当前位置:文档之家› β-葡聚糖的研究

β-葡聚糖的研究

β-葡聚糖的研究
β-葡聚糖的研究

啤酒生产过程中β-葡聚糖研究与测定

郑翔鹏

福建省燕京惠泉啤酒股份有限公司362100

摘要:研究了啤酒生产过程中β-葡聚糖的变化,发现刚果红显色法用于啤酒生产中半成品、成品的测定具有一定的可行性,同时运用的数学统计方法分析,测定的结果表明了其在整个生产过程的变化以及与相应影响因素的关系,起到指导生产的作用。

关键词:β-葡聚糖;刚果红显色法;啤酒

前言

β-葡聚糖是麦芽中非淀粉质多糖的主要组成部分,其占麦芽干物质的5%~8%,是通过β(1、3)、β(1、4)糖苷键随机排列的线性连接而成的。麦芽中水不溶性的β-葡聚糖主要存在于完整胚乳细胞壁中,热水可溶性β-葡聚糖酶,主要存在于胚乳细胞之间和蛋白质混合在一起。β-葡聚糖在水中溶解时,浓度低时直接与水分子相互作用增加溶液粘度,浓度大时,β-葡聚糖分子自身相互作用缠绕成网状结构,能吸收水分子形成凝胶,使溶液的粘度大大的增加;啤酒中适量的β-葡聚糖对口味的丰满有益,能增进口感的柔和性。

在糖化过程中,麦芽中游离的β-葡聚糖及其的分解产物溶于醪液中,使醪液的粘度上升;在35~50℃时,通过内-β-1、4葡聚糖酶和大麦内-β-葡聚糖酶的作用,高分子的β-葡聚糖逐步分解为β-葡聚糖糊精和低分子物质,醪液的粘度逐之下降;在45~55℃,麦芽浸出物继续溶解,β-葡聚糖继续游离,此时,内-β-1、4葡聚糖酶和大麦内-β-葡聚糖酶的活力逐步减弱,β-葡聚糖分解缓慢,但研究表明,内-β-1、4葡聚糖酶在50~55时仍具有一定的活力,可继续分解β-葡聚糖;在60~70℃时,β-葡聚糖溶解酶使大量的β-葡聚糖从其相结合的蛋白质中分离出来,在这个温度上,温度越高,游离出来的β-葡聚糖含量就越高,在65℃以上内-β-1、4葡聚糖酶的活力逐渐失活;在70℃以上,由于上述各种β-葡聚糖分解酶均已逐渐失活,此时由β-葡聚糖分解酶溶解的β-葡聚糖保持不变。

其中,影响β-葡聚糖分解的因素为:首要的还是大麦的品种与质量,溶解良好的麦芽,其的高分子β-葡聚糖含量远低于溶解不良的,而含的酶量远高于溶解不良的;粉粹条件也有一定影响,一般说细粉溶解出较多的β-葡聚糖;糖化的条件的影响,低温下料和低温糖化,β-葡聚糖的分解较明显,而高温糖化对高分子β-葡聚糖难分解到满意的程度,特别是对溶解不良的麦芽,但是,对麦汁中β-葡聚糖含量起作用的是麦芽质量,糖化方法只能起到调节的作用,当然了,延长低温休止时间,对β-葡聚糖的分解是有利的,PH值的影响不是很明显。研究表明,45℃糖化时只有少数的β-葡聚糖释放到麦汁中去,而在65℃糖化有大量的β-葡聚糖浸出到麦汁中,因此,就糖化温度以及糖化其他物理性质对糖化过程中β-葡聚糖的浸出比β-葡聚糖酶的影响更大,这将表明,麦汁中的β-葡聚糖含量主要取决于制麦过程中胚乳细胞壁所经受酶的水解程度。

对于麦汁、发酵液以及成品酒中β-葡聚糖的检测分析,作者根据多种分析方法研究分析实践,如利用苯酚法等,最终确定刚果红显色法进行分析研究。通过研究表明,该方法具有良好的线性,操作简单、方便,对于实际样品的检测有一定的指导生产的作用。

本文主要基于该检测方法上,研究整个啤酒酿造过程中β-葡聚糖的变化情况,同时根据不同品种的啤酒其β-葡聚糖的差异,表明一定的问题。

1、实验材料与方法

1.1实验材料

标准β-葡聚糖(美国Sigma公司生产)

刚果红(进口分装)

磷酸缓冲溶液(PH=8.0)

分光光度计(hp公司生产)

恒温水浴槽

PH计

1.2实验方法

1.2.1标准工作曲线的绘制

根据要求浓度配置标准β-葡聚糖溶液,怎么减肚子依次比色。以β-葡聚糖浓度C为横坐标,吸光度A 为纵坐标绘制标准曲线,在曲线上求A为1时相当的β-葡聚糖微克数(即为K 值)。其中,每组为3个平行样,图1中各点为3个平行样的平均值。

当A=1时,代入公式求得K值为91.2μg/ml。

1.2.2样品的处理和制备

麦汁:稀释10倍;发酵液和啤酒:除气后稀释10倍

1.2.3样品的测定

取稀释好的样品2.0ml分别加入4.0ml的刚果红准确计时,20℃水浴中准确反应10分钟,以2.0ml蒸馏水代替样品作空白调零,测反应液的吸光度A。

1.2.4数据计算

样品的β-葡聚糖(mg/l)=K(91.2μg/ml)×A×稀释倍数(10倍)

备注:有关实验方法参数选定的优化,具体的说明见有关说明,这里略。

2、结果分析

3、2.1生产过程跟踪

选择三个不同品种的啤酒(原麦汁浓度不同)从糖化过程到成品酒进行跟踪分析。其中,在实验过程中所有工艺参数等均一样,具体分析的点为:毛孔大怎么办碘试完全后,过滤槽,煮沸终了,冷麦汁,主发酵,后发酵,清酒,成品酒,发酵过程的全程跟踪;结果如下:

表一酿造过程β-葡聚糖含量的变化分析单位:mg/l

通过上表一、二及相应的图一、二分析可见,在整个啤酒酿造过程中,β-葡聚糖的含量逐而下降,其中在麦汁过滤槽和煮沸终了、后发酵和清酒之间变化的幅度较大,平均达到10%,整个后发酵过程较为平稳;不同品种的变化幅度也大致成比例。

2.2因素差异性分析

在差异性分析中,排毒养颜胶囊主要是利用方差分析鉴别多个因素对结果影响的程度,具体的描述略。影响啤酒酿造过程中β-葡聚糖的因素有很多,主要的还是麦芽的品种和质量,其次才是工艺参数,下将通过实验给予说明。

2.2.1麦芽因素

考察不同品种麦芽和不同麦芽比例,在其他条件相一致的情况,对β-葡聚糖的含量进行分析比较。

制β-葡聚糖含量最有效可行的方法,当然了,麦芽的质量是也是啤酒品质的关键。

2.2.2工艺参数

在工艺参数中,这里着重对糖化温度进行差异性分析。主要为:低温糖化和高温糖化。

通过试验表明,低温糖化有利于β-葡聚糖的分解,从中更有利后期酒体的处理。(具体的研究略)

2.2.3其他因素

在影响β-葡聚糖的其他因素中,由于在其他的研究中已有很详细的说明,不加于说明,这里只从影响过滤速度上加以试验以表征其的影响性。具体的如下:

