当前位置:文档之家› 生物质油重整制氢

生物质油重整制氢

生物质油重整制氢
生物质油重整制氢

Energy Fuels2010,24,3251–3255:DOI:10.1021/ef1000634

Published on Web04/26/2010

Upgrading of Bio-oil by Catalytic Esterification and Determination of Acid Number for

Evaluating Esterification Degree

Jin-Jiang Wang,Jie Chang,*and Juan Fan

South China University of Technology,No.381Wushan Road,Guangzhou510641,People’s Republic of China

Received January20,2010.Revised Manuscript Received April11,2010

Bio-oil was upgraded by catalytic esterification over the selected catalysts of732-and NKC-9-type ion-

exchange resins.The determination of the acid number by potentiometric titration was recommended by

the authors to quantify the total content of organic acids in bio-oil and also to evaluate the esterification

degree of bio-oil in the process of upgrading.We analyzed the measurement precision and calibrated the

method of potentiometric titration.It was proven that this method is accurate for measuring the content of

organic acids in bio-oil.After bio-oil was upgraded over732and NKC-9,acid numbers of bio-oil were

lowered by88.54and85.95%,respectively,which represents the conversion of organic acids to neutral

esters,the heating values increased by32.26and31.64%,and the moisture contents decreased by27.74and

30.87%,respectively.The accelerated aging test and aluminum strip corrosion test showed improvement of

stability and corrosion property of bio-oil after upgrading,respectively.

1.Introduction

Bio-oil,a liquid product from biomass fast pyrolysis,by virtue of its environmental friendliness and energy indepen-dence,is regarded as a promising energy source and receives more and more attention.1,2Nonetheless,the drawbacks, including high acidity,low heating value,high corrosiveness, high viscosity,and poor stability of bio-oil,limit its usage as a high-grade/transportation fuel.3-5Consequently,upgrad-ing of bio-oil before use is desirable to give a liquid product that can be used in a wider variety of applications.Catalytic esterification is widely studied for this https://www.doczj.com/doc/6115369867.html,anic acids(formic acid,acetic acid,propionic acid,etc.)in bio-oils can be converted to their corresponding esters,and the quality of bio-oil will be greatly improved.Solid acid cata-lysts,solid base catalysts,6ionic liquid catalysts,7HZSM-5, and aluminum silicate catalysts8,9were investigated for esterification of bio-oils.Not only the liquid bio-oil but also the uncondensed bio-oil vapor can be esterified,and good results can be obtained.10Esterification was proven to occur by gas chromatography-mass spectrometry(GC-MS)or Fourier transform infrared(FITR)analysis.A GC-MS chromatogram or FITR spectrum can be used for qualitative analysis of the original and upgraded bio-oils;however, there is no quantitative method proposed for evaluating the esterification degree of bio-oils.Gas chromatography can be used to quantify the organic acids in bio-oils11-13 and to evaluate the esterification degree;however,the overlapping chromatographic peaks are difficult to discri-minate,and complicated pretreatment operations are often required.

In this paper,we conducted the experiments of upgrading bio-oil by catalytic esterification over selected catalysts: 732-and NKC-9-type ion-exchange resins.Moreover,we developed a rapid method of acid number determination by potentiometric titration,which can be used to quantify the total amount of the organic weak acids in bio-oils and also to evaluate the esterification degree in the process of bio-oil upgrading.The acid number,which is expressed as milli-grams of sodium hydroxide per gram of sample in this paper (mg of NaOH/g),refers to the quantity of base required to titrate a sample in a specified solvent to a specified end point.We investigated the precision and accuracy of the method for quantifying the organic acids in bio-oils.The acid number was used as an important index for evalua-ting the follow-up upgrading process.The stability and

*To whom correspondence should be addressed.Telephone:t86-20-

87112448.Fax:t86-20-87112448.E-mail:changjie@https://www.doczj.com/doc/6115369867.html,. (1)Czernik,S.;Bridgwater,A.V.Overview of applications of bio-

mass fast pyrolysis oil.Energy Fuels2004,18,590–598.

(2)Huber,G.W.;Iborra,S.;Corma,A.Synthesis of transportation

fuels from biomass:Chemistry,catalysts,and engineering.Chem.Rev. 2006,106,4044–4098.

(3)Bridgwater,A.V.;Peacocke,G.V.C.Fast pyrolysis processes for biomass.Renewable Sustainable Energy Rev.2000,4,1–73.

(4)Mohan,D.;Pittman,C.U.;Steele,P.H.Pyrolysis of wood/ biomass for bio-oil:A critical review.Energy Fuels2006,20,848–889.

(5)Oasmaa,A.;Czernik,S.Fuel oil quality of biomass pyrolysis

oils;State of the art for the end user.Energy Fuels1999,13,914–921.

(6)Zhang,Q.;Chang,J.;Wang,T.J.;Xu,Y.Upgrading bio-oil over different solid catalysts.Energy Fuels2006,20,2717–2720.

(7)Xiong,W.M.;Zhu,M.Z.;Deng,L.;Fu,Y.;Guo,Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels2009,23,2278–2283.

(8)Peng,J.;Chen,P.;Lou,H.;Zheng,X.Catalytic upgrading of bio-oil by HZSM-5in sub-and super-critical ethanol.Bioresour.Technol. 2009,100,3415–3418.

(9)Peng,J.;Chen,P.;Lou,H.;Zheng,X.M.Upgrading of bio-oil over aluminum silicate in supercritical ethanol.Energy Fuels2008,22, 3489–3492.

(10)Hilten,R.N.;Bibens,B.P.;Kastner,J.R.;Das,K.C.In-line esterification of pyrolysis vapor with ethanol improves bio-oil quality. Energy Fuels2010,24,673–682.

(11)Branca,C.;Giudicianni,P.;Di Blasi,C.GC/MS characterization of liquids generated from low-temperature pyrolysis of wood.Ind.Eng. Chem.Res.2003,42,3190–3202.

(12)Oasmaa,A.;Meier,D.Norms and standards for fast pyrolysis liquids;1.Round robin test.J.Anal.Appl.Pyrolysis2005,73,323–334.

(13)Sipila,K.;Kuoppala,E.;Fagernas,L.;Oasmaa,A.Character-ization of biomass-based flash pyrolysis oils.Biomass Bioenergy1998, 14,103–113.

corrosiveness of bio-oil before and after upgrading were also studied.

2.Experimental Section

2.1.Materials and Chemicals.The original bio-oil produced by pyrolysis of wood chips in a circulating fluidized-bed unit was provided by the Devotion Group(Guangzhou,China).The capacity is3000tons/year,and the yield of bio-oil is close to 70%.Methanol,ethanol,and acetic acid(AR grade)were commercially available and used without further purification. The732resin(reference standard:Amberlite IR-120)and NKC-9resin(reference standard:Amberlyst15)were also com-mercially available and used as catalysts for the esterification of bio-oil.

2.2.Acid Number Determination.Bio-oil is usually a black or dark brown liquid,and therefore,it is difficult to choose a suitable visual indicator to signal the end point of the titration.A potentiometric method identifies the end point by monitoring the greatest slope in the titration curve at the equivalence point, which is especially suitable for the titration of turbid or colored solutions.Metrohm888Titrando and its internal template method of dynamic pH titration were used for the rapid determination of acid numbers of bio-oil.This template method will dynamically control the titration rate by monitoring the changes of the titration curve to optimize the density distribu-tion of the measurements.For the optimized collection of data, the end point can be acutely observed.

