当前位置:文档之家› 第12章-电力系统的无功功率补偿与电压调整

第12章-电力系统的无功功率补偿与电压调整

第12章-电力系统的无功功率补偿与电压调整
第12章-电力系统的无功功率补偿与电压调整

第12章 电力系统的无功功率平衡及电压调整 上一章我们学习了电力系统正常、稳态运行状况的分析和计算。本章和下一章是上章的继续和发展。因这两章将阐述正常、稳态运行状况的优化和调整,亦即保证正常、稳态运行时的电能质量和经济性问题。

衡量电能质量的指标是频率和电压的偏移。频率偏移以Hz 表示,例如±0.2Hz 。电压偏移以百分数表示,例如±0.5%。衡量运行经济性的主要指标是比耗量和线损率。这些技术经济指标的优劣与系统中有功、无功功率的分配以及频率、电压的调整有关。而这两方面正分别是接下来两章中将讨论的主要容。

本章主要阐述电力系统中无功功率平衡和电力系统的电压调整两个问题。包括图12-1所示容。

图12-1 第12章结构图 Q -V ? 么 什 为 怎样

调整?

谁有关系? 有什么关系?

12-1 电力系统的无功功率平衡

电力系统的运行电压水平取决于无功功率的平衡。系统中各种无功电源的无功功率输出(简称无功出力)应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则电压就会偏离额定值。为此,先对无功负荷、网络损耗和各种无功电源的特点作一些说明,并得到系统无功和电压特性图。

一无功负荷和无功损耗

大多数用电设备都要消耗无功功率。白炽灯和一些电热设备不消耗无功功率;同步电机可以消耗也可以发出无功功率;而用电设备中的异步电动机消耗的无功功率最大。未经补偿的综合负荷的自然功率因数一般为0.6~0.9,低值对应于异步电动机比例较高的负荷。这些在运行中要消耗无功功率的负荷,即为无功负荷。

无功损耗主要是指电力线路上的无功损耗和变压器的无功损耗。

1 无功负荷

异步电动机在电力系统负荷(特别是无功负荷)中占的比重很大。系统无功负荷的电压特性主要由异步电动机决定,其等值电路如图12-2所示。其中Xσ为定子和转子漏抗,R为转子电阻,X m为励磁电抗,s为转差率。

电动机从电网中吸收的无功功率为:

σσX I X V Q Q Q m

m M 22

+=+= (12-1)

图12-2 第12章结构图

其中Q m 为励磁无功功率损耗,与电压的平方成正比。Q σ为漏抗X σ上的无功功率损耗,当负载功率不变时,随电压的

降低Q σ要增大。综合这两部分无功功率的变化特点,可得

图12-3所示曲线,其中β为电动机实际负荷与额定负荷之比,称为电动机的受载系数。

图12-3 第12章结构图

由图12-3可见,在额定电压附近,电动机吸收的无功功率随电压的降低而明显下降,随电压的升高而明显升高;当电压明显低于额定值时,电动机吸收的无功功率随电压的下降反而具有上升的趋势。另外,无功功率的电压特性和电动机的受载系数β有很大关系,β高时,漏抗中的无功功

V /s

率损耗Q σ在电动机总的无功功率中占的比例要高一些。

2 变压器的无功损耗

变压器中的无功功率损耗包括励磁损耗ΔQ 0与绕组漏抗损耗ΔQ T ,由等值电路图12-4,可得

图12-4 第12章结构图

==?T B V Q 20N N N S I V S I V 100%100%0202

≈Mvar (12-2) ==?T T X I Q 2N

N s S V V V S 222100%Mvar (12-3) 其中S N 为变压器的额定容量;S 为变压器负载量;I 0%为变压器的空载电流;V s %为变压器的短路电压百分比。

可见,励磁功率大致与电压平方成正比;当通过变压器的视在功率不变时,漏抗中损耗的无功功率与电压平方成反比。因此变压器的无功损耗电压特性也与异步电动机的相似。

变压器的无功功率损耗在系统的无功需求中占有相当的比重。对于单个变压器,满载时的无功功率损耗占无功负荷的11%~12%。如果从电源到用户需要经过好几级变压,则变压器中无功功率损耗的数值相当可观,总和占无功负荷的50%~75%。以5级变压网络(10/220,220/110,110/35,35/10,

V

10/0.4kV)为例,统计结果如表12-1所示。

表12-1 5级变压网络的变压器损耗

3 输电线路的无功损耗

输电线路用II 形等值电路表示如图12-5。

图12-5 第12章结构图

线路串联电抗中的无功功率损耗ΔQ L 与所通过电流的平方成正比,即

X V Q P X V Q P X I Q L 222

222212121

2+

=+==? (12-4) 线路电容的充电功率ΔQ B 与电压平方成正比,当作无功损耗时应取负号。

)(2

2221V V B Q B +-=? (12-5) 1

V P +jQ 2 P +jQ

线路的无功总损耗为

)(22221212

121

V V B X V Q P Q Q B L +-+=?+? (12-6) 35kV 及以下的架空线路的充电功率甚小,一般说,这种线路都是消耗无功功率的。

110kV 及以上的架空线路当传输功率较大时,电抗中消耗的无功功率将大于电纳中产生的无功功率,线路成为无功负载。

110kV 及以上的架空线路当传输功率较小时,电纳中产生的无功功率,除了抵偿电抗中的损耗以外,还有多余,此时线路就为无功电源。

此外,为吸收超高压输电线路充电功率而装设的并联电抗器也属于系统的无功负荷。

二 无功功率电源

电力系统中的无功电源向系统发出感性无功功率。无功电源主要有以下三类:a 发电机; b 无功补偿电源,包括同步调相机、静电电容器、静止无功补偿器和静止无功发生器;c 110kV 及以上电压线路的充电功率。

1 发电机

发电机既是唯一的有功功率电源,又是最基本的无功功率电源。通过调节发电机的励磁电流,改变发电机发出的无功功率。增加励磁电流(电压),则可以增大无功输出;减小励磁电流(电压),则可减小无功输出。