基于上表四中不同麦芽比例的研究结果,在实验室中模拟过滤工艺进行分析,定量过滤量,以过滤时间和β-葡聚糖的含量为参数进行对比,,其中,试验参数和结果见表六:

为了进一步说明上述问题,我们选择生产中相同工艺、相同原料等的成熟发酵液进行分析,定量过滤量,以过滤时间和β-葡聚糖的含量为参数进行对比,岳阳家政其中,试验参数和结果见表七:

表七试验参数

从以上的分析可见,β-葡聚糖含量对酒体的过滤速度没直接的影响,但在实际大生产中,如其含量过多,会在一定程度上影响过滤时间、增加过滤的压力和减少过滤设备的使用寿命,从这一点上来讲,控制一定量的β-葡聚糖含量在生产中也很重要的。

2.3不同啤酒分析

我们通过对一年来不同成品酒的跟踪检测分析,以及不同品牌的啤酒的分析统计如下:

表八成品酒β-葡聚糖分析单位:mg/l

表九不同品牌啤酒β-葡聚糖分析单位:mg/l

通过对成品酒的分析可见,不同品牌的啤酒β-葡聚糖的含量之间差异性较大,有关具体的原因在排除检测误差因素上,有可能是各自厂家在原料工艺等上的差异。

3.结论

总之,啤酒中β-葡聚糖含量的控制因品种品牌而异,具体控制的范围和在实际生产中应注意的点在前已经阐述过。根据作者的综合各方面参数的研究,认为10.0啤酒的β-葡聚糖控制在50—70mg/l,酒体具有很好的口味稳定性且有利于生产过程的各方面的操作。有关β-葡聚糖的检测方面,可利用更先进的设备或更微量的方法分析。

备注:本文的数据均为平均值。

参考文献

1、啤酒工业手册

2、Seiret K et al .MBAA tech ,Quart[J]

说明:该论文发表于《啤酒科技》2004年6期

真菌 D葡聚糖检测反应机理

真菌(1-3)-?-D葡聚糖检测反应机理 目前临床上随着广谱抗生素、各类免疫抑制剂、移植插管等新技术的不断发展应用,其真菌感染尤其是深部真菌感染出现明显上升趋势,而作为临床诊断的细菌培养其阳性率很低,且检测周期长,不能适应临床治疗诊断的要求,因此迫切需要快速、准确的检测方法.因此对血液中的早期(1-3)-?-D 葡聚糖快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中(1-3)-?-D葡聚糖快速检测对早期诊断深部真菌感染具有重要的参考价值。该试验的基本原理是试剂中含凝固酶原及凝固蛋白原的冷冻干燥品. 在适宜条件下, 微量(1-3)-?-D葡聚糖能激活试剂中的凝固酶原产生凝集反应,通过测定凝集反应过程中的浊度变化从而定量检测血浆中(1-3)-?-D葡聚糖含量. 内毒素定量检测的反应机理 细菌内毒素作为革兰阴性菌细胞壁外层中的脂多糖成份(LPS), 具有多种的生物活性, 微量的内毒素进入机体将会出现发热、血压降低、寒战、引起DIC、内毒素败血症等一系列临床反应, 因此对血液中的早期内毒素快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中内毒素检测对分别诊断革兰阴性杆菌感染具有重要的参考价值。反应试剂中含凝固酶原及凝固蛋白原的冷冻干燥品. 在适宜条件下, 微量革蓝氏阴性菌内毒素能激活试剂中的凝固酶原产生凝集反应形成凝胶,通过测定在形成凝胶过程中的浊度变化从而定量检测血浆中革蓝氏阴性菌内毒素. 一、检测体液内毒素的临床意义

由革兰氏阴性菌所引起的内毒素血症及脓毒血症是目前临床上的主要死亡原因之一。在各类抗生素杀灭革兰氏阴性菌的同时,也会使后者释放出一定数量的内毒素,从而加重内毒素血症。早期诊断的细菌学培养需时长,而且由于抗生素的应用,其培养阳性率低。早期的数小时内作为临床上抢救感染性休克的关键,临床医师仅能根据临床特征与体征推断病源学而带有一定的盲目性,因此,早期体液中内毒素的正确、快速定量检测及相应的对症治疗就显得格外重要。过去的内毒素检测能定性而不能定量,而且个体差异和实验室间的误差较大,无法成为有价值的临床检验项目,北京金山川公司研制的MB-80微生物快速动态检测系统能定量检测体液内毒素的含量,经国内多家单位使用现已在其他省市开始作为临床检验项目进行收费。该仪器检测内毒素具有结果稳定、检测快(1小时)、重复性好、准确率高、不同的检测人员操作引起的误差小等优点。 内毒素定量检测在重症病人、感染病人(如脑膜炎)以及其他有严重创伤等疾病的病人均有重要的临床意义,这使得内毒素研究一直是热点,但过去由于方法的限制,内毒素检测也是临床的难点。 二、深部真菌检测的临床意义 动态定量检测体液中真菌含量是应用MB-80微生物快速动态检测系统进行的。该方法可以快速诊断用常规方法难以确诊的深部真菌感染,应用MB-80检测真菌,其检出率远远高于传统的血培养方法,使病原体的监测更加准确,更快速,MB-80系统具有很高的灵敏度和优异的数据分析功能,检测低限5pg/ml的真菌1-3--β-D葡聚糖量。

壳聚糖在国内外食品中的发展现状及其应用前景

壳聚糖在国内外食品中的发展现状及其应 用前景 摘要: 壳聚糖是一种可被生物体降解而对人体无毒的物质,不仅在食品领域有广泛的应用,在饲料行业、医药行业、以及环境保护等许多领域都有广泛的应用。本文主要概述了壳聚糖在国内外食品中的发展现状,并介绍了壳聚糖的性质、在食品中的应用及其化学改性,阐明了壳聚糖在食品开发方面的广阔前景。 关键词:壳聚糖,添加剂,改性,复合纳米粒子 Chitosan in the development situation of food at home and abroad and its application prospects Ma Zhengran Class 0804, School of Food of Science and Technology, Jiangnan University; 010******* Abstract: Chitosan is a biodegradable and non-toxic substances on the human body. It's not only widely use d in food industry, but also in feed industry, pharmaceutical industry, environmental protection a nd many other areas. This article is mainly about chitosan in the development situation of food at home and abroad,and describes the nature of chitosan, the application in food industry and che mical modification of chitosan and set out the broad development prospects of chitosan. Key words:chitosan; additives; modification; composite nanoparticles 引言 壳聚糖是自然界中唯一带正电荷、阳离子的膳食纤维,被称为挽救人类健康的神奇“电粉”。作为天然的可再生资源,壳聚糖具有广谱抗菌性、吸附性、成膜性、保湿性、生物可降解性、生物可相容性、无毒性以及极好的螯合能力,且能加速伤口愈合。大量应用实例证明,壳聚糖对人体的各项生理功能具有良好的调节作用,并显示出许多生命特征,如改善代谢内分泌功能,调节免疫功能;改善消化机能,降低胆固醇;调节人体酸碱平衡吸附,排除体内有害重金属;活化细胞,增强人体生命活力,延缓衰老等。近年来,随着食品工业的不断发展,国内外研究人员对壳聚糖的关注和重视也不断加强。本文主要论述壳聚糖在国内外食品工业中的各种研究应用及其发展前景。 1、壳聚糖的简介 甲壳素是一种带正电的碱性多糖,广泛存在于虾、蟹、昆虫的甲壳,以及真菌(酵母、霉菌)的细胞壁和植物(如蘑菇)的细胞壁中,是自然界中仅次于纤维素的第二大天然高分子化合物,是存在于自然界中唯一能够被生物降解的阳离子高分子材料。甲壳素经浓碱处理,脱去分子中的乙酰基后,转化为可溶性的脱乙酰甲壳素,又称壳聚糖(Chitosan),学名:几丁聚糖。其化学结构是由大部分氨基葡萄糖和少量的N一乙酰基葡萄糖通过β一1,4糖苷键连接起来的直链多糖。 分子式为:(C6H11NO4)n 结构: 2、壳聚糖在食品中的应用 2.1 抗菌剂