2.2.1.Analysis on Measurement Precision.Different bio-oil samples(0.4,0.65,and1.0g)were dissolved in methanol or ethanol and were titrated by the standard aqueous solutions of

sodium hydroxide(0.045,0.1,and0.165mol/L).Each sample was analyzed3times,and relative standard deviations of the measurements were calculated.Avoiding the potential esterifi-cation,the measurement should be carried out as soon as

possible.

2.2.2.Calibration.The experiments of adding a standard sample into bio-oil were conducted to calibrate the method. Acetic acid,0.06-0.08g(precision,(0.0001g),was used as a standard sample and was added into bio-oil,and the mixed sample was titrated.The measurement error of the added standard sample was employed to check the accuracy of the method.The theoretical acid number of the standard sample was calculated by the definition of the acid number,and the measured values were worked out by the formula:measured acid number=(M m-M b)/M s,where M m is the mass of NaOH consumed by the mixed sample(mg),M b is the mass of NaOH consumed by bio-oil(mg),and M s is the mass of the standard sample(g).

2.3.Experiment of Upgrading Bio-oil by Catalytic Esterifica-tion.2.3.1.Activity Evaluation of Resin Catalysts.The model reaction of esterification with methanol and acetic acid was employed to evaluate the catalytic activity of732resin and NKC-9resin.A total of81.5mL of methanol and58.5mL of acetic acid(molar ratio=2:1)were added into a three-neck flask equipped with a thermometer,reflux condenser,and magnetic stirrer.A total of5g of resin catalyst was used.A total of0.5mL of reaction solution was sampled at a20min interval and measured quantitively by NaOH standard solution titration. From the titration method,the acetic acid conversion was calculated by the equation:conversion=(1-V/V0)?100%, in which V and V0are the volumes of the standard NaOH solution consumed in neutralizing the0.5mL solution sampled in the process and at the beginning of the reaction,respectively.

2.3.2.Esterification of Bio-oil.Bio-oil and methanol were mixed in a volume ratio of1:2and were added to the three-neck flask equipped with a thermometer,reflux condenser,and stirrer.A schematic diagram of the reaction experiment is shown in Figure1.The experiments were carried out at the tempera-ture of50°C for5h,and the catalyst was used by10wt%of the bio-oil.After completion of the reaction,the catalysts were filtrated and removed from the mixture.Acid numbers of bio-oil were determined at every1h interval by the method previously proposed in this paper.Other physical properties were determined by the proposed methods in the round robin test.12

2.3.3.Aging Test.The aging properties were determined using the accelerated aging test method.12Original,diluted,and upgraded bio-oils were placed in small sealed vials and heated at80°C.Kinematic viscosity was measured at40°C at specific intervals.

2.3.4.Aluminum Strip Corrosion Test.The aluminum strips were machined into3cm?3.5cm?0.1mm.The strips were cleaned and polished by silicon carbide paper,weighed,and then immersed in60mL vials containing30mL oil samples.After that,the vials were sealed and placed at50°C.At specific intervals,the strips were taken out of the vials and washed in ethanol.The strips were weighed and then taken back to the vials until the next weight measurement time.

3.Results and Discussion

3.1.Potentiometric Titration for Acid Number Determina-tion.3.1.1.Influence of Solvents on Measurement Precision. Bio-oil is composed of both water-soluble and water-inso-luble fractions and is miscible with polar solvents,such as methanol,ethanol,etc.4,13Therefore,the aqueous solution of NaOH was selected as a titrant,and methanol or ethanol was used as a solvent for titration.We found that methanol was more suitable than ethanol for the increasing insolubility of bio-oil in ethanol with the addition of titrant.Precipita-tion of bio-oil and adherence to the pH electrode were observed,and especially,a large amount of titrant was needed.

3.1.2.Influence of the Concentration of Titrant and the Sample Size on Measurement Precision.Curves for0.65g of bio-oil titrated by different concentrations of NaOH were shown in Figure2.ERC is the abbreviation for equivalence point recognition criterion,and its value is a function of the derivative of the titration curve.The value of ERC at the

end Figure1.Schematic diagram of the experiment.

point (EP)increases with the concentration of titrant.The higher the concentration of titrant,the more obvious the end point of titration.However,the measurement precision was not better when a higher concentration of titrant was used from the results in Table 1.The deviation of acid numbers determined with 0.165mol/L NaOH is larger than with 0.1mol/L NaOH because of the fact that a smaller amount of titrant was used.Because the slope in the titration curve with 0.045mol/L is smaller,the measurement precision is worse.

Acid numbers of 0.400,0.650,and 1.000g of bio-oil determined with 0.1mol/L NaOH were shown in Table 2.A better precision was obtained when a larger sample size of bio-oil was used.The acid numbers determined with differ-ent masses of bio-oil are close,and the relative standard deviation is only 0.52%.

3.1.3.Accuracy.A standard sample is often used for calibration to check the accuracy of the method.Acetic acid exists in most bio-oils,and we used pure acetic acid as a standard sample for calibration.A determined amount of

pure acetic acid was added in bio-oil,and acid numbers were measured to check if the added pure acetic acid could be accurately quantified.The measurement deviation and the error between the measured and theoretical values were listed in Table 3.From the small error of only 0.02%between theoretical and measured acid numbers,we can conclude that the potentiometric titration for acid number determina-tion is an accurate method for measuring the content of organic acids in bio-oil,especially for acetic acid and the like.Because of the accuracy to quantify the content of organic acids,acid number determination is used for evaluating the follow-up bio-oil upgrading process.

3.2.Esterification of Bio-oil.3.2.1.Catalytic Activity of 732Resin and NKC-9Resin on the Esterification of the Model Compound.The conversion of acetic acid over 732resin and NKC-9resin under 50or 70°C was shown in Figure 3.Both 732resin and NKC-9resin exhibited high activities for esterification of acetic acid.At 70°C,732resin converted 8

4.72%acetic acid in 120min,with no significant increase in conversion after 60min.The NKC-9resin presented slightly lower activity than 732resin,and acetic acid conversion rose with time remarkably and reached 79.74%in 120min at 70°

C.

Figure 2.Curves for 0.065g of bio-oil titrated with (I)0.165mol/L NaOH,(II)0.100mol/L NaOH,and (III)0.045mol/L NaOH.

Table 1.Acid Numbers of Bio-oil Determined by Different Concentrations of NaOH and Relative Standard Deviations

of the Measurements

concentration of NaOH (mol/L)

acid number (mg of NaOH/g)

relative standard deviation (%)

0.16554.480.940.10054.160.450.045

54.76

1.23

Table 2.Acid Numbers of Bio-oil Determined with Different Sample Sizes by 0.1mol/L NaOH and Relative Standard

Deviations of the Measurements

amount of bio-oil (g)acid number (mg of NaOH/g)

relative standard deviation (%)

0.40053.860.920.65054.160.451.000

54.44

0.26

Table 3.Measured Acid Numbers of the Standard Sample and Error

of Measurements

1

23measured acid number (mg of NaOH/g)666.15662.89

668.83

relative standard deviation (%)

0.45theoretical acid number (mg of NaOH/g)666.11relative error (%)

0.02

Figure 3.Conversion of acetic acid over 732resin and NKC-9resin under different reaction temperatures.