发电机在额定运行状态下可发出最大的无功功率为:

N GN N GN GN tg P S Q ??==sin (12-7)

式中,S GN 、P GN 、φN 分别为发电机的额定视在功率、额定有功功率和额定功率因数角。

发电机在非额定功率因数下运行时可能发出的有功、无功和视在功率需要运用发电机的运行极限图进行分析。

假定隐极发电机联接在恒压母线上,母线电压为V N 。发

电机的等值电路和相量图示于图12-6。

图12-6 发电机的等值电路和相量图

图12-6中C 点为额定运行点。电压降相量AC 的长度代表X d I N ,正比于定子额定全电流,也可以说,正比于发电机的额定视在功率S GN ,它在纵轴上的投影AD 代表P GN ,在横轴

上的投影AB 代表Q GN 。相量OC 的长度代表空载电势E

,它正比于发电机的额定励磁电流。当改变功率因数时,发电机发出的有功功率P 和无功功率Q 要受定子电流额定值(额定

N I

视在功率)、转子电流额定值(空载电势)、原动机出力(额定有功功率)的限制。在图12-6中,以A为圆心,以AC为半径的圆弧表示额定视在功率的限制;以O为圆心,以OC为半径的圆弧表示额定转子电流的限制;而水平线DC表示原动机出力的限制。这些限制条件在图中用粗线画出,这就是发电机的运行极限图。

从图12-6中可以看到,发电机只有在额定电压、电流和功率因数(即运行点C)下运行时视在功率才能达到额定值,使其容量得到最充分的利用。发电机降低功率因数运行时,其无功功率输出将受转子电流的限制。

当系统无功电源不足,而有功备用容量较充裕时,可利用靠近负荷中心的发电机降低功率因数,使之在低功率因数下运行,从而多发出无功功率以提高电力网的电压水平,但发电机的运行点不能跃出P-Q极限曲线的围。

2 无功补偿装置

a 同步调相机

同步调相机实质上相当于专用的空载运行的大容量同步电动机。

同步调相机有三种运行状态如图12-7所示,分别为:(1)正常:与系统间无无功功率的交换;(2)过励磁:向系统供给感性无功功率,起无功电源的作用,提高系统电压,所能提供的最大无功功率取决于它的额定容量;(3)欠励磁:从系统吸取感性无功功率,起无功负荷的作用,降低系统电压,由于实际运行的需要和对稳定性的要求,欠励磁最大容

量只有过励磁容量的50%~65%。

图12-7 同步调相机的三种工作状态

装有自动励磁调节装置的同步调相机,能根据装设地点电压的数值平滑地改变输出(或吸收)的无功功率,进行电压调节。特别是有强行励磁装置时,在系统故障情况下,还能调整系统的电压,有利于提高系统的稳定性。

但是同步调相机是旋转机械,运行维护比较复杂。它的有功功率损耗较大,在满负荷时约为其额定容量的1.5~3%,容量越小,百分比越大。小容量的调相机每kVA 容量的投资费用也较大。故同步调相机宜于大容量集中使用。此外,同步调相机的响应速度较慢,难以适应动态无功控制的要求。20世纪70年代以来以逐渐被静止无功补偿装置所取代。 b 静电电容器

静电电容器是电力系统中的一种重要的无功功率电源,广泛地应用于改善负荷的功率因数。额定电压V N =3.15~10.5kV 的静电电容器均为单相式的,单台容量可达

40kvar ;额定电压V N 小于525V 的多为三相式,单台容量可

达25~30kvar 。由于单台容量有限制,静电电容器一般按三角形和星形接法连接在变电所母线上。用于35kV 电力网时,除了并联以外还要多个串联。大容量并联电容装置一般还分为数组,各设有开关,

操作开关就可分级调节输出的无功功

率。

静电电容器只能向系统供给感性的无功功率,所供给的无功功率Q c值与所在节点的电压V的平方成正比,即

Q c=V2/X c (12-8) 其中X c为静电电容器的容抗。

在电力系统常用的无功补偿设备中,静电电容器的单位容量费用最低,有功功率损耗最小(约为额定容量的0.3%~0.5%),运行维护最简单。它可分散安装在用户处或靠近负荷中心的地点,实现无功功率的就地补偿,获得最好的技术经济效果。此外,改变容量方便,还可根据需要分散拆迁到其它地点。

但是,当节点电压下降时,它所供给系统的无功功率将减小。因此,当系统发生故障或由于其他原因电压下降时,电容器无功输出的减小将导致电压继续下降,即电容器的无功功率调节性能比较差。

c 静止无功补偿器

静止无功补偿器(SVC, Static Var Compensator)属于灵活交流输电系统的一员,它由静电电容器和电抗器并联组成。电容器可发出无功功率,电抗器可吸收无功功率,两者结合起来,再配以适当的调节装置,就既可以发出无功功率,也可以吸收无功功率,从而能够平滑地改变输出或吸收的无功功率。

各类静止无功补偿器在正常工作围的无功功率电压静特性如下。

图12-8 静止无功补偿器在正常工作围的无功-电压特性

因此近似计算中可以把静止补偿器当作恒电压的无功功率电源。

电压变化时,静止补偿器能够快速、平滑地调节无功功率,以满足动态无功补偿的需要。与同步调相机相比较,运行维护简单,功率损耗较小,能作到分相补偿以适应不平衡的负荷变化,对于冲击负荷也有较强的适应性。

d静止无功发生器

20世纪80年代以来出现了一种更为先进的静止型无功补偿装置,这就是静止无功发生器(Static Var Generator, SVG),也被称为静止同步补偿器(STATCOM)或静止调相机(STATCON)。它的主体部分是一个电压源型逆变器。

与静止补偿器相比,静止无功发生器的优点是,响应速度更快,运行围更宽,谐波电流含量更少,尤其重要的是,电压较低时仍可向系统注入较大的无功电流,它的储能元件(如电容器)的容量远比它所提供的无功容量要小。