葡聚糖检测方法

葡聚糖检测方法(试剂盒方法翻译) 一.提供试剂 瓶1:exo-1,3-β-Glucanase (100 U/mL) plus β-Glucosidase(20 U/mL) suspension, 2.0 mL 瓶2:Amyloglucosidase (1630 U/mL) plus invertase(500 U/mL) solution in 50 % v/v glycerol, 20 mL 瓶3:GOPOD Reagent Buffer. Buffer (48 mL,pH 7.4), p-hydroxybenzoic acid and sodium azide(0.4 % w/v). 瓶4:GOPOD Reagent Enzymes. Glucose oxidaseplus peroxidase and 4-aminoantipyrine. Freeze-dried powder. 瓶5:D-Glucose standard solution (5 mL, 1.00 mg/mL) in0.2 % w/v benzoic acid 瓶6:Contr ol yeast β-glucan preparation ( 2 g, β-glucan content stated on the bottle label). 二.提供试剂的处理 1.向瓶1中加入8ml醋酸钠缓冲液,分装-20℃存放。 2.直接使用瓶2中的试剂,稳定在4°C ~ 2年或者-20°C > 4 年。 3.将瓶3的GOPOD试剂用纯化稀释水定容到1L,稳定在4°C > 2年。 4.将瓶4的GOPOD试剂用纯化稀释水定容到1L,黑暗环境存放, 稳定在4 °C 2 - 3个月,在-20°C或> 12个月。

改性壳聚糖富集研究综述范文【精编】

改性壳聚糖富集研究综述 摘要:壳聚糖及其衍生物是一种天然高分子,随着对其研究的深入发展,涉及的内容和应用范围越来越广泛。本文综合概述了壳聚糖的结构、性质、富集及其化学改性的方法,简单介绍了它们的应用领域。 关键词:壳聚糖;富集;化学改性;应用。 引言: 壳聚糖具有许多独特的化学物理性质,根据其酸化、酉旨化和氧化、接枝与交联、经基化、经烷基化等反应还可制备成多种用途的产品,而且从氨基多糖的特点出发具有比纤维素更为广泛的用途。对壳聚糖的应用开发研究,自本世纪六十年代以来就十分活跃,近年来国际更是十分重视对它的深入开发和应用。通过对甲壳质和壳聚糖进行化学修饰与改性来制备性能独特的衍生物已经成为当今世界应用开发的一个重要方面。 1、壳聚糖及其改性吸附剂 壳聚糖(chitosan)是一种天然化合物,属于碳水化合物中的多糖,是甲壳素N-脱乙酰基的产物,其学名是β(1→4)-2-氨基-2-脱氧-D-葡萄糖。 壳聚糖本身的基本结构是葡萄糖胺聚合物,与纤维素类似。但因多了一个胺基,带有正电荷,所以使其化学性质较为活泼。且因其聚合分子结合键角度自然扭转之故,对于小分子或元素会发生凝集螫合作用。根据甲壳素脱乙酰化时的条件不同,壳聚糖的脱乙酰度和分子量不同,壳聚糖的分子量通常在几十万左右。但一般来说N-乙酰基脱去55%以上的就可称之为壳聚糖。 壳聚糖本身性质十分稳定,不会氧化或吸湿。鉴于壳聚糖及其衍生物具有优良的生理活性,在食品、生物制药、水处理方面显示出非常诱人的应用价值。近年来,国内外对壳聚糖的开发研究十分活跃。 2、壳聚糖富集工艺的研究现状 由于壳聚糖吸附剂有以上的优点,学者们对其富集的工艺已经有了较为深入的研究。 李斌,崔慧[1]研究了以壳聚糖作富集柱,稀H2SO4为洗脱剂,稀NaOH 为再生剂,火焰原子吸收光谱法简便、快速分离富集测定水中痕量Cu(Ⅱ)的方法,于波长325nm 处测定,检出限为20ng·ml-1,线性范围为10~20μg·ml-1。此法的优点在于简便、快速、选择性好、经济实用、效果良好。但由于壳聚糖易降解,在实际操作中存在着流速控制难,富集效果不均一,空白大的问题。

壳聚糖及其结构特点

第一章 绪 论 1.1 壳聚糖及其结构特点 壳聚糖(Chitosan)是甲壳素(Chitin)脱乙酰基后的产物,是甲壳素最基本、最重要的衍生物。甲壳素又名甲壳质、几丁质,化学名为(1,4)—2—乙酰胺—2—脱氧—β—D—葡聚糖,主要存在于虾、蟹、蛹及昆虫等动物外壳以及菌类、藻类植物的细胞壁中。节肢类动物的干外壳约含20~50%甲壳素。自然界中甲壳素有三种结构:α、β、γ,其中最为常见、普通的是α型。地球上每年甲壳素的生物合成量为数十亿吨,是产量仅次于纤维素的天然高分子化合物。下图1-1是甲壳素和壳聚糖的结构: 图1-1 甲壳素、壳聚糖分子的结构示意图 Fig.1-1 The configuration schematic of chitin and chitosan 纯净的甲壳素和壳聚糖均为白色片状或粉状固体,比重0.3,常温下能稳定存在。甲壳素分子之间存在强烈的氢键作用,使得甲壳素形成高度的结晶结构,因而甲壳素分子高度难溶。甲壳素不溶于水及绝大多数有机溶剂,也不溶于稀酸、稀浓碱,只溶于浓酸和某些溶剂。壳聚糖分子的活性基团为氨基而不是乙酰基,因而化学性质和溶解性较甲壳素有所改善,可溶于稀酸、甲酸、乙酸,但也不溶于水和绝大多数有机溶剂。由于氨基和羟基比较活泼,壳聚糖的化学性质较甲壳素活泼,可以发生多种化学反应,比如烷基化、酰基化反应等等。 1.2 壳聚糖及其衍生物产品的应用 壳聚糖及其衍生物由于其可再生性、生物相容性以及结构中的多种活性基团,具有多种优良的性质,已经广泛应用于化妆品、食品、医药、农业、环保等多个行业中。 1.2.1 在环保中的应用 壳聚糖及其衍生物能够通过分子中的氨基和羟基与多种金属离子形成稳定的整合物且可帮助微粒凝聚,故广泛用作化工、轻工纺织等废水处理中的吸附剂和絮凝剂。壳聚糖作为吸附剂和絮凝剂,能够有效地捕集溶液中的重金属离子和 有机物,并可以抑制细菌生长,使污水变清,特别是对于汞、铬、铜、铅、钴、3n n 甲壳素壳聚糖

