当前位置:文档之家› 数学建模与数学实验

数学建模与数学实验

数学建模与数学实验
数学建模与数学实验

数学建模与数学实验

实验报告

班级: 数学师范153 姓名:付爽

学号:1502012060 实验名称: 数列极限与函数极限

基础实验

基础实验一 数列极限与函数极限

第一部分 实验指导书解读

一、实验目的

从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验使用软件 Mathematic 5.0

三.实验的基本理论即方法 1割圆术

中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。

“割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。

以n

S 表示单位圆的圆内接正1

23-?n 多边形面积,则其极限

为圆周率π。用下列Mathematica 程序可以从量和形两个角

度考察数列{n

S }的收敛情况:

m=2;n=15;k=10;

For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正1

23-?n 多边形边长)

s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1

23-?n 多边形面积)

r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1];

Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ]

t=Table[{i,s[i]},{i,m,n}] (数组)

ListPlot[t] (散点图) 2裴波那奇数列和黄金分割

由2110;1;

0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。

如果令n

n n F F R 1

1

--=

,由n

F 递推公式可得出

1

1111

/11---+=

+=+=

n n n n n n n R F F F F F R ,]251251[511

1

++???

?

??--???

?

??+=n n n F ; 2

15lim lim 1

-==+∞

→∞→n n

n n n F F R 。

用下列Mathematica 程序可以从量和形两个角度考察数列{n

R }的收敛情况:

n=14,k=10;

For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2; f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴

波那奇数列通项)

rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1];

Print[i," ",rn," ",Rn," ",dn]; ]

t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t] 3收敛与发散的数列

数列}{1∑=-n i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。 4函数极限与数列极限的关系

用Mathematica 程序

m=0;r=10^m;x0=0; f[x_]=x*Sin[1/x] Plot[f[x],{x,-r,r}] Limit[f[x],x->x0]

观察的1

sin )(-=x x x f 图象可以发现,函数在0=x 点处不连续,且

函数值不存在,但在0=x 点处有极限。 令100,,2,1,/1 ===n n a

x n

,作函数的取值表,画散点图看其子

列的趋向情况

k=10;p=25;

a[n_]=1/n;

tf=Table[{n,N[f[a[n]],k]},{n,1,p}]

ListPlot[tf]

Limit[f[a[n]],n→Infinity,Direction→1]

分别取不同的数列

a(要求0→n a),重做上述过程,并将各

n

次所得图形的分析结果比较,可知各子列的极限值均为上述函数的极限值。

对于1

=x

g,类似地考察在0=x点处的极限。

x

sin

)

(-

三、实验准备

认真阅读实验目的与实验材料后要正确地解读实验,在此基础上制定实验计划(修改、补充或编写程序,提出实验思路,明确实验步骤),为上机实验做好准备。

四、实验思路提示

3.1考察数列敛散性

改变或增大n,观察更多的项(量、形),例如,n分别取50,100,200,…;扩展有效数字k,观察随n增大数列的变化趋势,例如,k分别取20,30,50;或固定50;或随n增大而适当增加。对实验要思考,例如,定义中的指标与柯西准则中的指标间的差异;数列收敛方式;又例如,如何估计极限近似值的误差。

3.2考察函数极限与数列极限的关系

改变函数及极限类型,例如,考虑六种函数极限,既选

取极限存在也选取极限不存在的例子;改变数列,改变参数观察更多的量,考察形的变化趋势;扩展有效数字k ,提高计算精度。要对实验思考,归纳数列敛散与函数敛散的关系。

第二部分 实验计划

实验主要是从观察数列的敛散性,观察函数值的变化趋势来理解极限的概念,进一步体会实验的准则

1.割圆术

中国古代数学家刘徽在《九章算术注》

方田章圆田术中创造了割

面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。

“割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以nS 表示单位圆的圆内接正 1 2 3

n 多边形面积,

则其极限

Mathematica 程序可以从量和形两个角度考察数列{nS}的收敛情况:

m=2;n=15;k=10;

For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆内接正1 23

n 多边形边长)

s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1 23

n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1];

Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图

2裴波那奇数列和黄金分割

由2110

;1;0--+===n n n F F F F F

有著名的裴波那奇数列}{n F 。

如果令n

n n F F R 1

1

--=

,由n

F 递推公式可得出

1

1111

/11---+=

+=+=n n n n n n n R F F F F F R ,]251251[511

1

++???

?

??--???

?