3.2.2.Upgrading of Bio-oil.The large quantities of car-boxylic acids found in bio-oil would lead to the high acidity and corrosiveness of bio-oil.Besides,the acids would react with other components,and H tions generated by ionization of acids would catalyze the potential condensation and polymerization reaction,which causes the instability of bio-oil.Fischer esterification is proposed to be the reaction pathway in conversion of carboxylic acid to esters.The esterification reaction follows the equation:RCOOH tC n H 2n t1OH T RCOOC n H 2n t1tH 2O,leading to the for-mation of water and ester.The neutral ester products are less active and corrosive than the acids,and the bio-oil is expected to be improved.

The properties of original bio-oil,diluted bio-oil,and upgraded bio-oil were shown in Table 4.Diluted bio-oil refers to the mixed bio-oil with methanol before reaction.The acid number and the moisture content of the bio-oil were both lowered after bio-oil diluted with a large amount of methanol.

In comparison to original bio-oil,acid numbers of up-graded bio-oil on 732resin and NKC-9resin were lowered by 88.54and 85.95%,respectively,which represents the con-version of organic acids to neutral esters,the moisture contents decreased by 27.74and 30.87%,respectively,the heating values increased by 32.26and 31.64%,respectiv-ely,the densities were both lowered by 21.77%,and the viscosities fell by 97%approximately.In comparison to the

diluted bio-oil that was not esterified,the moisture of upgraded bio-oil was increased.This is logical because esterification would produce water.

However,the pH value showed inconformity with the acid numbers and became ambiguous.The pH value corresponds to the concentration (activity,in fact)of H tions in a solution.Studies reveal that bio-oil is not a highly dispersed system and is a mixture of multiphase structures.14The pH value may not reflect the true content of acids in such a complex system,and the complexity of bio-oil will lead to uncertainties during the measurements.Zhang et al.6also found that the pH value was lowered while the carboxy-lic acids in bio-oil were converted to their corresponding neutral esters.From these points of view,acid number determination is a more suitable indicator for organic acids transformation to neural esters during the bio-oil upgrading process.

The changes of acid numbers with time during bio-oil upgrading were studied and shown in Figure 4.Acid num-bers decreased dramatically in the first 3h,and about 68%of acids were converted.Acid numbers changed slightly with time in the last https://www.doczj.com/doc/6115369867.html,paratively,the acid number of the diluted bio-oil that had been stored without catalysts at room temperature for 90days decreased only from 26.28to 19.57mg of NaOH/g.These data showed that the catalyst has a high activity for the conversion of acids.

3.2.3.Stability.It is recommended to determine the stabi-lity of bio-oils by measuring the variations of viscosity under accelerated aging conditions.12The kinematic viscosity of original,diluted,and upgraded bio-oils aging at 80°C was

Table 4.Characteristics of Original,Diluted,and Upgraded Bio-oil

upgraded bio-oil

characteristics

original bio-oil

diluted bio-oil a

732NKC-9acid number (mg of NaOH/g)53.8626.28 6.177.57pH

2.51

3.65 1.98 2.70density (kg/m 3)

1.240.970.970.97H 2O content (wt %)16.628.081

2.0111.49caloric value (MJ/kg)

15.0119.8519.76kinematic viscosity (at 40°C)(mm 2/s)

81.27

2.48

2.46

2.45

a

Diluted bio-oil refers to the mixed bio-oil with methanol but not yet

reacted.

Figure 4.Changes of acid numbers with time during bio-oil

upgrading.

Figure 5.Variations of viscosity of original and upgraded bio-oils aging at 80°C.

described in Figure 5.Heating the original bio-oil to 80°C totally altered its properties,and the viscosity dramatically increased with time.A serious phase separation was ob-served when heated for 36h,and the lower layer of spongy materials gradually increased with time.The upgraded bio-oil did not show significant changes,and the viscosity varied between 1.91and 1.98mm 2/s.The viscosity of diluted bio-oil was also steady going when aging,according to Figure 5.Dilution with small amounts of alcohol is known to stabilize bio-oil,and because of the dilution effect by double volumes of methanol,the stability did not change significantly after esterification.

3.2.

4.Corrosion Property.According to the weight loss in Figure 6,upgraded bio-oil was less corrosive than the original bio-oil.We confirm that the property of uniform surface corrosion of bio-oil was improved after upgrading;however,several stains on the aluminum strip surface were also observed after the corrosion of upgraded bio-oil.Whether pitting corrosion occurred on aluminum by up-graded bio-oil needs further study.In addition to this,we

also found that the rate of weight loss of upgraded bio-oil is slightly faster than diluted bio-oil that was not esterified.This may due to an increase of the moisture content after esterification.From the point of view of chemical equilibri-um,the esterification reaction will happen given enough time at room temperature even without catalysts.The catalytic process can accelerate the potential esterification and water production,and the esterified bio-oil can be further treated by dehydration and the like.

4.Conclusions

Acid number determination by potentiometric titration is an accurate method for quantifying the total content of organic acids in bio-oil,which can be used as an important index for evaluating the follow-up upgrading process.Metha-nol is more suitable than ethanol as a titration solvent.The higher the concentration of titrant,the more obvious the tit-ration end point,and the larger the sample size used,the better precision was obtained.

The bio-oil was upgraded by catalytic esterification over the selected catalysts of 732-and NKC-9-type ion-exchange re-sins.After upgrading over 732resin and NKC-9resin,the acid number of bio-oil was significantly reduced by 88.54and 85.95%,respectively,which represents the conversion of organic acids to neutral esters,the heating values increased by 32.26and 31.64%,respectively,the moisture contents were lowered by 27.74and 30.87%,respectively,the densities were both lowered by 21.77%,and the viscosities were lowered by 97%approximately.Upgraded bio-oil is more stable than the original bio-oil and as stable as the diluted bio-oil that was not esterified because of the huge dilution effect of methanol.Besides,the corrosion-proof property was improved after dilution and upgrading.The ion-exchange resins catalyze the reaction and convert most of the organic acids to their neutral esters.Catalytic esterification with methanol by resin catalysts will be a simple and effective way to improve the quality of bio-oil.

Acknowledgment.We are grateful for the financial support from the National Nature Science Foundation of China (90610035)and the 973R&D program

(2010CB732205).

Figure 6.Weight loss of aluminum strips corroded by original and upgraded bio-oils at 50°C.

(14)Garcia-Perez,M.;Chaala, A.;Pakdel,H.;Kretschmer, D.;Rodrigue,D.;Roy,C.Multiphase structure of bio-oils.Energy Fuels 2006,20,364–375.

吸附强化甲烷重整制氢中的几种吸附剂的比较分析

吸附强化甲烷重整制氢中的几种吸附剂的比较分析 吸附强化甲烷重整制氢中的几种吸附剂的比较分析 摘要:本文采用有限元的模拟方法研究了几种常用的CO2吸附剂,比较四种CO2吸收剂的特点可以为实际应用提供参考依据,也为后续吸收剂的改性指出了方向。 关键词:吸附强化甲烷重整制氢 化石燃料燃烧所引发的CO2温室效应越来越引起人们的重视,氢由于其零污染、高能量密度的特性成为替代能源的首选。CO2吸附强化甲烷重整技术的中心思想是利用CO2吸附脱除打破化学平衡的原理,使反应过程与分离过程结合起来,这样催化剂上生成的CO2能够迅速脱除,从而打破化学平衡,使反应向着H2合成的方向反应。 一、吸附强化反应的数学模型 吸附强化甲烷重整过程中主要发生以下反应 二、温度对吸附剂的影响 影响吸收剂在甲烷重整制氢效率的主要因素有: CO2吸附速率吸附容量、CO2吸附饱和速率、CO2吸附容量。四种吸收剂的最大吸附容量计算显示,CaO的最大吸附容量最大,高于其他三种吸收剂。当反应体系产生越多的CO2,CO2吸收速率越大,则反应物向H2的转化率越高,这与前述的结论一致。 三、压力对吸附剂的影响 综上所述,对比分析反应温度和反应压力对甲烷重整制氢的影响,得出:(1)为了得到高的H2产出,Li4SiO4吸附剂更适合在较低反应温度、较低反应压力体系下运行;CaO吸附剂更适合在较高反应温度体系下运行。此时条件下两种吸附剂的CO2吸收速率快,能够迅速从反应系统吸附大量生成的CO2,使整个反应向有利于H2生成的方向进行;(2) Li2ZrO3吸附剂更适合在较高反应压力体系下运行,在高的反应压力下,有利于反应逆方向,但是高的压力能够提高吸附剂CO2吸收速率,特别是对Li2ZrO3吸附剂,与CO2生成速率相匹配,但还是压力不能过高,否则会促进反应的逆方向,不利于甲