β-葡聚糖研究进展

?-葡聚糖的研究进展 程彦伟李魁赵江 燕麦β-葡聚糖是一种存在于大燕麦皮中的天然非淀粉类水溶性植物糖,其基本结构是由D葡萄糖以β14,β1-3糖苷键连接而成的线性多糖,这两种糖苷键的比例大致为7:3。 燕麦β-葡聚糖是一种水溶性膳食纤维,因其具有的黏性阻碍淀粉、蛋白质等物质的消化和吸收,并可增殖消化道有益菌,所以可对人体具有一些极为有利的生理功能:具有显著的降血脂、降血糖及提高免疫能力,维持肠道微生态环境等。另外,它还能加快确定人群的免疫细胞。对细菌感染的反应并控制住细菌感染的位置,使感染面尽快恢复;作为化妆品的有效成分,可以提高皮肤抗过敏能力,激活免疫功能,延缓皮肤衰老。燕麦水溶性膳食纤维和燕麦葡聚糖,可有效降低餐后血糖浓度和胰岛素水平,降低胆固醇和预防心血管疾病.燕麦纤维食品易被人体吸收,并且因含热量很低,既有利于减肥,又适合心脏病,高血压和糖尿病患者食疗的需要。 降低胆固醇 早在多年,科学家就发现bata一葡聚糖能够减少肠胃吸收脂肪酸的速率,降低人体胆固醇的合成.随着bata一葡聚糖研究的日趋成熟,学者们先后在动物及人体实验水平上进行了大量的实验,证实了bata一葡聚糖在降低胆固醇和低密度脂蛋白方面具有特 异的生理功能.科学家发现bata一葡聚糖对胆固醇的影响主要在于能显著降低血浆中 总胆固醇(TC)和低密度脂蛋白胆固醇(LDI一TC),而对高密度脂蛋白(HDL)和甘油三醋(TG)没有明显影响仁。燕麦葡聚糖对高血脂人群有明显的降低胆固醇的作用。 有关燕麦葡聚糖降低胆固醇的机理目前有四种假说: ①可结合胆汁酸,增加了胆汁酸的排泄,从而降低胆汁酸水平和血浆胆固醇浓度。 ②可被肠道中微生物发酵而产生短链脂肪酸,可抑制肝脏中胆固醇的合成。 ③可促进LDL一C分解。 ④可在消化道中形成高粘度环境,阻碍消化道对脂肪,胆固醇和胆汁酸的吸收。 降血糖 每天食用葡聚糖燕麦食品后,患者血糖水平可降低约50%,使用燕麦食品有显著降低血糖作用燕麦汗葡聚糖可通过降低血脂含量,改善血液流动性能,加快糖类成分在吸收利用过程中的转运速度和效率,同时对糖尿病所并发的肝肾组织病变有良好的修复作用,并且可有效降低肝糖原的分解,从而导致血糖降低。 增强免疫力 燕麦葡聚糖具有免疫调节作用,燕麦p一葡聚糖可使小鼠淋巴细胞增值,增强小鼠 抵抗细菌侵袭的能力;可刺激小鼠腹膜巨噬细胞释放肿瘤坏死因子(TNF一ALPHAhe)和白介素一1(In-terlukinIL一1)及巨噬细胞p338DI的释放,经灌胃或肠外注射燕麦葡聚糖,小鼠血清免疫球蛋白数量明显增加,说明燕麦葡聚糖具有提高小鼠免疫力的作用。 抗癌功能

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法)产品技术要求kehe

真菌(1-3)-β-D葡聚糖测定试剂盒(显色法) 适用范围:用于体外定量测定人血清样本中真菌(1-3)-β-D葡聚糖的含量。1.1 规格 24人份/盒、48人份/盒 1.2 主要组成成分 校准品靶值批特异,详见靶值单 质控范围批特异,详见靶值单 2.1 外观 反应主剂为白色冻干块状物,样品处理液、溶解液和主剂复溶液为无色透明液体。 2.2 装量 处理液、溶解液和主剂复溶液装量不小于标示量。 2.3 准确度

试剂盒的回收率须在85%~115%范围内。 2.4 重复性 检测浓度为125pg/mL的溶液,重复检测10次,其变异系数(CV)值应不大于10%。 2.5 线性 2.5.1在浓度[31.25,500]pg/mL范围内,其线性相关系数的绝对值r≥0.990; 2.5.2在浓度[31.25 ,125)pg/mL范围内,其线性绝对偏差的绝对值不大于12.5 pg/mL;在浓度[125 ,500]pg/mL范围内,其线性相对偏差的绝对值不大于10%。 2.6 空白限 试剂盒的空白限不大于16 pg/mL。 2.7 溯源性 根据GB/T21415的有关规定提供校准品的来源、赋值过程及测量不确定等内容,溯源至企业工作校准品。 2.8 质控品赋值有效性 检测质控品,检测结果应在质控范围内。 2.9 批内瓶间差 同一批号的10个待检试剂盒对浓度为250pg/mL的标准溶液进行测试,重复10次,瓶间差的变异系数不得大于10%。 2.10 批间差 3个批号的试剂盒检测结果的变异系数应不大于15%。 2.11 稳定性 2.11.1 2℃~8℃保存,有效期12个月,取过有效期3个月以内的试剂盒进行测定,应符合2.3、2.3、2.5、2.6、2.7、2.8的要求; 2.11.2校准品溶解后,-20℃保存10天后进行测定,应符合2.3的要求; 2.11.3质控品溶解后,-20℃保存10天后进行测定,应符合2.8的要求; 2.11.4反应主剂溶解后,立即冻存至-20℃保存7天后进行测定,应符合2.3、2.5的要求。

壳聚糖开发应用现状(1)

天然产物提取分离技术 课程论文 题目壳聚糖开发应用现状 壳聚糖开发应用现状 摘要壳聚糖(chitosan)是一种由甲壳素脱乙酰基后的产物。壳聚糖及其衍生物具有优良的生理活性和功能保健作用。在食品,医药方面显示出非常诱人的应用价值。本文介绍它的特性,简单的化学法制作,并着重介绍壳聚糖在食品,药物制剂,生物技术以及其他方面的应用。最后介绍了国内外壳聚糖的市场现状及发展前景。

