验要求 1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析,并与MATLAB自带的边缘检测做对比。 2.提出其它的轮廓线提取方法,与简单阈值法进行比较分析。 三、实验过程 1.任意选取一幅灰度图像和一幅彩色图像,对算法中若干关键语句中进行调整,得出不同的实验结果,对这些结果进行分析。 ⑴灰度图的轮廓线提取,M文件代码: function gray(pix,n) %灰度图的轮廓线提取 A=imread(pix); %读取指定的灰度图%生成与图像对应的矩阵 [a,b]=size(A); %a,b分别等于矩阵A的行数和列数 B=double(A); %将矩阵A变为双精度矩阵 D=40*sin(1/255*B); %将矩阵B进行非线性变换 T=A; %新建与A同等大小矩阵 for p=2:a-1 %处理图片边框内的像素点 for q=2:b-1 if (D(p,q)-D(p,q+1))>n|(D(p,q)-D(p,q-1))>n|(D(p,q)-D(p+1,q))>n|(D(p,q)-D(p-1,q))>n|( D(p,q)-D(p-1,q+1))>n|(D(p,q)-D(p+1,q-1))>n|(D(p,q)-D(p-1,q-1))>n|(D(p,q)-D(p+1,q +1))>n T(p,q)=0; %置边界点为黑色%新建轮廓线矩阵 else T(p,q)=255; %置非边界点为白色 end; end; end; subplot(2,1,1); %将窗口分割为两行一列,下图显示于第一行 image(A); %显示原图像 title('灰度图原图'); %图释 axis image; %保持图片显示比例 subplot(2,1,2); %下图显示于第二行 image(T); %显示提取轮廓线后的图片

图像特征特点及其常用的特征提取与匹配方法

图像特征特点及其常用的特征提取与匹配方法 [ 2006-9-22 15:53:00 | By: 天若有情 ] 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(m ean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。(4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。 (5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局

视频图像质量诊断系统综合方案(DOC 30页)

视频图像质量诊断系统综合方案 ?图像模糊检测 ?图像亮度异常诊断 ?图像偏色检测 ?图像雪花滚屏等噪声检测 ?球机或云台操控失灵检测 ?画面冻结与信号缺失检测 ?基于网络浏览器的远程查询与管理 ?诊断结果统计分析 ?报表自动生成与导出 ?适用于模拟和数字系统 北京世纪东方国铁科技股份有限公司

目录 一、系统综述 (2) 1.1、现状描述 (3) 1.2、需求分析 (3) 1.3、系统目标 (3) 二、系统总体方案设计 (5) 2.1、设计原则 (5) 2.2、系统结构 (5) 2.3、模块设计 (6) 2.4、功能定义 (7) 2.5、核心技术 (8) 2.6、系统特点 (10) 2.7、前端软件系统 (12) 2.7.1、总体介绍 (12) 2.7.2、系统设置 (13) 2.7.3、参数设置 (17) 2.8、后端管理系统 (19) 2.8.1、用户登录 (19) 2.8.2、诊断记录查询 (19) 2.8.3、统计分析 (20) 2.8.4、报表导出和打印 (22) 2.8.5、摄像头信息设置 (23) 2.8.6、系统管理 (24) 2.9、安全保障体系设计 (26) 2.10、产品优势 (26) 三、性能参数 (28) 3.1、总体性能指标 (28) 3.2、硬件配置 (28) 一、系统综述 监控摄像机数量的不断增加,监控的时间不断延长,推动了平安城市建设的发展,也给监

控系统的维护工作带来了新的挑战。如何及时了解前端视频设备的运行情况,发现故障并检测恶意遮挡与破坏的不法行为已成为视频监控系统运行的首要迫切问题。 1.1、现状描述 前端摄像头的故障分析与日常维护因监控系统的不断扩大而日益受到人们重视,从现在普遍出现的摄像头故障类型来看,影响视频监控系统视频质量的因素有很多,主要概括来说有以下几点: ?首先是摄像机的设置不当或器件老化失效造成,包含摄像机的分辨率、摄像机对光照的灵敏度、镜头聚焦调整、色彩校正无不涉及其中。 ?其次,大型监控网络中视频信号必须通过长距离电缆传输、多级矩阵切换以及多级网络转发,电源、控制器等多种干扰信号可能对视频信号产生强烈的干扰,线路老化、接头松动等现场环境的变化可能带来视频噪声。 ?另外,很多治安监控系统的特点是大量使用PTZ球机,长期的运动变焦有可能让部分球机发生方向错误、不可控等故障。为了确保所有的视频输入设备正常工作,视频图像录而可用,就需要随时检查和分析视频质量和球机运行状态。 1.2、需求分析 目前来说,视频监控系统的维护工作一般是由人工完成的。维护人员在中心监控室,通过模拟矩阵或数字视频流媒体服务器将远端视频调出到监视屏中,人工判断每路视频的质量,并将有问题的视频记录到维护报表中。这项工作十分耗时繁重,因此一般维护工作会以半月或一月为周期定期检查,视频故障只能在检测的时候才能发现。 由于监视屏数量有限,维护人员往往在一个监视屏同时监看多台摄像机或随机抽取摄像头显示,造成部分监控点被漏看或被忽视;另外,维护人员存在一定的不稳定性、随意性和局限性,加上人的注意力有限、容易疲劳,会被其他事物干扰,使得这样的人工检查结果也不具客观性。这种人工维护工作不仅费时费力,而且效果不好,视频信号在出现不同的常见故障后,往往不能及时地被维护人员发现,一旦发生紧急情况,再想补救已经来不及。 1.3、系统目标 自主研发的视频质量诊断系统主要应用在视频监控系统的控制中心,通过轮询的方式对各路模拟或数字视频信号进行自动检测,利用先进的机器学习和计算机视觉技术,仿真人类的视

相关主题
文本预览
相关文档 最新文档