甲醇重整制氢装置项目可研报告备案用(专业版)

甲醇重整制氢装置项目可研报告 (备案用/专业版) 普慧投资研究中心

甲醇重整制氢装置项目可研报告 (备案用/专业版) 项目负责人:齐宪臣注册咨询工程师 参加人员:郑西芳注册咨询工程师 胡冰月注册咨询工程师 王子奇高级经济师 杜翔宇高级工程师 项目审核人:张子宏注册咨询工程师 普慧投资研究中心

目录 甲醇重整制氢装置项目可研报告常见问题解答 .... 错误!未定义书签。 1、甲醇重整制氢装置项目应该在经信委还是发改委立项? (1) 2、编制甲醇重整制氢装置项目可研报告企业需提供的资料清单 (1) 一、总论 (2) (一)项目背景 (2) 1、项目名称 (2) 2、建设单位概况 (2) 3、可研报告编制依据 (2) 4、项目提出的理由与过程 (3) (二)项目概况 (3) 1、拟建项目 (3) 2、建设规模与目标 (3) 3、主要建设条件 (3) 4、项目投入总资金及效益情况 (4) 5、主要技术经济指标 (4) (三)主要问题说明 (6) 1、项目资金来源问题 (6) 2、项目技术设备问题 (6) 3、项目供电供水保障问题 (6) 二、市场预测 (7) (一)甲醇重整制氢装置市场分析 (7) 1、国际市场 (7) 2、国内市场 (7) (二)主要竞争企业分析(略) (8) (三)目标市场分析 (9) 1、目标市场调查 (9) 2、价格现状与预测 (10) (四)营销策略 (10)

1、销售队伍建设 (10) 2、销售网络建设 (10) 3、销售策略 (10) 三、建设规模与产品方案 (12) (一)建设规模 (12) (二)产品方案 (12) 四、场址选择 (13) (一)场址所在位置现状 (13) 1、地点与地理位置 (13) 2、场址土地权属类别及占地面积 (13) 3、土地利用现状 (14) (二)场址建设条件 (14) 1、地理环境位置 (14) 2、地形、地貌 (14) 3、气候、水文 (14) 4、交通运输条件 (14) 5、公用设施社会依托条件 (14) 6、环境保护条件 (15) 7、法律支持条件 (15) 8、征地、拆迁、移民安置条件 (15) 9、施工条件 (15) 五、技术方案、设备方案和工程方案 (16) (一)技术方案 (16) 1、生产方法 (16) 2、工艺流程 (17) (二)主要设备方案 (18) 1、设备选配原则 (18) 2、设备选型表 (19) (三)工程方案 (20) 1、土建工程设计方案 (20)

生物质制氢发展和前景研究

生物质制氢发展和前景研究 作者袁超 学号 201206030121 摘要:氢气作为一种清洁无污染的新型能源越来越受到人们的关注。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害,已经逐渐引起了人们的重视。 Abstract:Hydrogen as a clean pollution-free new energy more and more get the attention of people. Compared with the traditional hydrogen production methods, biological hydrogen production technology of low energy consumption, harmless to the environment, has gradually aroused people's attention 关键词;发酵;制氢;酶;影响因素;前景;生物制氢 前言:据估计,地球上每年生长的生物质总量约相当于目前世界总能耗的l0倍,我国年产农作物秸秆6亿多t,可利用生物质资源约30亿t。从资源本身的属性来说,生物质是能量和氢的双重载体,生物质自身的能量足以将其含有的氢分解出来,合理的工艺还可利用多余能量额外分解水,得到更多的氢。生物质能是低硫和二氧化碳零排放的洁净能源,可避免化石能源制氢过程对环境的污染,从源头上控制

二氧化碳排放。与传统制氢方法相比,生物制氢技术的能耗低,对环境无害[ 1 ]。该文章从生物质制氢的原理入手,综述了多种生物质制氢方法,并以生物质制氢为中心对生物利用进行讨论。 正文 1生物制氢的方法 1.1生物质催化气化制氢 生物质催化气化制氢是加入水蒸气的部分氧化反应,类似于煤炭气化的水煤气反应,得到含氢和较多一氧化碳的水煤气,然后进行变换反应使一氧化碳转变,最后分离氢气。由于生物质气化产生较多焦油,研究者在气化器后采用催化裂解的方法以降低焦油并提高燃气中氧含量,催化剂为镍基催化剂或较。为便宜的白云石、石灰石等。气化过程可采用空气或富氧空气与水蒸气一起作为气化剂,产品气主要是氢、一氧化碳和少量二氧化碳。气化介质不同,燃料气组成及焦油含量也不同。使用空气时由于氮的加入,使气化后燃气体积增大,增加了氢气分离的难度;使用富氧空气时需增加富氧空气制取设备[2]。Dernmirbas[3]认为含水质量分数在35%以下的生物质适合采用气化制氢技术。

……催化剂乙醇水蒸气重整制氢反应机理研究

……催化剂乙醇水蒸气重整制氢反应机理研究 【摘要】采用浸渍法制备了10 wt% ZnO/Al2O3催化剂,考察了该催化剂在水醇摩尔比为3、常压、450oC工作条件下乙醇水蒸气重整(SRE)制氢反应性能。结果表明,在该催化剂上SRE反应的主要产物为H2、CH3CHO、C2H4、CH3COOH、CO2以及CH3COCH3。H2O:C2H5OH摩尔比在3时C2H5OH转化率达38%,H2选择性达40%。利用XRD等表征手段考察了催化剂的物理化学性质,提出了SRE反应在ZnO/Al2O3催化剂上的反应机理。 【关键词】乙醇制氢氧化锌三氧化二铝 一、前言 乙醇水蒸气重整(SRE)制氢是一种基于生物质能转化的制氢方式,相比传统的化石资源制氢,其有系统整体CO2零排放、来源广泛、低毒、安全等诸多优势。因此,SRE具有广阔的发展前景。催化剂及其反应机理研究是SRE过程开发的关键,有关SRE反应的研究已有大量文献报道。如,Seker的研究结果显示,在450oC 时ZnO/SiO2催化剂上的C2H5OH转化率可达80%,但其H2选择性较低,且机理不清晰。基于以上原因,本文通过浸渍法,合成出10 wt% ZnO/Al2O3催化剂,并运用微型固定床催化反应器以及各种结构表征手段,对催化剂的结构以及反应机理进行深入探究。 二、实验部分 (一)催化剂制备 (二)催化剂表征及活性评价 X射线衍射(XRD)采用日本Shimadzu公司6000型X射线衍射仪进行分析。催化剂活性评价在常压石英固定床反应器中进行。反应时,将乙醇与水的混合物在130oC汽化蒸发后混合N2气进入反应管。反应后的产物在保温状态下,直接进入色谱进行分析。 三、结果与讨论 (一)ZnO/Al2O3催化剂表征结果 (二)ZnO/Al2O3催化剂SRE反应性能 (2)乙醇水蒸气摩尔比对催化剂性能影响。 (三)ZnO/Al2O3催化剂上SRE反应机理探讨