关键词壳聚糖脱乙酰甲壳质药物制剂生物技术 前言壳聚糖(Chitosan)又称脱乙酰甲壳质;可溶性甲壳质.是甲壳素脱去乙酰基后的产物。壳聚糖具有许多特殊的性能,如良好的生物降解性、生物相容性、无毒,无污染等。壳聚糖分子中的活性侧基为氨基。可酸化成盐。导入羧基官能团,取代合成侧链铵盐、混合醚、聚氧乙烯醚等等,制备具有水溶性、醇溶性、有机溶剂溶解性、表面活性以及纤维性等各种衍生物。壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺[(1-4)-2-氨基-B-D葡萄糖,自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。 1、壳聚糖的特性 壳聚糖是由大部分D-氨基葡萄糖和少量的N-乙酰-D-氨基葡萄糖组成,以β(1,4)糖苷健连接起来的直链多糖,化学名为(1,4)-2-氨基-2-脱氧-β-D-葡萄糖,其结构类似于纤维素。 壳聚糖因其独特的分子结构,是天然多糖中推一大量存在的碱性氨基多糖,因而具有一系列特殊功能性质。壳聚糖有αβγ三种构象,其分子键是以螺旋形式存在,α-型研究较多,因为这种构象的壳聚糖存在最多也最易制得。β-型则关注的相对较少,然而这种构象的特征是具有很弱的分子间作用力,并且被确定在不同的调节反应中会显示出比a-型更高的反应能够活性和对溶剂的更高的亲和力。在壳聚糖结构中存在四种类型的糖苷键,但由于C2-氨基或乙酰氢基的存在而使得糖苷键都较难水解。壳聚糖分子中含有羟基,乙酰氢基和氨基,决定了壳聚糖可进行多功能基化学反应。 2、壳聚糖的制备方法 这里介绍一下化学法生产工艺[1] 2.1、主要原料主要原料有虾蟹壳、4 %~6 %的工业盐酸、10 %和40 %氢氧化钠溶液、高锰酸钾、亚硫酸氢钠(工业级)、去离子水、水。 2.2、生产工艺要点 1)将剔除肉质的虾蟹壳加水煮沸抽提得到净甲壳; 2)将净甲壳加入4 %~6 %盐酸浸泡除去钙盐等 3)将除盐后的甲壳质加入质量百分比为10 %的氢氧化钠溶液煮沸,脱除蛋白质,得到粗品甲壳素。 4)将粗品甲壳素先用1 %高锰酸钾脱色漂白,再用2 %亚硫酸氢钠溶液还原,并洗净沥干,即得到不溶性甲壳素; 5)将不溶性甲壳素加于脱乙酰基反应釜内,用40 %氢氧化钠溶液(质量百分比)在80~100℃下进行脱乙酰基反应。反应终结后经洗净、脱水、烘干得可溶性壳聚糖产品。

真菌βD葡聚糖检测与真菌感染诊断

真菌β-D-葡聚糖检测与真菌感染诊断 一、概述 经研究表明,(1-3)-β-D-葡聚糖是一种广泛存在于真菌细胞壁的抗原成分, 占其干燥重量的80%~90%,其它微生物、动物及人的细胞成分和细胞外液均不含有。深部真菌感染患者中血浆(1-3)-β-D-葡聚糖含量增高,两者存在相关性。? 当真菌进入人体血液或深部组织后,经吞噬细胞的吞噬、消化代谢后,(1-3)-β-D葡聚糖可从胞壁中释放出来,从而使血液或其它体液中(1-3)-β-D葡聚糖含量增高。当真菌在体内含量减少时,机体免疫可迅速对其清除。而在浅部真菌感染中,(1-3)-β-D葡聚糖未被释放出来,故其在体液中的量不增高,它在血液及无菌体液中的存在可以很大程度上视为IFI(深部真菌感染)的标志。 二、深部真菌感染的诊治 近年来,由于造血干细胞移植、实体器官移植的广泛开展、高强度免疫抑制剂和大剂量化疗药物的应用以及各种导管的体内介入、留置等,临床上侵袭性真菌感染(invasive fungal infections,IFI)的患病率明显上升。IFI也日益成为导致骨髓及器官移植受者、接受化疗的恶性血液病和恶性肿瘤患者、AIDS以及其他危重病患者的严重并发症及重要死亡原因之一。由于缺少有效的早期诊断手段,深部真菌感染病死率居高不下。对深部真菌感染治疗成败的关键在于早期诊断,及早用药治疗。 常规病原学诊断“微生物培养”可为临床提供直接的诊断依据,但其培养方法耗时长(4-7天),不适宜用作早期诊断。并且,随着光谱抗生素、抗菌药物的大量应用,使得培养的阳性率极低。常用的免疫学方法,也由于抗原抗体反应的特异性差,往往对某一疑似真菌感染患者要作多种真菌抗原或抗体检测,既费时又不经济,而且当所用药盒的抗原谱或抗体谱不全时也极易造成漏诊。对一些以往接触过相应真菌抗原的个体,作抗体检测时还会出现阳性反应,因而对抗体的检测往往要求作动态观察才能作出诊断,期末属性较差。 有研究报道血清葡聚糖在念珠菌血症时明显升高,将其用于念珠菌血症的早期诊断明显优于传统的培养法和血清学诊断试验。虽然检测(1-3)-β-D葡聚糖只能提示有无真菌侵袭性感染,不能确定为何种真菌,但也可能转化为一种优势。因近年来,一些罕见的条件致病真菌也可引起深部感染,这就要求一种能迅速确定有无深部真菌感染的方法。因系统抗真菌药物种类较少,抗菌谱较广,且不因真菌种类而异,当检测到标本中的(1-3)-β-D葡聚糖含量较高时,可给予以系统治疗,不必耗时等待鉴定出种属,否则会贻误最佳治疗时机。 因此,血清(1-3)-β-D葡聚糖含量检测不失为一种实用的真菌感染早期诊断方法。并且,相关研究表明,(1-3)-β-D葡聚糖水平在确诊IFI患者的血清中出现持续升高,而随着药物的使用,对药物敏感者可很快出现(1-3)-β-D葡聚糖水平下降及转阴,而药物治疗无效人群(1-3)-β-D葡聚糖值无明显改变。因此,(1-3)-β-D葡聚糖可以用来判断药物的疗效,以协助临床医师及时进行药物种类及剂量的调整。 通过对人体体液进行(1-3)-β-D葡聚糖含量检测,可帮助判断人体是否已被真菌感染。对高危患者的样本进行连续分析,可为临床检测提供入侵真菌的量值或阴性预示值,为临床诊断和

浅谈壳聚糖的发展概况

浅谈壳聚糖的发展概况 关键词:壳聚糖;壳聚糖制备;壳聚糖应用 引语:本文介绍了壳聚糖的性质、制备以及着重介绍了壳聚糖在水处理、分析化学、纺织工业、膜材料、液晶材料、医学材料方面的应用。 1壳聚糖 壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760。[1] 1.1物理属性 纯甲壳素和纯壳聚糖都是一种白色或灰白色半透明的片状或粉状固体,无味、无臭、无毒性,纯壳聚糖略带珍珠光泽。生物体中甲壳素的相对分子质量为1×106~2×106,经提取后甲壳素的相对分子质量约为3×105~7×105,由甲壳素制取壳聚糖相对分子质量则更低,约2×105~5×105。在制造过程中甲壳素与壳聚糖相对分子质量的大小,一般用粘度高低的数值来表示。商品壳聚糖视其用途不同有三种不同的粘度,即高粘度产品为0.7~1Pa·s、中粘度产品为0.25~0.65Pa·s、低粘度产品<0.25Pa·s。制造纤维产品必须采用高粘度的甲壳素或壳聚糖。[2] 1.2化学性质 化学名:β-(1→4)-2-氨基-2-脱氧-D- 葡萄糖 分子式:(C6H11NO4)N