??+=n n n F ; 2

1

5lim lim 1

-==+∞

→∞→n n

n n n F F R 。 用下列Mathematica 程序可以从量和形两个角度考察数列{n

R }

的收敛情况: n=14,k=10;

For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2; f[i_]:=N[(t1^(i+1)-t2^(i+1))/Sqrt[5],k]; (定义裴波那奇数列通项)

rn=(5^(1/2)-1)/2-f[i-1]/f[i];Rn=f[i-1]/f[i];dn=f[i-1]/f[i]-f[i-2]/f[i-1]; Print[i," ",rn," ",Rn," ",dn];

]

t=Table[{i,f[i-1]/f[i]},{i,3,n}] ListPlot[t]

,]251251[511

1

++???

?

??--???

?

??+=n n n F ; 2

1

5lim lim 1

-==+∞

→∞→n n

n n n F F R 。

3.收敛与发散的数列

数列

}

{1∑=-n

i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。

4.函数极限与数列极限的关系

用Mathematica 程序

m=0;r=10^m;x0=0; f[x_]=x*Sin[1/x] Plot[f[x],{x,-r,r}] Limit[f[x],x->x0]

观察1

sin )(-=x x x f 的图象可以发现,函数在0=x 点处不连续,

且函数值不存在,但在0=x 点处有极限。 令100

,,2,1,/1 ===n n a

x n

,作函数的取值表,画散点图看

其子列的趋向情况

k=10;p=25; a[n_]=1/n;

tf=Table[{n,N[f[a[n]],k]},{n,1,p}]

ListPlot[tf]

Limit[f[a[n]],n→Infinity,Direction →1]

分别取不同的数列n a(要求0→n a),重做上述过程,并将各次所得图形的分析结果比较,可知各子列的极限值均为上述函数的极限值。

对于1

=x

g,类似地考察在0=x点处的

x

(-

)

sin

三实验过程与结果

设{xn}为实数列,a 为定数,若对任给的正数b,总存在正整数N,使得当n > N 时,有|xn - a|

程序结果运行如下:

裴波那奇数列和黄金分割

1.考察数列敛散性

改变或增大n,观察更多的项(量、形),例如,n分别取50,100,200,…;扩展有效数字k,观察随n增大数列的变化趋势,例如,k分别取20,30,50;或固定50;或随n增大而适当增加。对实验要思考,例如,定义中的指标与柯西准则中的指标间的差异;数列收敛方式;又例如,如何估计极限近似值的误差。

2.考察函数极限与数列极限的关系

改变函数及极限类型,例如,考虑六种函数极限,既选取极限存在也选取极限不存在的例子;改变数列,改变参数观察更多的量,考察形的变化趋势;扩展有效数字k,提高计算精度。要对实验思考,归纳数列敛散与函数敛散的关系。

例:

用Mathematica程序

m=0;r=10^m;x0=0;

f[x_]=x*Sin[1/x]

Plot[f[x],{x,-r,r}]

Limit[f[x],x->x0]

观察1

x

x

f的图象可以发现,函数在0=x点=x

)

(-

sin

处不连续,且函数值不存在,但在0=x点处有极限。

,作函数的取值表,画散点令100,,2,1,/1

x

a

=

n

=n

=

n

图看其子列的趋向情况

k=10;p=25;

a[n_]=1/n;

tf=Table[{n,N[f[a[n]],k]},{n,1,p}] ListPlot[tf]

Limit[f[a[n]],n→Infinity,Directio n→1]

分别取不同的数列

a(要求0→n a),重做

n

上述过程,并将各次所得图形的分析结果比较,可知各子列的极限值均为上述函数的极限值。

对于1

sin )(-=x x g ,类似地考察在0=x 点处的极限。

四 实验结论

1.以n

S 表示单位圆的圆内接正1

23-?n 多边形面积,则其极限为圆周率π。用下列Mathematica 程序可以从量和形两个角度考察数列{n

S }的收敛情况

2.由2

110;1;0--+===n n n F F F F F 有著名的裴波那奇数列}{n

F 。

n

n n F F R 11--=

,由n

F 递推公式可得

3.数列}

{1∑=-n

i p i 当1>p 时收敛,1≤p 时发散;数列}{sin n 发散。

4.分别取不同的数列n

a (要求0→n

a ),重做过程,并将各次所得图形的分析结果比

较,可知各子列的极限值均为上述函数的极限值。对于

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

数学建模实验报告

数学建模实验报告 实验一计算课本251页A矩阵的最大特征根和最大特征向量 1 实验目的 通过Wolfram Mathematica软件计算下列A矩阵的最大特征根和最大特征向量。 2 实验过程 本实验运用了Wolfram Mathematica软件计算,计算的代码如下:

3 实验结果分析 从代码的运行结果,可以得到最大特征根为5.07293,最大特征向量为 {{0.262281},{0.474395},{0.0544921},{0.0985336},{0.110298}},实验结果 与标准答案符合。

实验二求解食饵-捕食者模型方程的数值解 1实验目的 通过Wolfram Mathematica或MATLAB软件求解下列习题。 一个生物系统中有食饵和捕食者两种种群,设食饵的数量为x(t),捕食者为y(t),它们满足的方程组为x’(t)=(r-ay)x,y’(t)=-(d-bx)y,称该系统为食饵-捕食者模型。当r=1,d=0.5,a=0.1,b=0.02时,求满足初始条件x(0)=25,y(0)=2的方程的数值解。 2 实验过程 实验的代码如下 Wolfram Mathematica源代码: Clear[x,y] sol=NDSolve[{x'[t] (1-0.1y[t])x[t],y'[t] 0.02x[t]y[t]-0.5y[t],x[0 ] 25,y[0] 2},{x[t],y[t]},{t,0,100}] x[t_]=x[t]/.sol y[t_]=y[t]/.sol g1=Plot[x[t],{t,0,20},PlotStyle->RGBColor[1,0,0],PlotRange->{0,11 0}] g2=Plot[y[t],{t,0,20},PlotStyle->RGBColor[0,1,0],PlotRange->{0,40 }] g3=Plot[{x[t],y[t]},{t,0,20},PlotStyle→{RGBColor[1,0,0],RGBColor[ 0,1,0]},PlotRange->{0,110}] matlab源代码 function [ t,x ]=f ts=0:0.1:15; x0=[25,2]; [t,x]=ode45('shier',ts,x0); End function xdot=shier(t,x)

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模与实验

? 1.1.3 初识MATLAB 例1-1 绘制正弦曲线和余弦曲线。 x=[0:0.5:360]*pi/180; plot(x,sin(x),x,cos(x)); ?例1-2 求方程 3x4+7x3 +9x2-23=0的全部根。 p=[3,7,9,0,-23]; %建立多项式系数向量 x=roots(p) %求根 ?例1-3 求积分 quad('x.*log(1+x)',0,1) ?例1-4 求解线性方程组。 a=[2,-3,1;8,3,2;45,1,-9]; b=[4;2;17]; x=inv(a)*b ? 1.2.1 MATLAB的运行环境 硬件环境: (1) CPU (2) 内存 (3) 硬盘 (4) CD-ROM驱动器和鼠标。 软件环境: (1) Windows 98/NT/2000 或Windows XP (2) 其他软件根据需要选用 ? 1.3.1 启动与退出MATLAB集成环境 1.MATLAB系统的启动 与一般的Windows程序一样,启动MATLAB系统有3种常见方法: (1)使用Windows“开始”菜单。 (2)运行MATLAB系统启动程序matlab.exe。 (3) 利用快捷方式。 ?启动MATLAB后,将进入MATLAB 6.5集成环境。MATLAB 6.5集成环境包括MATLAB 主窗口、命令窗口(Command Window)、工作空间窗口(Workspace)、命令历史窗口(Command History)、当前目录窗口(Current Directory)和启动平台窗口(Launch Pad)。 ?2.MATLAB系统的退出 要退出MATLAB系统,也有3种常见方法: (1) 在MATLAB主窗口File菜单中选择Exit MATLAB命令。 (2) 在MATLAB命令窗口输入Exit或Quit命令。 (3) 单击MATLAB主窗口的“关闭”按钮。 ? 1.3.2 主窗口 MATLAB主窗口是MATLAB的主要工作界面。主窗口除了嵌入一些子窗口外,还主要包括菜单栏和工具栏。 1.菜单栏 在MATLAB 6.5主窗口的菜单栏,共包含File、Edit、View、Web、Window和Help 6个菜单项。

数学建模实验报告第十一章最短路问答

实验名称:第十一章最短路问题 一、实验内容与要求 掌握Dijkstra算法和Floyd算法,并运用这两种算法求一些最短路径的问题。 二、实验软件 MATLAB7.0 三、实验内容 1、在一个城市交通系统中取出一段如图所示,其入口为顶点v1,出口为顶点v8,每条弧段旁的数字表示通过该路段所需时间,每次转弯需要附加时间为3,求v1到v8的最短时间路径。 V1 1 V2 3 V3 1 V5 6 V6 V4 2 V7 4 V8