3 高压输电线路的充电功率

实际上,超高压输电网的线路分布电容产生大量的无功功率,从系统安全运行考虑,需要装设并联电抗器予以吸收。三无功功率平衡

无功功率平衡,指电力系统所有无功电源可能发出的无功功率应该大于或至少等于负荷无功功率与变压器、电力线路消耗的无功功率之和。

它是在一定节点电压下的平衡。无功功率电源不足将导致节点电压下降。因此,为了保证运行可靠性和适应无功负荷的增长,系统还必须配置一定的无功备用容量,一般取最大无功负荷的7%~8%。

令电源可供应的无功功率之和为Q GC,无功负荷之和为Q LD,Q L为网络无功功率损耗之和,Q res为无功功率备用,我们得到系统中无功功率平衡方程式为:

Q GC-Q LD-Q L=Q res (12-9) Q res>0表示系统中无功功率可以平衡且有适量的备用;如Q res<0表示系统中无功功率不足,应考虑加设无功补偿装置。

系统无功电源的总出力Q GC包括发电机的无功功率Q GΣ和各种无功补偿设备的无功功率Q CΣ,即

Q GC=Q GΣ+Q CΣ(12-10) 一般要求发电机接近于额定功率因数运行,故可按额定功率因数计算它所发出的无功功率。此时如果系统的无功功率能够平衡,则发电机就保持有一定的无功备用,这是因为发电机的有功功率是留有备用的。调相机和静电电容器等无功补偿装置按额定容量来计算其无功功率。

总无功负荷Q LD按负荷的有功功率和功率因数计算。为了减少输送无功功率引起的网损,我国有关技术导则规定,以35kV及以上电压等级直接供电的工业负荷,功率因数要达到0.90以上,对其它负荷,功率因数不低于0.85。

网络的总无功功率损耗Q L包括变压器的无功损耗Q LTΣ、线路电抗的无功损耗?Q LΣ和线路电纳的无功功率?Q BΣ(一般只计算110kV及以上电压线路的充电功率),即

Q L=Q LTΣ+?Q LΣ+?Q BΣ(12-11) 注意:

在进行无功功率平衡计算和对无功功率的传输进行规划时,从改善电压质量和降低网络功率损耗考虑,应该尽量避免通过电网元件大量地传送无功功率。因此,仅从全系统的角度进行无功功率平衡是不够的,更重要的是还应该分地区分电压级地进行无功功率平衡,也就是要就地补偿。

四系统无功功率-电压特性

在电力系统运行中,电源的无功出力在任何时刻都同负荷的无功功率和网络的无功损耗之和相等。即

Q GC=Q LD+Q L (12-12) 那么上述的无功功率平衡是在什么样的电压水平下实现的呢?

下面以一简单的网络为例来说明。隐极发电机经过一段线路向负荷供电,略去各元件电阻,用X表示发电机电抗与线路电抗之和,等值电路如图12-9所示。假定发电机和负荷的有功功率为定值。根据相量图可以确定发电机送到负荷

节点的功率为

图12-9 简单电力系统及相量图

)cos (

sin )()()(2

2*

*X V X EV j X EV jX V VE jX V E V jX V E V I V jQ P -+=---∠=---∠=-==+δδδδ (12-13)

当P 为一定值时,得

X

V P X EV Q 2

22)(--= (12-14) 当电势E 为一定值时,Q 和V 的关系如图12-10所示,为一条向下开口的抛物线,在额定值附近,随着电压的升高,输

图12-10发电机无功功率-电压特性

I

I jX Q N

把电源向系统提供的无功功率与电压的关系和综合负荷的无功功率与电压的关系画在同一个坐标中,得到系统的无功-电压特性如图12-11。对于负荷来说,由于主要成分是异步电动机,前面已经学习过,异步电动机无功-电压特性正是图12-11中曲线2。其中曲线1表示电源的无功-电压特性,曲线2表示综合负荷的无功-电压特性。两条曲线的交点a 确定了负荷节点的电压值V a ,或者说,系统在电压V a 下达到了无功功率的平衡。

图12-11系统无功功率-电压特性

当负荷增加时,其无功电压特性如曲线2'所示。如果系统的无功电源没有相应增加,电源的无功特性仍然是曲线

1。这时曲线1和曲线2'的交点a'代表了新的无功平衡点,此时负荷点的电压为V a ',可见,负荷增加后,系统的无功

电源已不能满足在电压V a 下的无功功率的需要,因此只有

降低电压运行,以取得在较低电压下的无功功率平衡。如果发电机具有充足的无功备用,通过调节使发电机的无功特性曲线上移到曲线1'的位置,从而使曲线1'和曲线2'的交点

a a

c所确定的负荷节点电压达到或接近原来的数值V a。可见,系统的无功电源比较充足,能满足较高的电压水平下的无功功率的需要,系统就有较高的运行电压水平;反之,无功不足就反映为运行电压水平偏低。

12-2 电压调整的基本概念

各种用电设备都是按额定电压来设计制造的。这些设备在额定电压下运行将能取得最佳效果。但是要严格保证所有用户在任何时刻都有额定电压是不可能的,考虑到大多数用电设备在稍许偏离额定值的电压下运行仍有良好的技术性能,合理地规定供电电压的允许偏移是完全必要的,要使网络各处的电压都达到规定的标准,必须采取各种调压措施。一允许电压偏移

1 电压偏移的影响

各种用电设备都是按照额定电压设计的,当它们在额定电压下运行时,处于最佳运行状态,即具有最佳的技术经济指标。当运行电压偏离额定值较大时,技术经济指标就会恶化。具体表现在:

照明负荷中的白炽灯,对电压反应灵敏。当运行电压低于额定值的5%,光通量减少至82%;当运行电压低于额定值的10%,光通量减少至70%,发光效率减少至80%;当运行电压高于额定值的5%,使用寿命减少一半;当运行电压高于额定值的10%,使用寿命减少2/3。