生物制氢

生物制氢 环工1402 2014011315许江东 摘要:基于2H2+O2=2H2O,氢气燃烧不产生CO2这种温室气体,所以氢气被称为清洁能源,具有广大的应用前景,导致制氢技术具有很高的研究价值。简要概述了生物制氢的几种方法,包括光发酵、暗发酵、两步发酵、光解水等技术,并在此基础上,探讨可能的突破方向。 关键字:生物制氢;光解水;光发酵;暗发酵;两步发酵 引言 如果把社会比作一台机器,那么能源就是这台机器必不可少的能量来源。现如今全球大部分的能源来自于化石燃料的燃烧,这不仅产生了大量的CO2等温室气体,还浪费了这种不可再生能源。氢气燃烧仅产生水,而且放热远大于碳水化合物。氢气燃烧的最高热值是122 kJ/g,比碳水化合物燃料高2.75倍【1】。在生物制氢之前,已经有了一些制氢技术。 ①水电解法:以铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液,阳极产生02,阴极产生H2。该方法成本较高,在电解过程只有15%的电能最终被转化为氢能,高达85 %的电能得不到合理利用被白白地浪费掉。但产品纯度大,可直接生产99.7%以上纯度的氢气。目前工业用氢总量的4%来源于水电解法。 ②热化学法:这种方法采用高温热解进行制氢,水在3000 °C条件下会发生热化学反应,生成H2和02。该方法对温度的要求较高,因此设备和能源的要求和花费较大,虽然经过研究人员的不懈努力,现在已经将热解温度降低到1000°C,但是与其他方法相比依然成本过高消耗过大。 ③等离子化学法:以石油、煤、天然气与水蒸气等物质为原料进行一系列反应生成水煤气,然后将水煤气和水蒸气一起通过灼热的Fe203(氧化剂)后就会产生C02和H2,经过简单的气体分离和干燥技术即可得到氢气。 ④光电化学法:这是一种比较新的方法,主要原理就是利用一些半导体材料和电解质溶液使其组成光电化学电池,在阳光照射下通过电化学方法生产出H2的过程。 而生物制氢法是通过发酵微生物或光合微生物的作用,在适当的工程条件下

重整制氢燃料电池基站案例分析

重整制氢燃料电池基站案例分析 一、站点基本情况 大广黎屋基站地处从化区吕田镇,站点位于大广高速附近山坡。兴建于2015年6月,建成后由于引入市电困难,进入站点的路段需经过农田与崎岖的山路,迟迟未进行供电,此站点也由此荒废三年多。 二、引入市电可行性 关于大广黎屋基站引入市电可行性。从路程上看:站点位置到附近村落大概将近4-5KM,沿路是村民的种植地,路旁大部分又是山丘山体的环境,设难度将会非常大。预计站点到村落线径的造价需要80-100万。 从村民协商上看:沿路中一旁种有农作物,另一旁山地上村民栽有竹子以及其它树木。线径从农田或从山地走,那么都需要和村民协商议价,做思想工作,这也并非易事。待达成协议、签署合同后,才能进行线径的建设。那么这样周期会大大增加,不利于项目进度的完成。 (通往大广黎屋基站道路两侧)

(通往大广黎屋基站道路两侧) 三、因地制宜解决供电 那么面对大广黎屋基站如此高额的造价费用,是否能有其它供电的解决方案?那么我司设备MRFC-2安装方便,稳定输出的特点就派上作用了。2018年6月25号,从化铁塔采用我司设备,仅仅五天后,该站点就开始提供供电,截至今天已经稳定180天无故障供电,为大广高速吕田路段提供稳定的通信网络。 (安装情况示意图)

(安装情况示意图) 四、成本费用对比 引入市电我司设备 建设周期>3个月建设周期<7天 建设成本>80万建设成本<30万需配置开关电源系统及整流模块稳压54.5V输出,无需额外配置开关电源及 整流模块 五、价值效益 综上所述,大广黎屋站点使用我司设备将会比引入市电成本降低百分之五十多,我司设备对于此类环境的站点有极大的优势,安装的方便快捷、稳定的输出、以及绿色环保等特点,无疑为通信网络保驾护航。

制氢方法

工业制氢方法概述 世界上大多数氢气通过天然气、丙烷、或者石脑油重整制得。经过高温重整或部分氧化重整,天然气中的主要成分甲烷被分解成 H2、 CO2、CO 。这种路线占目前工业方法的 80 %, 其制氢产率为 70 %—90 %。烃类重整制氢技术已经相当成熟,从提高重整效率,增强对负载变换的适应能力,降低生产成本等方面考虑,催化重整技术不断得到发展,产生了不少改进的重整工艺 , 其中包括可再生重整、平板式重整、螺旋式重整、强化燃烧重整等。煤直接液化工艺中一个重要单元就是的单元就是加氢液化,下面着重介绍几种工业上制氢工艺: 一、烃类蒸汽转化法 蒸汽转化法可以采用从天然气到石油脑的所有轻烃为原料。主要利用高温下水蒸气和 烃类发生反应。转化生成物主要为氢、一氧化碳和二氧化碳。该过程需要消耗大量的能量,只不过要脱除或分离二氧化碳是件很麻烦的事,虽然目前分离二氧化碳的方法在不断推出,如变压吸附法( PSA)、吸收法( 包括物理吸收和化学吸收法),低温蒸馏法,膜分离 法等等,然而,二氧化碳的处理仍是很费脑筋,若是直接排入大气,势必造成环境污染。 二、烃类分解生成氢气和炭黑的制氢方法 该方法是将烃类分子进行热分解,产物为氢气和炭黑,炭黑可用于橡胶工业及其它行 业中,同时避免了二氧化碳的排放。目前,主要有如下两种方法用于烃类分解制取氢气和炭黑。 ( 1 ) 热裂解法:将烃类原料在无氧( 隔绝空气),无火焰的条件下,热分解为氢气和炭黑。生产装置中可设置两台裂解炉,炉内衬耐火材料并用耐火砖砌成花格成方型通道,生产时,先通入空气和燃料气在炉内燃烧并加热格子砖,然后停止通空气和燃料气,用格子砖蓄存的热量裂解通入的原料气,生成氢气和炭黑,两台炉子轮流进行蓄热和裂解,循环操作,将炭黑与气相分离后气体经提纯后可得纯氢,其中氢含量依原料不同而异,例如原料为天然气,其氢含量可达 85 % 以上。 天然气高温热裂解制氢技术,其主要优点在于制取高纯度氢气的同时,不向大气排放 二氧化碳,而是制得更有经济价值、易于储存且可用于未来碳资源的固体碳,减轻了环境的温室效应。除了间歇反应有人曾做过天然气连续裂解的尝试。天然气催化裂解可以提高裂解速度,生成的纳米碳也能催化甲烷裂解过程。甲烷分解反应吸热75.3 kJ/mol,因此最 少需要甲烷燃烧( 887kJ/mol ) 的9 % 来提供反应所需热量。该方法技术较简单 , 经济上也 还合适。 ( 2 ) 等离子体法:在反应器中装有等离子体炬,提供能量使原料发生热分解。等离子气是氢气,可以在过程中循环使用,因此,除了原料和等离子体炬所需的电源外不需要额外能量源。用高温产品加热原料使其达到规定的要求,多余的热量可以用来生成蒸汽。在规