程序: function y=bijiaodaxiao(f1,f2,f3,f4) v12=1;v23=3;v24=2;v35=1;v47=2;v57=2;v56=6;v68=3;v78=4; turn=3; f1=v12+v23+v35+v56+turn+v68; f2=v12+v23+v35+turn+v57+turn+v78; f3=v12+turn+v24+turn+v47+v78; f4=v12+turn+v24+v47+turn+v57+turn+v56+turn+v68; min=f1; if f2

f4 实验结果: v1到v8的最短时间路径为15,路径为1-2-4-7-8. 2、求如图所示中每一结点到其他结点的最短路。V110 V3V59 V6

floy.m中的程序: function[D,R]=floyd(a) n=size(a,1); D=a for i=1:n for j=1:n R(i,j)=j; end end R for k=1:n for i=1:n for j=1:n if D(i,k)+D(k,j)

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

《数学建模与数学实验》课程论文

10级信息《数学建模与数学实验(实践)》任务书 一、设计目的 通过《数学建模与数学实验(实践)》实践环节,掌握本门课程的众多数学建模方法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C 语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。 二、设计教学内容 1线性规划(掌握线性规划的模型、算法以及Matlab 实现)。整数线性规划(掌握整数线性规划形式和解法)。 2微分方程建模(掌握根据规律建立微分方程模型及解法;微分方程模型的Matlab 实现)。 3最短路问题(掌握最短路问题及算法,了解利用最短路问题解决实际问题)。 行遍性问题(了解行遍性问题,掌握其TSP算法)。 4回归分析(掌握一元线性回归和多元线性回归,掌握回归的Matlab实现)。 5计算机模拟(掌握Monte-carlo方法、了解随机数的产生;能够用Monte-carlo 解决实际问题)。 6插值与拟合(了解数据拟合基本原理,掌握用利用Matlab工具箱解决曲线拟合问题)。 三、设计时间 2012—2013学年第1学期:第16周共计一周 目录 一、10级信息《数学建模与数学实验(实践)》任务书 (1) 二、饭店餐桌的布局问题 (3) 摘要 (3)

问题重述 (3) 模型假设 (3) 模型分析 (4) 模型的建立和求解 (4) 模型推广 (9) 参考文献 (9) 三、白酒配比销售问题 (10) 摘要 (10) 问题重述 (11) 问题分析 (12) 模型假设 (12) 符号及变量说明 (12) 模型的建立与求解 (13) 模型的检验 (18) 模型的评价与推广 (19) 附录 (21) 饭店餐桌的布局问题 摘要 饭店餐桌的布局对于一个饭店有着很重要的作用。本文讨论的就是饭店餐桌的布局问题,根据实际需求及规定建立模型,同时考虑餐桌的类型及规格,尤其是餐桌的摆放技巧,保证使饭店能容纳的人数达到最大。根据所需餐桌的数量

数学建模与数学实验

数学建模与数学实验 实验报告 班级: 数学师范153 姓名:付爽 学号:1502012060 实验名称: 数列极限与函数极限 基础实验 基础实验一数列极限与函数极限第一部分实验指导书解读

一、实验目的 从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验使用软件 Mathematic 5、0 三.实验的基本理论即方法 1割圆术 中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。 “割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以n S 表示单位圆的圆内接正1 23-?n 多边形面积,则其极限为 圆周率π。用下列Mathematica 程序可以从量与形两个角度考察数列{n S }的收敛情况: m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆

内接正1 23-?n 多边形边长) s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1 23-?n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1]; Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图) 2裴波那奇数列与黄金分割 由2110;1; 0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。 如果令n n n F F R 11 --=,由n F 递推公式可得出 11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[511 1 ++??? ? ??--??? ? ??+=n n n F ; 2 15lim lim 1 -==+∞ →∞ →n n n n n F F R 。 用下列Mathematica 程序可以从量与形两个角度考察数列{n R }的收敛情况: n=14,k=10; For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2;