日光灯对电压变动的反应较不灵敏,但运行电压低于额定值时光通量也将减少,运行电压高于或低于额定值时寿命将缩短。

负荷中占有很大比重的异步电动机的电磁转矩与端电压的平方成正比。当运行电压降低10%,转矩下降至81%。

若负荷阻力矩不变,电压降低将使电动机的转差增大,定子电流也随之增大,发热增加,效率下降,绕组温度增高,加速绝缘老化,影响电动机的使用寿命,且起动过程加长,由于温度过高,易于烧毁。当端电压太低时,电动机可能由于转矩太小而失速甚至停转。

发电厂厂用电中由电动机驱动的辅机,其机械转矩与转速的高次方成正比,电压降低滑差增大,转速降低,输出功率迅速减少,将影响汽轮、锅炉的工作,严重情况下将造成安全问题。

变压器的运行电压偏低,若负载功率不变,会导致输出电流增加,使绕组过热。电压偏高,励磁电流增大,铁芯损失增加,温升增高,严重情况下引起高次谐波共振。

电压偏移过大,除了影响用户的正常工作以外,对电力系统本身也有不利影响。电压降低,会使网络中的功率损耗和能量损耗加大,由于局部地区无功不足,运行电压严重低下,一些变电所在负荷的微小扰动下会出现电压大幅度下滑,以至失压,即所谓电压崩溃。而电压过高时,各种电气设备的绝缘可能受到损害,在超高网络中还将增加电晕损耗等。因此,供电管理部门需规定变电所母线的允许电压偏移围。

2允许电压偏移

在电力系统的正常运行中,随着用电负荷的变化和系统运行方式的改变,网络中的电压损耗也将发生变化。要严格保证所有用户在任何时刻都有额定电压是不可能的,因此,

系统运行中各节点出现电压偏移是不可避免的。实际上,大多数用电设备在稍许偏离额定值的电压下运行,仍有良好的技术性能。从技术上和经济上综合考虑,合理地规定供电电压的允许偏移是完全必要的。

目前,我国规定的在正常运行情况下供电电压的允许偏移如下:

35kV及以上供电电压正、负偏移的绝对值之和不超过额定电压的10%,如供电电压上下偏移同号时,按较大的偏移绝对值作为衡量依据;

10kV及以下三相供电电压允许偏移为额定电压的±7%;

220V单相供电电压允许偏移为额定电压的+7%和-10%。

要使网络各处的电压都达到规定的标准,必须采取各种管理方法,以保证系统中各负荷点的电压在允许的偏移围。二中枢点电压管理

1 概念

中枢点:电力系统中许多发电厂、变电所和大型用户节点,要全部监视、控制这些节点的电压是不可能的,也是不必要的。通常在电力系统的大量节点中选择一些具有代表性的节点加以监视、控制,如果这些节点的电压满足要求,则该节点邻近的其他节点的电压基本上也满足要求,这些节点称为电压监视中枢点。

电压中枢点一般选择在(1)区域性发电厂的高压母线;

(2)有大量地方性负荷的发电厂母线;(3)区域变电所的二

次母线。

那么中枢点母线电压和负荷点母线电压具有什么关系呢?我们通过计算说明。

2 计算方法

各个负荷点都允许电压有一定的偏移,计及由中枢点到负荷点的线路上的电压损耗,便可确定每个负荷点对中枢点电压的要求。举例说明。

假定由中枢点i 向负荷点j 和k 供电,两负荷点电压V j 和V k 的允许变化围相同,都是0.95~1.05V N 。当线路参数一定时,线路上电压损耗ΔV ij 和ΔV ik 分别与j 和k 点的负荷有关,假定如图12-12。

图12-12 中枢点系统及线路电压损耗

为了满足负荷节点j 的调压要求,中枢点电压应该控制的变化围为:

在0~8时,V i (j )= V j +ΔV ij =(0.95~1.05)+0.04=0.99~1.09 在8~24时,V i (j )= V j +ΔV ij =(0.95~1.05)+0.1=1.05~1.15 为了满足负荷节点k 的调压要求,中枢点电压应该控制的变化围为:

j

ΔV

t /h

V

t /h

电流电压功率之间的关系及公式

电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦 特)之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个;

3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安)1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励 磁损耗为 0/100Ty TN Q I S V (Mvar)(5-1-1)

另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约 为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S V (Mvar)(5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综合负荷的电压静态

电流与电压的关系向量图

用多功能电工表检验保护装置能否投入运行 发布时间:2007-1-22 10:50:20 浏览次数:20 古育文广东省梅县供电局(514011) 用负荷电流和工作电压检验是继电保护装置投入运行前的最后一次检查,对于某些保护装置是非常必要的,特别是在带有方向性的继电保护装置中,为了保护其动作正确,在投入运行前必须测量带负荷时的电流与电压的向量图,借此判断电流回路相序、相别及相位是否正确。通过多功能电工表可方便地实现上述功能,替换了以前用相位电压表法和瓦特表法两种繁琐的测量方法。下面结合实际谈谈如何用多功 能电工表来判断方向性的继电保护的接线是否正确。 在2002年10月28日我局所属的一个110kV变电所的电气设备进行电气试验, 经对试验结果进行分析、判断,发现110kV母线的B、C两相电压互感器内部绝 缘介质不良,严重威胁设备的安全运行。为了保证设备的安全运行,对这两相的电压互感器进行了更换。更换后,为了确保继电保护装置的动作正确,我们用多功能电工表(ST9040E型),进行了方向性继电保护装置的电流与电压的相位检查。 1测量方法 在测量前应先找出接入方向性的继电保护装置的电流、电压端子,在电压端子上用相序表检查所接入的电压互感器的二次接线相序应是正序(即是U A-U B-U C)。 然后用多功能电工表的电流测量钳钳住电流端子的A相电流线(假定电流端子接线正确),用多功能电工表的电压测量表笔依次与A、B、C三相的电压端子接触牢靠,将所测得的数据填入表1。用此法依次测量B、C相的电流与电压的相位值,所测得的数据也填入表1。