甲烷水蒸气低温重整

Ni/TiO2催化甲烷水蒸气低温重整 摘要 负载镍的二氧化钛(Ni/TiO2)被用于甲烷水蒸气低温重整反应的研究。然而研究经常被报道,在传统高温条件下进行甲烷重整反应,二氧化钛负载金属的催化剂会失活,如此所示,它应该在一个温和的温度(400℃)下激活使用。Ni/TiO2在500℃,甚至在较低的甲烷和水蒸气输入比(1:1)条件下,能够保持稳定和高效的氢气产量。程序升温的研究表明,镍的存在和更有力的支撑交互作用是低温活化甲烷的关键,同时在水汽转换反应中,镍元素之间更弱的相互作用,使得其对氢气生成的生成做出贡献。这个检测报告进一步证实,当相同的反应进行时,镍负载在惰性氧化物(二氧化硅)表面时,即镍元素间的主要的金属负载影响会较弱。在500℃以及水和甲烷进料比为3:1的条件下,当输入SMR系统的蒸汽数量增加时,在Ni/TiO2催化剂作用下甲烷转化率增强,可以观察出甲烷转化率达到45%。根据水和甲烷进料的比例,在96小时内,负载镍的二氧化钛催化剂展现出稳定的转化率和产品的选择性。 1.简介 氢气是许多工业过程的关键原料同时高效的制氢技术在工业上具有重要作用。应该进一步加强水分解制氢体系的研究,它在技术方面仍然不太成熟,大大的阻碍了实现更大规模的发展。水碳重整,即通过水蒸气或者干气重是目前最有利的氢气生产途径。干气重整具有吸收二氧化碳的优点,但是易于引起碳污染,,除非能找到合适的催化剂。因此,传统的烃类蒸汽转化以甲烷蒸汽重整为主,在短期内,甲烷蒸汽转化仍然是最可行的工业制氢过程。 因为甲烷蒸汽重整反应是吸热反应,为了得到有效的转化率,甲烷蒸汽转化应该在800℃甚至更高温度下进行。为了增加氢气产量,这就经常伴随着下游的水汽转换过程。甲烷水蒸气重整反应需要的高温条件的能源消耗通常是通过焚烧天然气或者炼油厂的废料提供。为了获得可持续的制氢方式,利用可再生

甲烷二氧化碳重整制氢

Research Article Ni/SiO2Catalyst Prepared with Nickel Nitrate Precursor for Combination of CO2Reforming and Partial Oxidation of Methane:Characterization and Deactivation Mechanism Investigation Sufang He,1Lei Zhang,2Suyun He,2Liuye Mo,3 Xiaoming Zheng,3Hua Wang,1and Yongming Luo2 1Research Center for Analysis and Measurement,Kunming University of Science and Technology,Kunming650093,China 2Faculty of Environmental Science and Engineering,Kunming University of Science and Technology,Kunming650500,China 3Institute of Catalysis,Zhejiang University,Key Lab of Applied Chemistry of Zhejiang Province,Hangzhou310028,China Correspondence should be addressed to Y ongming Luo;environcatalysis222@https://www.doczj.com/doc/6115369867.html, Received5August2014;Revised6January2015;Accepted6January2015 Academic Editor:Mohamed Bououdina Copyright?2015Sufang He et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use,distribution,and reproduction in any medium,provided the original work is properly cited. The performance of Ni/SiO2catalyst in the process of combination of CO2reforming and partial oxidation of methane to produce syngas was studied.The Ni/SiO2catalysts were prepared by using incipient wetness impregnation method with nickel nitrate as a precursor and characterized by FT-IR,TG-DTA,UV-Raman,XRD,TEM,and H2-TPR.The metal nickel particles with the average size of37.5nm were highly dispersed over the catalyst,while the interaction between nickel particles and SiO2support is relatively weak.The weak NiO-SiO2interaction disappeared after repeating oxidation-reduction-oxidation in the fluidized bed reactor at 700°C,which resulted in the sintering of metal nickel particles.As a result,a rapid deactivation of the Ni/SiO2catalysts was observed in2.5h reaction on stream. 1.Introduction The Ni-based catalyst has recently attracted considerable attention due to the plentiful resources of nickel,as well as its low cost and good catalytic performance comparable to those of noble metals for many catalytic reactions,such as hydrogenation of olefins and aromatics[1],methane reforming[2],and water-gas shift reaction[3].Therefore,Ni-based catalyst is believed to be the most appropriate catalyst applied in the industrial process[4–6].It is generally accepted that the catalytic performance of Ni-based catalyst is closely related to several parameters,including the properties of support,preparation method,and active phase precursor employed. Support plays an important role in determining the performance of Ni-based catalyst.Generally,a support with high surface areas is very necessary since it is effective in increasing Ni dispersion and improving thermal stability, hence not only providing more catalytically active sites,but also decreasing the deactivation over time of the catalysts due to sintering and migration effects[7,8].For its good thermostability,availability,and relative high specific surface area,SiO2support was widely used for preparing Ni-based catalyst[9].In particular,spherical silica is successfully used as a catalyst support in fluidized bed reactor due to its high mechanical strength. The method of catalyst preparation is another key param-eter which needs to be optimized because it will result in different structural and textural properties of Ni-based catalyst.Therefore,numerous methods,including precipi-tation,homogeneous deposition-precipitation,and sol-gel techniques,have been developed to enhance the performance of Ni-based catalyst[10–18].However,allthe above method-ologies mentioned are too complex or expensive to scale Hindawi Publishing Corporation Journal of Nanomaterials Volume 2015, Article ID 659402, 8 pages https://www.doczj.com/doc/6115369867.html,/10.1155/2015/659402

浅谈生物制氢的现状与发展趋势

浅谈生物制氢的现状与发展趋势 黄宇 (江苏大学环境与安全工程系,镇江 212000) 摘要: 氢是一种理想的能源,具有清洁、可再生的优点。由于生物制氢技术具有无污染、可再生、成本低等优点,受到国内外广泛的关注,在新能源的研究利用中占有日趋重要的位置。本文综述了国内外各种生物制氢技术的产生背景、制氢原理和应用现状,总结了该技术的研究现状和存在的障碍,探讨生物制氢技术的发展前景。 关键词 : 生物制氢制氢原理研究进展发展前景 Abstract: Hydrogen is an ideal energy, which has the advantages of clean, renewable. Due to the biological hydrogen production technology has the advantages of no pollution, renewable, low cost, it has been widely concerned both at home and abroad, and becoming more and more important position the research of new energy utilization. This paper reviewed the biological hydrogen production technology of the background, principle and application status of hydrogen production at home and abroad, summarizes the research progress of the technology and the obstacles, and discusses the prospect of hydrogen production by biological technology. Key words :Biological hydrogen production;The principle of hydrogen production; Research status; Prospects 引言 随着人类社会的不断进步和工业化程度的加深,经济发展对能源的需求量日益增加。作为主要能源的化石燃料,如石油、煤炭、天然气贮存量不断减少,化石燃料消耗必然面临危机。从目前探明的石油储量来看,世界石油开采乐观的看有100多年, 悲观地讲只有 30~5