发酵法生产壳聚糖的研究现状

发酵法生产壳聚糖的研究现状 甲壳素(chitin)学名为聚(1,4)-2-乙酰氨基-2-脱氧--D-葡萄糖,又名甲壳质、壳多糖、几丁质、蟹壳素、明角壳蛋白、虫膜质、不溶性甲壳质、聚乙酰氨基葡萄糖等,与纤维素相似。甲壳素是一种重要的天然高分子化合物,其结构与纤维素相似,也是多糖化合物中最重要的一种聚氨基葡萄糖。甲壳素因主要来源于节肢动物如虾、蟹等的甲壳而得名。它也广泛存在于低等植物如真菌、藻类的细胞壁中[1]。 壳聚糖(Chitosan,简称CTS)学名为聚(1,4)-2-氨基-2-脱氧--D-葡萄糖,是甲壳素脱乙酰化而得到的一种生物高分子,是甲壳素的主要衍生物,又称脱乙酰几丁质、聚甲壳糖、甲壳胺、聚氨基葡糖、可溶性甲壳素、粘性甲壳素等。甲壳素和壳聚糖是含氮的多糖类物质,也是自然界中唯一的天然碱性多糖,因此具有许多独特的生物活性。甲壳素的溶解性能较差,只能溶于浓无机酸且同时发生降解,而不溶于水、稀酸、稀碱及一般有机溶剂,从而限制了甲壳素的应用。通过脱乙酰化反应,使甲壳素转变为壳聚糖。由于甲壳素分子结构的规整性受到破坏,壳聚糖分子中有大量游离氨的存在,壳聚糖的溶解性能较甲壳素有了很大的改善,化学性质也较活泼,兼具有甲壳素的天然、无毒、生物相容性好与易于降解等优点,所以壳聚糖有十分良好的经济应用价值,其应用范围比甲壳素大得多[2,3]。 目前壳聚糖的主要来源还是从虾蟹壳中用酸碱加工提取,其制备存在着许多不足之处:提取过程需耗费大量的酸碱,腐蚀性强,劳动强度大;所排出的废液中的有机质很高,废液量很大,严重污染环境;用浓碱进行反应时,甲壳质的分子易降解,使分子量变小,黏度减少而影响产品质量和使用。由之,随着发酵技术的进步,用生物工程技术大规模生产甲壳素及壳聚糖将有可能成为大有前途的清洁生产方式。本文介绍了目前生产壳聚糖的几种发酵方法。 2生产壳聚糖的发酵方法 2.1从虾蟹壳中制备壳聚糖 目前提取壳聚糖和甲壳素主要是从虾蟹壳中用酸碱加工提取,但最近有人提出使用发酵方法从虾蟹壳中提取壳聚糖和甲壳素。其主要原理是利用菌丝体发酵产生的蛋白酶消耗蛋白质,以及发酵过程中微生物产生的酸消耗无机物,从而提取壳聚糖和甲壳素。 SiniT.K.,等[4]提出使用芽孢杆菌发酵产生的蛋白酶和酸降解虾壳中的蛋白质和无机物,其实验方法是将200g的虾壳切碎加入200mL含108CFU mL的芽孢杆菌在粗糖培养基中,密封发酵15d,在发酵过程中能够去除虾壳中84%的蛋白质和72%的无机物,待发酵完成后取出沉淀并清洗,再经过少量弱酸碱处理和脱乙酰,提取产物通过分析,其质量达到市场标准。 韩国的W.J.Jung,等[5]首次采用连续发酵法从蟹壳中提取甲壳素,分别使用副干酪乳杆菌和粘质沙雷氏菌进行两步发酵从蟹壳中提取甲壳素,将新鲜的蟹壳2.5g放入50ml10%的葡萄糖溶液中,在恒温培养振荡器中利用副干酪乳杆菌在30条件下发酵5d,恒温培养振荡器的转速为180r min,第一步发酵结束以后,过滤沉淀物并用蒸馏水清洗,再用粘质沙雷氏菌在同样条件下发酵7d,在发酵结束后去除无机物和蛋白 质的量各达到94.3%和68.9%。2.2黑曲霉生产壳聚糖 黑曲霉是发酵工业中常用的真菌,我国有悠久的培养和使用的历史,黑曲霉又是含甲壳素最多的真菌,因此研究和开发由黑曲霉生产壳聚糖和甲壳素的技术,对促进我国甲壳素和壳聚糖的生产发展具有十分重要的作用。曹健和殷蔚申[6]用黑曲霉发酵生产壳聚糖,得率为9.72%,其培养基为含葡萄糖、玉米浆培养液,另加入Mg2+,得到的壳聚糖,结果为相对分子量为8.02104,水分为8.38%,灰分为9.24%。2.3米根霉生产壳聚糖 米根霉培养条件简单,是生产乳酸发酵产品的菌种。米根霉细胞壁含有天然壳聚糖,可以通过发酵法直接进行提取,不需经浓碱脱乙酰步骤,利用米根霉发酵生产化产生品的厂家可利用发酵后的菌丝体提取壳聚糖,这不仅有利于企业开展综合利用提高经济效益,而且可以减少下持处理过程中菌丝体对环境的排放量。陈世年[7]选用米根霉作为菌种,在32下、220r min下

史上最全的酵母葡聚糖科普(节选2)

史上最全的酵母葡聚糖科普(节选2)

史上最全的酵母葡聚糖(节选2) 原创作者:梁明丽 ●健康的身体是由哪些东西组成? 完整的健康下,每个人都有良好的器官能正常运作,免疫上能抵御内在与外在的疾病。也就是說各个器官和腺体的健康依賴我們监测并抵御有害物质的能力。 而免疫能力受到遗传基因(DNA)的控制,1940年代中期研究发现健康人随着年龄的增长,抵抗力也逐渐下降。 饮食影响器官、腺体的健康,并且干扰每个人的基因,然而只有好的营养并不能使各个器官、腺体发挥先天的潜力,唯有摄取最好的食物,配合适当的酵母葡聚糖加以补充,人们才能舒解压力,增加抵抗疾病的能力,因此各器官、腺体要摄取特殊营养来提高免疫时,葡聚糖是绝对必要的。 ●我该使用哪些葡聚糖來帮助提高免疫? 葡聚糖分为α-葡聚糖跟β-葡聚糖,以β-葡聚糖最具生理活性。而β-葡聚糖又分β-1,3葡聚糖,β-1,4葡聚糖,β-1,6葡聚糖。研究表明,葡聚糖的β-1,3/1,6葡聚糖结构,可以有效提升嗜中性粒细胞活性,加速化学趋化性,从而提高人体固有免疫力。在酵母β葡聚糖进行的九项人体临床中,选取的受试对象有中度生活压力人群(即亚健康状态)、毕业季学生、运动员、消防员、花粉过敏者等。临床研究证实酵母β葡聚糖可以提高人体先天免疫活性,对于上呼吸道感染、容易感冒、疲劳、精神状态不佳等,都有很好的缓解作用。

●哪里可以得到葡聚糖? β-葡聚糖广泛存在于酵母、蘑菇、燕麦和大麦等食物里,其中β- 1,3 / 1,6存在于酵母和蘑菇葡聚糖,而β- 1,3 / 1,4存在于燕麦和大麦葡聚糖。 ●葡聚糖在体内如何发挥功效? 当酵母β-葡聚糖进入人体后,其螺旋结构决定其不会在胃肠道内被水解成葡萄糖等单糖,而是与特异性受体相结合,通过胞吞作用(或胞饮作用),最终穿过肠上皮而进入淋巴系统,并从淋巴系统进入血液系统而发挥作用。酵母