表1电流、电压和相位值 电压(V) 电流(A) 相位(°) I A=0.9I B=0.91I C=0.9 U A=60197316.873 U B=60.577.8195313.5 U=60 31776.3193 据上表的数据用AUTOCAD2002软件绘出电流向量图,见图1。 图1电流向量图(六角图) 2根据六角图判断接线 六角图作出后,根据测量时的功率的送受情况,判断接线是否正确。这对检验方向 保护,特别是差动保护接线是行之有效的。 功率的送受情况有以下四种: (1)有功与无功功率均从母线送往线路,电流向量应位于第I象限; (2)有功功率从母线送往线路,无功功率由线路送往母线,电流向量应位于第II象

无功功率平衡和的电压调整

电力系统的无功功率平衡和电压调整 1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 2.电力系统的无功功率平衡 3. 电力系统的无功损耗。 4.电力系统的无功功率源。 5.电力系统调压方式有哪几种。 6.电力系统中无功功率分布对电压的影响。

1.输电线路传输无功功率的电压效应。负荷的无功功率――电压静特性。 如图7-1所示的简单输电线路。图中R +jX 为线路集中阻抗,输电线的电容不考虑。当线路末端的功率为r r jQ P +,这一功率将在线路上引起电压降。在高压电网中系统节点电压幅值的变化仅与无功功率的变化有关,且一节点的无功功率变化对其本身的电压变化影响最大。 当传输的负荷功率r r jQ P +通过阻抗时要产生电压降,电压降纵分量U ?和 横分量U δ和电压相量s U ,均示于图7-1(b ),我们已知 图7-1 简单输电线路 (a)等值电路;(b)相量图 =+r r r r r r U R Q X P U U X Q R P U -=δ? 并可以近似地认为线路首端到末端的电压损耗为υ?。 从图7-1(b),当已知r U ,r P ,r Q ,始端电压s U 可由下式求得(r U 作为参考相量)。

r R r Q X r P j r X r Q R r P r j S r R r Q X r P j r X r Q R r P r j r S U U U )s i n (c o s U U U U U +++=+?+++=++υδδυυδυ? = 电压为110千伏以上的输电线路R<

功率电压电流公式 功率电压电流公式大全

1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方)U:电压,V; I:电流,A; P:有功功率,W; R:电阻 纯电感无功功率 Q=I2*Xl (式中2为平方) Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率 Q=I2*Xc (式中2为平方) Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大 值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为 初相。 8、交流电路最大值与在效 值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接 I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线 ×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电 压,V; N1、N2:一次、二次线圈 圈数; I2、I1:二次、一次电流, A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方 (式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联 电路 I=U/Z Z=[R2+(XL-Xc)2]和的开 平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

无功功率与电压调整

第二节无功功率与电压调整 一、电压的作用 电压是衡量电能质量的一个重要标准,电压过高或过低都会对用户造成不良的影响。 比如:电压低的危害: 在电力系统中常见的用电设备为异步电动机,各种电热设备、照明以及家用电器。这些设备 与电压都保持着一定的关系,电动机的转矩是与其端电压的平方成正比,当电压下降时,转 矩也下降,如果电动机所拖的机械负荷的阻力矩(负荷)不变,随着电压的降低,电动机的转差增大,定子电流也随之增大,发热增加,绕组温度增高,加速绝缘老化。当电压再低时,电动机将停转。电压低了,照明灯发光不足,电炉冶炼时间长,降低效率。电压降低,会使网络中的功率损耗和能量损耗将加大,电压过低还可能危及电力系统运行稳定。 电压高的危害: 电压偏高,用电设备的使用寿命将缩短,电压高,加在设备上的电场变的强,使介质中的局 部产生放电,这是电老化。绝缘的老化分为电老化、热老化、环境老化。在超高压网络中还将增加电晕损耗等。 因此电力系统根据电压等级的不同,制定了各类用户的允许电压偏移。 1.35kV及以上用户供电电压正负偏差绝对值之和不超过额定电压的10% 2.10kV用户的电压允许偏差值,为系统额定电压的土7% 3.380V用户的电压允许偏差值,为系统额定电压的土7% 4.220V用户的电压允许偏差值,为系统额定电压的+5%- -10%。 事故后,考虑时间较短,事故又不经常发生,电压偏移容许比正常值再多5%。 二、系统中的无功功率的平衡 电力系统中,各种无功电源发出的无功功率应能满足系统负荷和电网损耗的需求。电力系统 对无功功率的要求是:系统中的无功电源可能发出的无功功率应该大于或至少等于所需要的无功功率和网络的无功损耗,为了保证安全,应有一定的储备。 Q GC-Q LD-Q L=Q res Q G C为系统的无功电源之和;Q L D为系统无功负荷之和;Q L为网络无功损耗之和,这个损耗包含线路电抗的无功损耗,为正,线路的充电功率,为负。一般在110KV 电压等级及以上才计算这部分功率。 三、无功功率的产生和电压的关系 电力系统负荷中,都属于电感性负荷,这不可避免的要消耗无功功率,现在以几个典型 的无功负荷研究无功功率与电压的关系。 1?异步电动机 异步电动机是电力系统中的主要无功负荷,占了比较大的比重。根据异步电动机的等值电路, 列出它所消耗的无功功率为: U 2 2 Q M二Q m I 2X - X m 从以上公式看出, Q m为励磁功率,根据公式看,它同电压平方成正比,但实际上,当电压较高时,由于饱和 影响,励磁电抗X m还将下降。所需的无功更多。Q二为漏抗所需的无功损耗,如果负载功 2R(^S)S二常数,当电压降低时,转差将增大,定子电流随之增大,相应地在漏抗中率不变,则P m = I 的无功损耗也要增大。综合这两部分无功功率的变化特点,可得异步电机的