数模模数转换实验报告材料

数模模数转换实验报告 一、实验目的 1、了解数模和模数转换电路的接口方法及相应程序设计方法。 2、了解数模和模数转换电路芯片的性能和工作时序。 二、实验条件 1、DOS操作系统平台 2、数模转换芯片DAC0832和模数转换器ADC0809芯片。 三、实验原理 1、数模转换: (1)微机处理的数据都是数字信号,而实际的执行电路很多都是模拟的。因此微机的处理结果又常常需要转换为模拟信号去驱动相应的执行单元,实现对被控对象的控制。这种把数字量转换为模拟量的设备称为数模转换器(DAC),简称D/A。 (2)实验中所用的数模转换芯片是DAC0832,它是由输入寄存器、DAC 寄存器和D/A 转换器组成的CMOS 器件。其特点是片包含两个独立的8 位寄存器,因而具有二次缓冲功能,可以将被转换的数据预先存在DAC 寄存器中,同时又采集下一组数据,这就可以根据需要快速修改DAC0832 的输出。 2、模数转换: (1)在工程实时控制中,经常要把检测到的连续变化的模拟信号,如温度、压力、速度等转换为离散的数字量,才能输入计算机进行处理。实现模拟量到数字量转换的设备就是模数转换器(ADC),简称A/D。

(2)模数转换芯片的工作过程大体分为三个阶段:首先要启动模数转换过程。其次,由于转换过程需要时间,不能立即得到结果,所以需要等待一段时间。一般模数转换芯片会有一条专门的信号线表示转换是否结束。微机可以将这条信号线作为中断请求信号,用中断的方式得到转换结束的消息,也可以对这条信号线进行查询,还可以采用固定延时进行等待(因为这类芯片转换时间是固定的,事先可以知道)。最后,当判断转换已经结束的时候,微机就可以从模数转换芯片中读出转换结果。 (3)实验采用的是8 路8 位模数转换器ADC0809 芯片。ADC0809 采用逐次比较的方式进行A/D 转换,其主要原理为:将一待转换的模拟信号与一个推测信号进行比较,根据推测信号是大于还是小于输入信号来决定增大还是减少该推测信号,以便向模拟输入逼近。推测信号由D/A 转换器的输出获得,当推测信号与模拟信号相等时,向D/A 转换器输入的数字就是对应模拟信号的数字量。ADC0809 的转换时间为64 个时钟周期(时钟频率500K 时为128S)。分辨率为 8 位,转换精度为±LSB/2,单电源+5V 供电时输入模拟电压围为04.98V。 四、实验容 1、把DAC0832 的片选接偏移为10H 的地址,使用debug 命令来测试 DAC0832 的输出,通过设置不同的输出值,使用万用表测量Ua 和Ub 的模拟电压,检验DAC0832 的功能。选取典型(最低、最高和半量程等)的二进制值进行检验,记录测得的结果。实验结果记录如下: 输入 00 0.001 4.959 08 0.145 4.636

数学建模实验答案_概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =0.75, a =1, c =0.6,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少? [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=0.75; c=0.6; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l =2.0m的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=0.2m,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

《数学建模与数学实验》上机实验报告

成都信息工程大学 《数学建模与数学实验》上机实验报告 专业信息与计算科学班级姓名学号 实验日期成绩等级教师评阅日期 [问题描述] 下表给出了某一海域以码为单位的直角坐标Oxy 上一点(x,y)(水面一点)以英尺为单位的水深z,水深数据是在低潮时测得的,船的吃水深为5英尺,问在矩形区域(75,200)x (-50,150)里那些地方船要避免进入。 [模型] 设水面一点的坐标为(x,y,z),用基点和插值函数在矩形区域(75,200)*(-50,150)内做二维插值、三次插值,然后在作出等高线图。

[求解方法] 使用matlab求解: M文件:water.m x=[129 140 103.5 88 185.5 195 105.5 157.5 107.5 77 81 162 162 117.5]; y=[7.5 141.5 23 147 22.5 137.5 85.5 -6.5 -81 3 56.5 -66.5 84 -33.5]; z=[-4 -8 -6 -8 -6 -8 -8 -9 -9 -8 -8 -9 -4 -9]; cx = 75:0.5:200; cy = -50:0.5:150; [cx,cy]=meshgrid(cx,cy); 作出曲面图: 代码如下: >> water >> cz=griddata(x,y,z,cx,cy,'cubic'); >> meshz(cx,cy,cz) >> xlabel('X'),ylabel('Y'),zlabel('Z') >> 作出等高线图: 代码如下: >> water >> cz=griddata(x,y,z,cx,cy,'cubic'); >> figure(2) >> contour(cx,cy,cz,[-5,-5],'r') >> hold on >> plot(x,y,'*') >> xlabel('X'),ylabel('Y') [结果]

相关主题
文本预览
相关文档 最新文档