生物制氢研究进展_产氢机理与研究动态

2006年第25卷第9期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1001· 化工进展 生物制氢研究进展(Ⅰ) 产氢机理与研究动态 柯水洲,马晶伟 (湖南大学土木工程学院水科学与工程系,湖南长沙 410082) 摘要:阐述了7类生物制氢系统的产氢机理、影响因素以及提高产氢率和产氢量的方法,介绍了国外最新的研究进展。光发酵生物制氢技术和厌氧发酵生物制氢技术是研究的热点,而厌氧发酵由于产氢效率较高而成为最具潜力的生物制氢技术之一。光合–发酵杂交技术不仅减少了所需光能,而且增加了氢气产量,同时也彻底降解了有机物,使该技术成为生物制氢技术的发展方向。 关键词:生物制氢;光发酵;厌氧发酵 中图分类号:Q 939.9;TK 91 文献标识码:A 文章编号:1000–6613(2006)09–1001–06 Progress of biological hydrogen production(Ⅰ) Mechanism and development KE Shuizhou,MA Jingwei (Department of Water Engineering and Science,School of Civil Engineering,Hunan University, Changsha 410082,Hunan,China) Abstract:This paper presents seven types of biological hydrogen production systems and the mechanism,affecting factors,methods of enhancement of hydrogen production as well as research progress. The recent studies are focused on photo fermentation and anaerobic fermentation technology. Anaerobic fermentation systems have the great potential to be developed as practical biological hydrogen systems due to its high hydrogen yield. A hybrid system using photosynthesis and fermentative bacteria can enhance the hydrogen production and reduce the need for light. The process will be the future direction of biological hydrogen production. Key words:biological hydrogen production;photo fermentation;anaerobic fermentation 目前全世界所需要的80%的能源都来自于化石燃料,但其储量有限,且趋于枯竭。化石燃料燃烧时生成CO x、SO x、NO x、C x H x、烟雾、灰尘、焦油和其他有机化合物,造成了严重的环境污染并使全球气候发生变化[1]。为了缓解能源危机和环境问题,氢气将是最佳的替代能源。 氢是一种清洁的新型能源,不含碳、硫及其他的有害杂质,和氧燃烧时只生成水,不会产生CO x、SO x和致癌物质,大大地减轻了对环境的污染,保护了自然界的生态平衡。氢除了具有化石燃料的各种优点外,还有它独特的优点,即:可储存性、可运输性好;不仅是所有已知能源中能量密度最大的燃料(122 kJ·g– 1),还可作为其他初级能源(如核能、太阳能)的中间载能体使用;转换灵活,使用方便,清洁卫生[2]。氢能是一种可再生的永久性清洁能源,符合人类长远发展的需要。因此,从20世纪70年代起,世界各国就对氢能的开发研究十分重视。 用氢制成燃料电池可直接发电,也可采用燃料电池和氢气–蒸汽联合循环发电,其能量转换效率大大高于现有的火力发电。除了作为能源,氢气还有着其他广泛的用途,如用于氢化工艺中生产低分子量饱和化合物,生产氨、盐酸和甲醇,提炼金属矿,作为防腐防氧化的除氧剂、火箭发动机的燃料、发电机的制 收稿日期2006–02–27;修改稿日期 2006–04–03。 第一作者简介柯水洲 (1964—),男,博士,教授,主要从事研究水 处理工程。E–mail szkyr@https://www.doczj.com/doc/6115369867.html,。

生物质制氢研究概述

龙源期刊网 https://www.doczj.com/doc/6115369867.html, 生物质制氢研究概述 作者:吕勇王可王艳 来源:《硅谷》2013年第13期 摘要近年来随着化石能源的短缺,新型清洁能源氢十分受到人们的关注,生物制氢被积极探索,具有良好的发展前景。本文介绍了生物制氢的方法和研究进展,并提出了存在的问题和将来的研究方向。 关键词氢能;生物质气化制氢法;生物质微生物制氢法 中图分类号:TQ116.2 文献标识码:A 文章编号:1671-7597(2013)13-0004-02 化石能源的使用造成了诸多环境问题,氢气作为一种理想的新能源受到重视。氢气本身是可再生的,燃烧时只生成水,无任何污染物产生,实现真正的“零排放”。如今对氢能开发和利用技术的研究已取得相关进展但还需更深入的探索。 我们经常采用水电解法、水煤气转化法来制取氢气。国内外广泛采用的制氢方法是水解法,在标准状况下电解制取1 m3氢气消耗电能4.5 kW/h~6.0 kW/h另外在电解过程中还需配套纯水制备系统和碱液配制使用设备,这样会使氢气的生产成本较高。 生物质制氢是研究的热点,有两种类型的方法:方法一是生物质气化法;方法二是生物质微生物制氢法,包括发酵细菌产氢、光合生物产氢、光合生物与发酵细菌的混合培养产氢。此文主要讲生物质制氢的方法和相关进展。 1 生物质热化学转化法制氢 1.1 生物质催化气化制氢 生物质催化气化法制氢是一种使加入的水蒸气发生一部分的氧化反应,产物是水煤气并混有氢和一氧化碳,然后继续进行反应使一氧化碳转变,最终获得氢气。Dernjrbas认为含水质 量分数在35%以下的生物质可用气化制氢。 1.2 生物质热裂解制氢 生物质热裂解制氢是使生物质分解为可燃气体和烃类的一种制氢方法,我们可以对生物质进行间接加热使其裂解,裂解后我们还要让产物进行二次反应,这样可以获得更多的氢气,反应结束后我们得到的是混合气体需进行分离。 1.3 生物质超临界转换制氢

生物制氢

生物制氢 生物制氢的方法: 1、生物发酵制氢装置 2、高效发酵法生物制氢膨胀床设备 3、高效微生物制氢及氢能-电能转化一体化装置 4、利用农作物生物质制氢及氢能发电装置 5、从生物质制取富氢气体的方法和装置 6、利用再生资源制备乙炔气体的方法 7、串行流化床生物质气化制氢装置及方法 8、折流发酵制氢反应设备 9、一种利用污水厂剩余污泥厌氧发酵制氢的方法与装置 10、有机固态物质的连续式超临界水气化制氢方法与装置 11、植物秸秆生物制氢发酵液的制备方法 12、一种生物质制取含氢气体的方法 13、固体热载体催化气化生物质制取富氢气体的方法 14、天然混合厌氧产氢微生物的筛选方法 15、利用工业有机废水生物制氢的方法 16、使用汽爆植物秸秆发酵制备氢气的方法 17、一种海洋绿藻两步法生物光解水制氢方法 18、用农业固体废弃物生产氢气的方法 19、一种生物质下吸式气化炉催化制氢的方法及其装置 20、有机废水处理生物制氢方法与设备 21、一种生物制氢发酵液的制备方法 22、糖类、蛋白质、有机酸生物制氢发酵液的制备方法 23、用垃圾、生物质和水为原料的等离子体制氢方法及设备 生物制氢是可持续地从自然界中获取氢气的重要途径之一。现代生物制氢的研究始于20世纪70年代的能源危机,1990年代因为对温室效应的进一步认识,生物制氢作为可持续发展的工业技术再次引起人们重视。光解水制氢技术 光解水制氢是微藻及蓝细菌以太阳能为能源,以水为原料,通过光合作用及其特有的产氢酶系,将水分解为氢气和氧气。此制氢过程不产生CO2。蓝细菌和绿藻均可光裂解水产生氢气,但它们的产氢机制却不相