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为 1%~2%。因此励磁损耗为 0/100Ty TN Q I S = (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S = (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

功率电压电流公式 功率电压电流公式大全

功率电压电流公式功率电压电流公式大全 1、欧姆定律: I=U/R U:电压,V; R:电阻,Ω; I:电流,A; 2、全电路欧姆定律: I=E/(R+r) I:电流,A; E:电源电动势,V; r:电源内阻,Ω; R:负载电阻,Ω 3、并联电路,总电流等于各个电阻上电流之和 I=I1+I2+…In 4、串联电路,总电流与各电流相等 I=I1=I2=I3=…=In 5、负载的功率 纯电阻有功功率P=UI → P=I2R(式中2为平方) U:电压,V; I:电流,A; P:有功功率,W; R:电阻

纯电感无功功率Q=I2*Xl(式中2为平方)Q:无功功率,w; Xl:电感感抗,Ω I:电流,A 纯电容无功功率Q=I2*Xc(式中2为平方)Q:无功功率,V; Xc:电容容抗,Ω I:电流,A 6、电功(电能) W=UIt W:电功,j; U:电压,V; I:电流,A; t:时间,s 7、交流电路瞬时值与最大值的关系 I=Imax×sin(ωt+Φ) I:电流,A; Imax:最大电流,A; (ωt+Φ):相位,其中Φ为初相。 8、交流电路最大值与在效值的关系 Imax=2的开平方×I I:电流,A; Imax:最大电流,A; 9、发电机绕组三角形联接

I线=3的开平方×I相 I线:线电流,A; I相:相电流,A; 10、发电机绕组的星形联接 I线=I相 I线:线电流,A; I相:相电流,A; 11、交流电的总功率 P=3的开平方×U线×I线×cosΦ P:总功率,w; U线:线电压,V; I线:线电流,A; Φ:初相角 12、变压器工作原理 U1/U2=N1/N2=I2/I1 U1、U2:一次、二次电压,V; N1、N2:一次、二次线圈圈数; I2、I1:二次、一次电流,A; 13、电阻、电感串联电路 I=U/Z Z=(R2+XL2)和的开平方(式中2为平方) Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω 14、电阻、电感、电容串联电路 I=U/Z Z=[R2+(XL-Xc)2]和的开平方(式中2为平方)Z:总阻抗,Ω; I:电流,A; R:电阻,Ω; XL:感抗,Ω; Xc:容抗,Ω

电流、电压、功率的关系及公式

电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是: V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= *线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= *线电压U*线电流I*功率因数COSΦ(星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U1=U 总电阻等于各电阻之积除以各电阻之和R=R1R2÷(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2

电机转矩功率转速电压电流之间的关系及计算公式完整版

电机转矩功率转速电压电流之间的关系及计算 公式 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式 【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---————公式【3】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n30000/3.1415926*P=T*n9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI 乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】 ==》Tn/9.55=UI————公式【8】 ==》T=9.55UI/n————公式【9】 ==》U=Tn/9.55I————公式【10】 ==》I=9.55U/Tn————公式【11】 方程式【7】、【8】、【9】、【10】、【11】中: P—功率的单位(kW);

电流电压功率的关系及公式

电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电流=电压/电阻 功率=电压*电流*时间 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR 电流I,电压V,电阻R,功率W,频率F W=I的平方乘以R V=IR W=V的平方除以R 电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特)之间的关系是:V=IR,N=IV =I*I*R, 或也可变形为:I=V/R,I=N/V等等.但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用.如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P

就记得这一些了,不知还有没有 还有P=I2R P=IU R=U/I 最好用这两个;如电动机电能转化为热能和机械能。电流 符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安)单相电阻类电功率的计算公式= 电压U*电流I 单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I (星形接法) = 3*相电压U*相电流I(角形接法) 三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ(星形电流= I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 就记得这一些了,不知还有没有 还有P=I2R ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2

第六章 电力系统的无功功率和电压调整

1 第六章 电力系统的无功功率和电压调整 6-1 电力系统总无功功率的平衡 一、 无功功率负荷和无功功率损耗 无功负荷:绝大部分是异步电动机 无功损耗:1. 变压器 ;2. 输电线路。 变压器中的无功功率损耗分为两部分,即励磁支路损耗和绕组漏抗中损耗。其中,励磁支路损耗的百分值基本上等于空载电流0I 的百分值,约为%2~%1;绕组漏抗中损耗,在变压器满载时,基本上等于短路电压k U 的百分值,约为%10。因此,对一台变压器或一级变压器的网络而言,变压器中的无功功率损耗并不大,满载时约为它额定容量的百分之十几。但对多级电压网络,变压器中的无功功率损耗就相当可观。 电力线路上的无功功率损耗也分为两部分,即并联导纳和串联电抗中的无功功率损耗。并联电纳中的这种损耗又称充电功率,与线路电压的平方成正比,呈容性。串联电抗中的损耗与负荷电流的平方成正比,呈感性。因此,线路作为电力系统中的一个元件究竟消耗容性或感性无功功率就不能肯定。但可作一大致估计:当通过线路输送的有功功率大于自然功率(所谓自然功率是指负荷阻抗为波阻抗时该负荷所消耗的功率。)时,线路将消耗感性无功功率;当通过线路输送的有功功率小于自然功率时,线路将消耗容性无功功率。 二、电网中的无功电源 1. 发电机 同步发电机既是有功功率电源,又是最基本的无功功率电源。 2.电容器和调相机 并联电容器只能向系统供应感性无功功率。特点有:电容器所供应的感性无功与其端电压的平方成正比,电容器分组投切,非连续可调。 调相机实质上是只能发出无功功率的发电机。 3.静止补偿器和静止调相机 静止补偿器和静止调相机是分别与电容器和调相机相对应而又同属“灵活交流输电系统”范畴的两种无功功率电源。