葡聚糖的研究进展

?-葡聚糖的研究进展 燕麦β-葡聚糖是一种存在于大燕麦皮中的天然非淀粉类水溶性植物糖,其基本结构是由D葡萄糖以β14,β1-3糖苷键连接而成的线性多糖,这两种糖苷键的比例大致为7:3。 燕麦β-葡聚糖是一种水溶性膳食纤维,因其具有的黏性阻碍淀粉、蛋白质等物质的消化和吸收,并可增殖消化道有益菌,所以可对人体具有一些极为有利的生理功能:具有显著的降血脂、降血糖及提高免疫能力,维持肠道微生态环境等。作为化妆品的有效成分,可以提高皮肤抗过敏能力,激活免疫功能,延缓皮肤衰老。燕麦水溶性膳食纤维和燕麦葡聚糖,可有效降低餐后血糖浓度和胰岛素水平,降低胆固醇和预防心血管疾病.燕麦纤维食品易被人体吸收,并且因含热量很低,既有利于减肥,又适合心脏病,高血压和糖尿病患者食疗的需要。 降低胆固醇 早在多年,科学家就发现β一葡聚糖能够减少肠胃吸收脂肪酸的速率,降低人体胆固醇的合成.随着β一葡聚糖研究的日趋成熟,学者们先后在动物及人体实验水平上进行了大量的实验,证实了β一葡聚糖在降低胆固醇和低密度脂蛋白方面具有特异的生理功能.科学家发现β一葡聚糖对胆固醇的影响主要在于能显著降低血浆中总胆固醇和低密度脂蛋白胆固醇,而对高密度脂蛋白没有明显影响。燕麦葡聚糖对高血脂人群有明显的降低胆固醇的作用。 降血糖 每天食用葡聚糖燕麦食品后,患者血糖水平可降低约50%,使用燕麦食品有显著降低血糖作用燕麦汗葡聚糖可通过降低血脂含量,改善血液流动性能,加快糖类成分在吸收利用过程中的转运速度和效率,同时对糖尿病所并发的肝肾组织病变有良好的修复作用,并且可有效降低肝糖原的分解,从而导致血糖降低。 抗癌作用 燕麦葡聚糖在肠道发酵产生的短链脂肪酸,能够降低葡萄糖苷酶,葡萄糖醛酸酶和脉酶等微生物代谢酶的活性;粘性的β一葡聚糖,还能增加肠道内次级胆酸的排出,这些酶及次级胆酸是结肠癌的诱发因子,因而燕麦葡聚糖具有抗癌作用. 改善肠道

真菌(1-3)-D葡聚糖检测反应机理

真菌(1-3)- -D葡聚糖检测反应机理 目前临床上随着广谱抗生素、各类免疫抑制剂、移植插管等新技术的不断发展应用,其真菌感染尤其是深部真菌感染出现明显上升趋势,而作为临床诊断的细菌培养其阳性率很低,且检测周期长,不能适应临床治疗诊断的要求,因此迫切需要快速、准确的检测方法.因此对血液中的早期(1-3)- -D葡聚糖快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中(1-3)- -D葡聚糖快速检测对早期诊断深部真菌感染具有重要的参考价值。该试验的基本原理是试剂中含凝固酶原及凝固蛋白原的冷冻干燥品.在适宜条件下,微量(1-3)- -D葡聚糖能激活试剂中的凝固酶原产生凝集反应,通过测定凝集反应过程中的浊度变化从而定量检测血浆中(1-3)- '-D葡聚糖 含量? 内毒素定量检测的反应机理 细菌内毒素作为革兰阴性菌细胞壁外层中的脂多糖成份(LPS),具有多种的生物活性,微量的内毒素进入机体将会出现发热、血压降低、寒战、引起DIC、内毒素败血症等一系列临床反应,因此对血液中的早期内毒素快速定量检测,将对临床对症治疗具有很深的现实意义。人体血浆中内毒素检测对分别诊断革兰阴性杆菌感染具有重要的参考价值。反应试剂中含凝固酶原及凝固蛋白原的冷冻干燥品.在适宜条件下,微量革蓝氏阴性菌内毒素能激活试剂中的凝固酶原产生凝集反应形成凝胶,通过测定在形成凝胶过程中的浊度变化从而定量检测血浆中革蓝氏阴性菌内毒素.

一、检测体液内毒素的临床意义 由革兰氏阴性菌所引起的内毒素血症及脓毒血症是目前临床上的主要死亡原因之一。在各类抗生素杀灭革兰氏阴性菌的同时,也会使后者释放出一定数量的内毒素,从而加重内毒素血症。早期诊断的细菌学培养需时长,而且由于抗生素的应用,其培养阳性率低。早期的数小时内作为临床上抢救感染性休克的关键,临床医师仅能根据临床特征与体征推断病源学而带有一定的盲目性,因此,早期体液中内毒素的正确、快速定量检测及相应的对症治疗就显得格外重要。过去的内毒素检测能定性而不能定量,而且个体差异和实验室间的误差较大,无法成为有价值的临床检验项目,北京金山川公司研制的MB-80 微生物快速动态检测系统能定量检测体液内毒素的含量,经国内多家单位使用现已在其他省市开始作为临床检验项目进行收费。该仪器检测内毒素具有结果稳定、检测快( 1 小时)、重复性好、准确率高、不同的检测人员操作引起的误差小等优点。 内毒素定量检测在重症病人、感染病人(如脑膜炎)以及其他有严重创伤等疾病的病人均有重要的临床意义,这使得内毒素研究一直是热点,但过去由于方法的限制,内毒素检测也是临床的难点。 二、深部真菌检测的临床意义 动态定量检测体液中真菌含量是应用MB-80 微生物快速动态检 测系统进行的。该方法可以快速诊断用常规方法难以确诊的深部真菌

β-葡聚糖、甘露寡糖的测定方法

A.1原理 根据β-葡聚糖和甘露寡糖在流动相和液相色谱柱的固定相之间具有不同的分配系数,将样品注入液相色谱柱,用H2O做流动相,糖类分子流出后,经示差检测器检测,用外标法定量。 A.2试剂和材料 除非另有说明,在分析中仅使用确认为分析纯的试剂;蒸馏水或去离子水或符合GB/T6682中规定的一级水或相当纯度的水。试验中所用制品按GB/T 603的规定制备。 A.2.1盐酸:37%。 A.2.2乙腈:色谱纯。 A.2.3氢氧化钠:40%。 A.2.4葡萄糖和甘露糖混合标液(1000mg/L):分别称取葡萄糖和甘露糖各0.100g,用纯水定容100mL后用0.45μm微孔滤膜过滤,备用。 A.3仪器 A.3.1水浴锅。 A.3.2漩涡混合器。 A.3.3电炉。 A.3.4手提式压力蒸汽灭菌锅。 A.3.5高压液相色谱仪;带示差检测器。 A.4分析步骤 A.4.1样品处理 精确称取1.000g(准确至0.0002g)样品放入一个20mL的耐热玻璃制的带螺帽的小试管中,加入7.5mL盐酸(37%),小心的将小瓶盖近后用漩涡混合器混合,得到均一的悬浮液。将小瓶放入30℃水浴中处理45min,每15min用漩涡混合器震荡混合一次。然后将悬浮物定量的转移到200mL杜氏瓶中(同时用约70-80mL的水洗涤后倒入瓶中),将瓶子放入高压灭菌锅121℃处理60min。完成后马上冷却,将溶液调pH到6-7,然后定容至200mL。使用0.45微米孔径的醋酸纤维素膜过滤备用。 A.4.2测定 A.4.2.1 液相色谱参考条件 A.4.2.1.1 色谱柱:Hyper REZ XP Carbohydrate Ca++,长300mm,内径7.7mm,粒径8μm。 A.4.2.1.2 柱温:70℃。 A.4.2.1.3 流动相:H2O,用前过0.22μm滤膜。 A.4.2.1.4 流速:0.6 ml/min。 A.4.2.1.5 进样体积:40μl。 A.4.3标准曲线的绘制