同。蓝细菌的产氢分为两类:一类是固氮酶催化产氢和氢酶催化产氢;另一类是绿藻在光照和厌氧条件下的产氢则由氢酶催化。 暗发酵制氢技术 暗发酵制氢是异养型厌氧细菌利用碳水化合物等有机物,通过暗发酵作用产生氢气。近年来,采用工农业废弃物若不经过处理直接排放,会对环境造成污染。以造纸工业废水、发酵工业废水、农业废料(秸秆、牲畜粪便等)、食品工业废液等为原料进行生物制氢,既可获得洁净的氢气,又不另外消耗大量能源。在大多数的工业废水和农业废弃物中存在大量的葡萄糖、淀粉、纤维素等碳水化合物,淀粉等高分子化合物可降解为葡萄糖等单糖。葡萄糖是一种容易被利用的碳源。以含淀粉、纤维素、有机物的工农业废料用厌氧暗发酵生产氢气的过程见下图。 光发酵制氢技术 光发酵制氢是光合细菌利用有机物通过光发酵作用产生氢气。有机废水中含有大量可被光合细菌利用的有机物成份。近年来,利用牛粪废水、精制糖废水、豆制品废水、乳制品废水、淀粉废水、酿酒废水等作底物进行光合细菌产氢的研究较多。光合细菌利用光能,催化有机物厌氧酵解产生的小分子有机酸、醇类物质为底物的正向自由能反应而产氢。利用有机废水生产氢气要解决污水的颜色(颜色深的污水减少光的穿透性)、污水中的铵盐浓度(铵盐能够抑制固氮酶的活性从而减少氢气的产生)等问题。若污水中COD 值较高或含有一些有毒物质(如重金属、多酚、PAH),在制氢必须经过预处理。 光发酵和暗发酵耦合制氢技术 光发酵和暗发酵耦合制氢技术,比单独使用一种方法制氢具有很多优势。将两种发酵方法结合在一起,相互交替,相互利用,相互补充,可提高氢气的产量。 方法的比较 总体上,生物制氢技术尚未完全成熟,在大规模应用之前尚需深入研究。目前的研究大多集中在纯细菌和细胞固定化技术上,如产氢菌种的筛选及包埋剂的选择等。在上述生物制氢方法中,发酵细菌的产氢速率最高,而且对条件要求最低,具有直接应用前景;而光合细菌产氢的速率比藻类快,能量利用率比发酵细菌高,且能将产氢与光能利用、有机物的去除有机地耦合在一起,因而相关研究也最多,也是具有潜在应用前景的一种方法。非光合生物可降解大分子物质产氢,光合细菌可利用多种低分子有机物光合产氢,而蓝细菌和绿藻可光裂解水产氢,依据生态学规律将之有机结合的共产氢技术已引起人们的研究兴趣。混合培养技术和新生物技术的应用,将使生物制氢技术更具有开发潜力。几种生物制氢方法的比较见下。

生物制氢技术的原理和发展现状

可再生能源实验设计论文题目生物制氢技术的原理和发展现状 学院机电工程学院 专业农业生物环境与能源工程 学生姓名×× 学号××××× 指导老师×××× 撰写时间: 20××年×月×日

生物制氢技术的原理和发展现状 摘要:介绍了生物制氢的基本原理、三种生物制氢的基本方法,并对这三种方法进行了比较;简要介绍了生物制氢技术的国内外发展历程;最后总结了生物制氢技术研究方向,指出了光合生物制氢是最具发展前景的生物制氢方法。 关键词:氢气、生物制氢、光合生物、实验设计 1.前言 随着能源短缺以及能源使用过程产生的环境污染问题的日益严重,人类面临着寻求绿色、新能源的巨大难题。氢能具有清洁、高效、可再生的特点,是一种最具发展潜力的化石燃料替代能源。与传统的热化学和电化学制氢技术相比,生物制氢具有低能耗、少污染等优势。生物制氢技术的发展在新能源的研究利用中日趋受到人们的关注。本文主要介绍了生物制氢的基本原理、生物制氢的三种方法和此技术的研究发展现状及实验设计。 2.生物制氢技术的基本原理与方法 制氢的方法包括化石能源制氢、电解水制氢、生物制氢、热解制氢等[1]。其中,生物制氢具有节能、清洁、原料来源丰富、反应条件温和、能耗低和不消耗矿物资源等优点[2,3]。 广义地讲,生物制氢是指所有利用生物产生氢气的方法,包括微生物产氢和生物质气化热解产氢等[4,5]。狭义地讲,生物制氢仅指微生物产氢,包括光合细菌(或藻类)产氢和厌氧细菌发酵产氢等[2,6,7,8,9]。本文只讨论狭义上理解的生物制氢,这也是利用生物制氢的主要研究方向[3,6]。 迄今为止一般采用的方法有:光合生物产氢,发酵细菌产氢,光合生物与发酵细菌的混合培养产氢。各种生物制氢方法有不同的特点[10]。 2.1下面简要介绍下生物制氢的三种方法 1)光合生物产氢利用光合细菌或微藻将太阳能转化为氢能[8,11]。目前研究多的产氢光合生物主要有蓝绿藻、深红红螺菌、红假单胞菌、类球红细菌、夹膜红假单胞菌等[6,17]。 蓝藻与绿藻在厌氧条件下,通过光合作用分解水产生氧气和氢气,它们的作用机理与绿色植物的光合作用机理相似。作用机理见图1[13],这一光合系统中,

生物制氢1

生物制氢 生物制氢的方法: 2、高效发酵法生物制氢膨胀床设备 3、高效微生物制氢及氢能-电能转化一体化装置 4、利用农作物生物质制氢及氢能发电装置 5、从生物质制取富氢气体的方法和装置 6、利用再生资源制备乙炔气体的方法 7、串行流化床生物质气化制氢装置及方法 8、折流发酵制氢反应设备 9、一种利用污水厂剩余污泥厌氧发酵制氢的方法与装置 10、有机固态物质的连续式超临界水气化制氢方法与装置 11、植物秸秆生物制氢发酵液的制备方法 12、一种生物质制取含氢气体的方法 13、固体热载体催化气化生物质制取富氢气体的方法 14、天然混合厌氧产氢微生物的筛选方法 15、利用工业有机废水生物制氢的方法 16、使用汽爆植物秸秆发酵制备氢气的方法 17、一种海洋绿藻两步法生物光解水制氢方法 18、用农业固体废弃物生产氢气的方法 19、一种生物质下吸式气化炉催化制氢的方法及其装置 20、有机废水处理生物制氢方法与设备 21、一种生物制氢发酵液的制备方法 22、糖类、蛋白质、有机酸生物制氢发酵液的制备方法 23、用垃圾、生物质和水为原料的等离子体制氢方法及设备 生物制氢是可持续地从自然界中获取氢气的重要途径之一。现代生物制氢的研究始于20世纪70年代的能源危机,1990年代因为对温室效应的进一步认识,生物制氢作为可持续发展的工业技术再次引起人们重视。光解水制氢技术 光解水制氢是微藻及蓝细菌以太阳能为能源,以水为原料,通过光合作用及其特有的产氢酶系,将水分解为氢气和氧气。此制氢过程不产生CO2。蓝细菌和绿藻均可光裂解水产生氢气,但它们的产氢机制却不相同。蓝细菌的产氢分为两类:一类是固氮酶催化产氢和氢酶催化产氢;另一类是绿藻在光照和厌氧条件下

相关主题
文本预览
相关文档 最新文档