电流电压电阻功率的关系

电流电压电阻功率的关 系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

电流、电压、电阻、功率的关系功率(瓦)=电流(安培)x电压(伏特); 功率=电压*电流 12V*1A=12W 电流=电压/电阻 12V/40Ω= 电压/电流=电阻 功率符号P单位W 电压符号U单位V 电阻符号R单位Ω 电流符号I单位A 关系式 ⑴串联电路 P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间) 电流处处相等 I1=I2=I 总电压等于各用电器两端电压之和 U=U1+U2 总电阻等于各电阻之和 R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和 W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和 P=P1+P2 ⑵并联电路 总电流等于各处电流之和 I=I1+I2 各处电压相等 U1=U2=U

总电阻等于各电阻之积除以各电阻之和 R=(R1R2)/(R1+R2) 总电功等于各电功之和 W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和 P=P1+P2 ⑶同一用电器的电功率 ①额定功率比实际功率等于额定电压比实际电压的平方 Pe/Ps=(Ue/Us)的平方2.有关电路的公式 ⑴电阻 R ①电阻等于材料密度乘以(长度除以横截面积) R=ρ×(L/S) ②电阻等于电压除以电流 R=U/I ③电阻等于电压平方除以电功率 R=U²/P ⑵电功 W 电功等于电流乘电压乘时间 W=UIT(普式公式) 电功等于电功率乘以时间 W=PT 电功等于电荷乘电压 W=QU 电功等于电流平方乘电阻乘时间 W=I²RT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间 W=U²T/R(同上) ⑶电功率 P ①电功率等于电压乘以电流 P=UI ②电功率等于电流平方乘以电阻 P=I²R(纯电阻电路)

第12章-电力系统的无功功率补偿与电压调整

第12章 电力系统的无功功率平衡及电压调整 上一章我们学习了电力系统正常、稳态运行状况的分析和计算。本章和下一章是上章的继续和发展。因这两章将阐述正常、稳态运行状况的优化和调整,亦即保证正常、稳态运行时的电能质量和经济性问题。 衡量电能质量的指标是频率和电压的偏移。频率偏移以Hz 表示,例如±0.2Hz 。电压偏移以百分数表示,例如±0.5%。衡量运行经济性的主要指标是比耗量和线损率。这些技术经济指标的优劣与系统中有功、无功功率的分配以及频率、电压的调整有关。而这两方面正分别是接下来两章中将讨论的主要容。 本章主要阐述电力系统中无功功率平衡和电力系统的电压调整两个问题。包括图12-1所示容。 图12-1 第12章结构图 Q -V ? 么 什 为 怎样 调整? 有 谁有关系? 有什么关系?

12-1 电力系统的无功功率平衡 电力系统的运行电压水平取决于无功功率的平衡。系统中各种无功电源的无功功率输出(简称无功出力)应能满足系统负荷和网络损耗在额定电压下对无功功率的需求,否则电压就会偏离额定值。为此,先对无功负荷、网络损耗和各种无功电源的特点作一些说明,并得到系统无功和电压特性图。 一无功负荷和无功损耗 大多数用电设备都要消耗无功功率。白炽灯和一些电热设备不消耗无功功率;同步电机可以消耗也可以发出无功功率;而用电设备中的异步电动机消耗的无功功率最大。未经补偿的综合负荷的自然功率因数一般为0.6~0.9,低值对应于异步电动机比例较高的负荷。这些在运行中要消耗无功功率的负荷,即为无功负荷。 无功损耗主要是指电力线路上的无功损耗和变压器的无功损耗。 1 无功负荷 异步电动机在电力系统负荷(特别是无功负荷)中占的比重很大。系统无功负荷的电压特性主要由异步电动机决定,其等值电路如图12-2所示。其中Xσ为定子和转子漏抗,R为转子电阻,X m为励磁电抗,s为转差率。 电动机从电网中吸收的无功功率为:

变频器中的频率、电压、转速、电流、功率的关系

步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。 频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。 频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f 模式或调整电位器等方法。 一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很

电流电压功率之间的关系及公式(完整资料).doc

【最新整理,下载后即可编辑】 电流、电压、功率的关系及公式 1、电流I,电压V,电阻R,功率W,频率F W=I2乘以R V=IR W=V2/R 电流=电压/电阻 功率=电压*电流*时间 2、电压V(伏特),电阻R(欧姆),电流强度I(安培),功率N(瓦特) 之间的关系是: V=IR, N=IV=I*I*R,或也可变形为:I=V/R,I=N/V等等. 但是必须注意,以上均是在直流(更准确的说,是直流稳态)电路情况下推导出来的!其它情况不适用. 如交流电路,那要对其作补充和修正求电压、电阻、电流与功率的换算关系 电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P 还有P=I2R P=IU R=U/I 最好用这两个; 3、如电动机电能转化为热能和机械能: 电流符号: I 符号名称: 安培(安) 单位: A 公式: 电流=电压/电阻 I=U/R 单位换算: 1MA(兆安)=1000kA(千安)=1000000A(安) 1A(安)=1000mA(毫安)=1000000μA(微安) 单相电阻类电功率的计算公式= 电压U*电流I

单相电机类电功率的计算公式= 电压U*电流I*功率因数COSΦ 三相电阻类电功率的计算公式= 1.732*线电压U*线电流I(星形接法) = 3*相电压U*相电I(角形接法)三相电机类电功率的计算公式= 1.732*线电压U*线电流I*功率因数COSΦ 星形电流=I,电压=U,电阻=R,功率=P U=IR,I=U/R,R=U/I, P=UI,I=P/U,U=P/I P=U2/R,R=U2/P P=I2R 4、串联电路 P(电功率),U(电压),I(电流),W(电功),R(电阻),T(时间)电流处处相等: I1=I2=I 总电压等于各用电器两端电压之和: U=U1+U2 总电阻等于各电阻之和: R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和“ W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和: P=P1+P2 5、并联电路 总电流等于各处电流之和: I=I1+I2 各处电压相等: U1=U1=U 总电阻等于各电阻之积除以各电阻之和:

无功功率与电压调整

第二节 无功功率与电压调整 一、 电压的作用 电压是衡量电能质量的一个重要标准,电压过高或过低都会对用户造成不良的影响。 比如:电压低的危害: 在电力系统中常见的用电设备为异步电动机,各种电热设备、照明以及家用电器。这些设备与电压都保持着一定的关系,电动机的转矩是与其端电压的平方成正比,当电压下降时,转矩也下降,如果电动机所拖的机械负荷的阻力矩(负荷)不变,随着电压的降低,电动机的转差增大,定子电流也随之增大,发热增加,绕组温度增高,加速绝缘老化。当电压再低时,电动机将停转。电压低了,照明灯发光不足,电炉冶炼时间长,降低效率。电压降低,会使网络中的功率损耗和能量损耗将加大,电压过低还可能危及电力系统运行稳定。 电压高的危害: 电压偏高,用电设备的使用寿命将缩短,电压高,加在设备上的电场变的强,使介质中的局部产生放电,这是电老化。绝缘的老化分为电老化、热老化、环境老化。在超高压网络中还将增加电晕损耗等。 因此电力系统根据电压等级的不同,制定了各类用户的允许电压偏移。 1.35kV 及以上用户供电电压正负偏差绝对值之和不超过额定电压的10%。 2.10kV 用户的电压允许偏差值,为系统额定电压的±7%。 3.380V 用户的电压允许偏差值,为系统额定电压的±7%。 4.220V 用户的电压允许偏差值,为系统额定电压的+5%~-10%。 事故后,考虑时间较短,事故又不经常发生,电压偏移容许比正常值再多5%。 二、 系统中的无功功率的平衡 电力系统中,各种无功电源发出的无功功率应能满足系统负荷和电网损耗的需求。电力系统对无功功率的要求是:系统中的无功电源可能发出的无功功率应该大于或至少等于所需要的无功功率和网络的无功损耗,为了保证安全,应有一定的储备。 Q GC -Q LD -Q L =Q res Q GC 为系统的无功电源之和;Q LD 为系统无功负荷之和;Q L 为网络无功损耗之和,这个损耗包含线路电抗的无功损耗,为正,线路的充电功率,为负。一般在110KV 电压等级及以上才计算这部分功率。 三、 无功功率的产生和电压的关系 电力系统负荷中,都属于电感性负荷,这不可避免的要消耗无功功率,现在以几个典型的无功负荷研究无功功率与电压的关系。 1.异步电动机 异步电动机是电力系统中的主要无功负荷,占了比较大的比重。根据异步电动机的等值电路,列出它所消耗的无功功率为: σσX I X U Q Q Q m m M 22 +=+= 从以上公式看出, m Q 为励磁功率,根据公式看,它同电压平方成正比,但实际上,当电压较高时,由于饱和影响,励磁电抗m X 还将下降。所需的无功更多。σQ 为漏抗所需的无功损耗,如果负载功率不变,则常数, =-=S S R I P m )1(2当电压降低时,转差将增大,定子电流随之增大,相应地在漏抗中的无功损耗也要增大。综合这两部分无功功率的变化特点,可得异步电机的

电机转矩、功率、转速、电压、电流之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n) 即:T=9550P/n—公式【1】 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550,即P=Tn/9550——公式【2】 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即P=F*V---————公式【3】转矩(T)=扭力(F)*作用半径(R) 推出F=T/R---——公式【4】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30---——公式【5】 将公式【4】、【5】代入公式【3】得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 电动机转矩、转速、电压、电流之间的关系 由于电功率P=电压U*电流I,即 P=UI————公式【6】 由于公式【2】中的功率P的单位为kw,而电压U的单位是V,电流I的单位是A,而UI乘积的单位是V.A,即w,所以将公式【6】代入到公式【2】中时,UI需要除以1000以统一单位。 则: P=Tn/9550=UI/1000————公式【7】

电流、电压、电阻、功率的关系

电流、电压、电阻、功率的关系 功率(瓦)=电流(安培)x电压(伏特); 功率=电压*电流12V*1A=12W 电流=电压/电阻12V/40Ω=0.300mA 电压/电流=电阻 功率符号P单位W 电压符号U单位V 电阻符号R单位Ω 电流符号I单位A 关系式 ⑴串联电路P(电功率)U(电压)I(电流)W(电功)R(电阻)T(时间)电流处处相等I1=I2=I 总电压等于各用电器两端电压之和U=U1+U2 总电阻等于各电阻之和R=R1+R2 U1:U2=R1:R2 总电功等于各电功之和W=W1+W2 W1:W2=R1:R2=U1:U2 P1:P2=R1:R2=U1:U2 总功率等于各功率之和P=P1+P2 ⑵并联电路 总电流等于各处电流之和I=I1+I2 各处电压相等U1=U2=U 总电阻等于各电阻之积除以各电阻之和R=(R1R2)/(R1+R2) 总电功等于各电功之和W=W1+W2 I1:I2=R2:R1 W1:W2=I1:I2=R2:R1 P1:P2=R2:R1=I1:I2 总功率等于各功率之和P=P1+P2 ⑶同一用电器的电功率 ①额定功率比实际功率等于额定电压比实际电压的平方Pe/Ps=(Ue/Us)的平方2.有关电路的公式 ⑴电阻R ①电阻等于材料密度乘以(长度除以横截面积)R=ρ×(L/S) ②电阻等于电压除以电流R=U/I ③电阻等于电压平方除以电功率R=U²/P ⑵电功W 电功等于电流乘电压乘时间W=UIT(普式公式) 电功等于电功率乘以时间W=PT 电功等于电荷乘电压W=QU 电功等于电流平方乘电阻乘时间W=I²RT(纯电阻电路) 电功等于电压平方除以电阻再乘以时间W=U²T/R(同上) ⑶电功率P ①电功率等于电压乘以电流P=UI ②电功率等于电流平方乘以电阻P=I²R(纯电阻电路)

相关主题
文本预览
相关文档 最新文档