葡聚糖和壳聚糖的区别

壳聚糖(chitosan)又称脱乙酰甲壳素,是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖。自1859年,法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报告。同时,壳聚糖被作为增稠剂、被膜剂列入国家食品添加剂使用标准GB-2760. 应用 1、化妆品专用壳聚糖 化妆品专用壳聚糖具有良好的吸湿、保湿、调理、抑菌等功能;适用于润肤霜、淋浴露、洗面奶、摩丝、高档膏霜、乳液、胶体化妆品等;有效的弥补了一般壳聚糖的缺陷。2、絮凝剂专用壳聚糖 壳聚糖及其衍生物都是具有良好的絮凝、澄清作用。作为饮料的澄清剂,可使悬浮物迅速絮凝,自然沉淀,提高原液的得率;在中药提取液中,大分子的蛋白质、鞣酸和果胶,可以用壳聚糖溶液方便地除去,精制出纯度较高的中药有效成份;利用壳聚糖的吸附性,在水质净化方面有良好的效果。 3、农业、饲料、饵料专用壳聚糖 壳聚糖是天然的植物营养促长剂--叶面肥的原料,由壳聚糖复配而成的叶面肥,既能给植物杀虫,抗病,起到肥料的作用,又能分解土壤中动植物残体及微量金属元素,从而转化为植物的营养素,增强植物免疫力,促进植物的健康;虾壳、蟹壳中含有丰富的蛋白质、微量元素,动物食入吸收后,有良好的营养价值。 4、UTA(吸附剂)专用壳聚糖 UTA专用壳聚糖是经过特殊工艺加工的壳聚糖系列产品;它能有效地吸附蛋白,比一般壳聚糖的吸附要高40%。 5、烟草(烟胶)专用壳聚糖 该产品可与烟丝均匀混合,且能粘附于烟丝表面,可增强抗张强度、耐水性、耐破度,加工时不易破碎,适用于现代高速卷烟机;该烟草添加剂可使烟支的燃烧性能显著增强,具有降低烟草焦油和烟碱含量的作用,使烟支杂气减轻,烟气中有害物质减少,吸味得到改善,香气显露;也能够有效地抑制烟叶霉变,延长烟草的保存时间。 5、保健食品添加剂 壳聚糖难被人体胃肠消化吸收,当人把它们摄入体内后,它们可与相当于自身质量许多倍的甘油三酯、脂肪酸、胆汁酸和胆固醇等脂类化合物生成络合物,该络合物不被胃酸水解,不被消化系统吸收,从而阻碍人体吸收这类物质,使之穿肠而过排出体外。因此,壳聚糖类可以降脂,减少食品热量,可用作保健食品添加剂。Agullo等研究表明,壳二、三聚糖不仅具有非常爽口的甜味和调解血压、消除脂肪肝、降低胆固醇和增强免疫力的功能,而且还具有提高食品的保水性及水分调节作用,可作为糖尿病和肥胖病的保健食品添加剂。

葡聚糖在动物营养中的研究进展

葡聚糖在动物营养中的研究进展 2008-10-29 08:46:08.0 中国饲料在线独家报道 一、葡聚糖的结构特点 葡聚糖为右旋吡喃型葡萄糖聚合体,其相邻葡萄糖残基的碳1、2、3、4、6的半缩醛氧之间以葡糖苷键连接构成骨架,有α和β位两种结构形式。β-1,3-葡聚糖是一类广泛存在于微生物、植物乃至动物体内的大分子多糖,主链结构为B-1,3-糖苷键连接,通常还含有不同比例和大小的β-1,2/β-1,4/β-1,6-连接的支链,主要以细胞结构成分(如细胞壁)的形式存在,对异体宿主防御系统具有较强的诱导和活化作用,是一类活性强、毒副作用低的良好的生物应答效应物。 β-1,3-葡聚糖广泛存在于微生物和植物,尤其是真菌中,其有3个构象:无规则卷曲、单螺旋和性质稳定的三螺旋结构。其中三螺旋结构在自然界中最常见,但这种葡聚糖不溶于水。葡聚糖有两种存在形式:胶体态和水溶解态。脊椎动物由于缺乏特异性水解酶,葡聚糖在其体内降解方式主要为缓慢氧化,有时几个月后仍然以原型存在于体内;而其侧链比主链氧化快。葡聚糖是D-葡萄糖的聚合物,D-葡萄糖单元可通过1-2、1-3、1-4、1-6等糖苷键连接。酵母是一种重要的食品和工业微生物,在其细胞壁中存在β-1,6 分枝的碱不溶性β-D-1,3-葡聚糖,β-1,6分枝的碱溶性β-D-1,3-葡聚糖,中间插有β-1,3-键的无定性的酸溶性β- D- 1,6-葡聚糖,连接有蛋白质的无定性的酸溶性甘露聚糖等,其中β- D-1,3-葡聚糖占绝大多数。 二、葡聚糖的生物活性 β-1,3-葡聚糖的结构特异性在单糖组成、构型、糖苷键等初级结构水平均有所表现,它的受体可以区分多糖的上述结构,对同型甘露聚糖(mannan)和β-1,6-葡聚糖结构的石脐素(pustulan)等均不显识别活性,对由多种多糖组成的酵母多糖(zymosan)的识别活性也只与其中所含的β-1,3-葡聚糖成分有关。单糖的构型(α/β)是决定糖苷键定向及空间构象的关键因素之一,由β-型葡萄糖组成的β-1,3-葡聚糖有利于分子卷曲成螺旋结构,而由α型葡萄糖组成的α-1,3-葡萄糖形成的是带状结构,前者具有较强的抗癌及免疫调节活性。 通常β-1,3-葡聚糖的生物活性主要指抗肿瘤及免疫调节等药理活性,这些活性与分子大小有着明显应关系。大分子多糖具有较强的生物活性,但水溶性较差,能够基本保留其大分子活性的可溶性多糖,分子量多介于10-50KD,低于此限生物活性显著下降。活性最强的多糖是具有分支的β-1,3-葡聚糖,所有的活性多糖具有一个共同的结构:主链由β-(1-3)连接的葡萄糖基组成,沿主链随机分布着由β-(1-6)连接的葡萄糖基,呈梳状结构,生物活性的大小随多糖的精细结构和构象不同而变化。这些多糖的生物活性是因为其活化了宿主的免疫系统的结果,而不是直接的细胞毒性作用。活性最强的多糖来自于真菌的菌丝、子实体和发酵液。表2是一些具有生物活性的β-(1,3)-D-葡聚糖和它们的分支度。 表2:一些具有生物活性的β-1,3-葡聚糖及其分支度 对人和其它动物来说,β-1,3-葡聚糖的生物活性可能是生物进化和自然选择的结果,因为它代表的是一种典型的异己成分或病原菌成分,它的出现给机体输入了“外敌”入侵的信息,从而唤起机体对“异物”的广谱免疫排斥反应并形成记忆。β-1,3-葡聚糖与其受体细胞的识别反应是引发一系列抗癌生物应答反

相关主题
文本预览
相关文档 最新文档