当前位置:文档之家› 磁场对运动电荷的作用学案

磁场对运动电荷的作用学案

磁场对运动电荷的作用学案
磁场对运动电荷的作用学案

图1 磁场对运动电荷的作用学案

复习任务一 基础知识梳理

一、洛伦兹力的大小和方向

1.洛伦兹力的定义:磁场对____________的作用力.

2.洛伦兹力的大小F 洛=____________,θ为v 与B 的夹角.如图1所示.

(1)当v ∥B 时,θ=0°或180°,洛伦兹力F 洛=______.

(2)当v ⊥B 时,θ=90°,洛伦兹力F 洛=________.

(3)静止电荷不受洛伦兹力作用.

3.洛伦兹力的方向

(1)左手定则

????? 磁感线垂直穿过 四指指向 的方向

拇指指向 的方向

(2)方向特点:F 洛垂直于________决定的平面,即F 洛始终与速度方向垂直,故洛伦兹力__________. 思考

1.怎样用左手定则判断负电荷所受洛伦兹力的方向?

2.洛伦兹力与安培力有怎样的联系?根据安培力公式推导出洛仑兹力表达式。

练习:在图2所示的各图中,匀强磁场的磁感应强度均为B ,带电粒子的速率均为v ,带电荷量均为q .试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向.

图2

二、带电粒子在匀强磁场中的运动

1.若v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做____________运动.

2.若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做____________运动.

(1)向心力由洛伦兹力提供:q v B =__________=__________;

(2)轨道半径公式:R =m v qB

; (3)周期:T =2πR v =2πm qB

(周期T 与速度v 、轨道半径R 无关); (4)频率:f =1T =qB 2πm

; (5)角速度:ω=2πT

=__________.

图5

思考:根据公式T =2πR v ,能说T 与v 成反比吗?

练习:试画出图3中几种情况下带电粒子的运动轨迹.

图3

三、带电粒子在匀强磁场中运动的应用

1.质谱仪

(1)构造:如图4所示,由粒子源、____________、__________和照相底片等构成.

图4

(2)原理:粒子由静止被加速电场加速,根据动能定理可得关系式qU =____________.

粒子在磁场中受洛伦兹力作用而偏转,做匀速圆周运动,根据牛顿第二定律得关系式q v B =____________.

由两式可得出需要研究的物理量,如粒子轨道半径、粒子质量、比荷.r =________,m =________,q m

=____________. 2.回旋加速器

(1)构造:如图5所示,D 1、D 2是半圆形金属盒,D 形盒的缝隙处接______

电源.D 形盒处于匀强磁场中.

(2)原理:交流电的周期和粒子做圆周运动的周期________,粒子在圆周运

动的过程中一次一次地经过D 形盒缝隙,两盒间的电势差一次一次地反向,

粒子就会被一次一次地加速.由q v B =m v 2r ,得E km =__________, 可见粒子获得的最大动能由________________和D 形盒________决定,与加速电压________. 特别提醒 这两个实例都应用了带电粒子在电场中加速,在磁场中偏转(匀速圆周运动)的原理. 复习任务二 典型问题讲解

考点一 洛伦兹力与电场力的比较 考点解读

1.洛伦兹力方向的特点

(1)洛伦兹力的方向与电荷运动的方向和磁场方向都垂直,即洛伦兹力的方向总是垂直于运动电荷的速度方向和磁场方向确定的平面.

(2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化.

2.洛伦兹力与电场力的比较

图6

图7

特别提醒 洛伦兹力对电荷不做功;安培力对通电导线可做正功,可做负功,也可不做功;电场力对电荷可做正功,可做负功,也可不做功.

典例剖析

例1 在如图6所示宽度范围内,用场强为E 的匀强电场可使初速度是v 0的某种正粒

子偏转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的匀强磁场,使该粒子

穿过该区域,并使偏转角也为θ(不计粒子的重力),问:

(1)匀强磁场的磁感应强度是多大?

(2)粒子穿过电场和磁场的时间之比是多大?

答案:(1)E cos θv 0 (2)sin θθ

思维突破 电荷在匀强电场和匀强磁场中的运动规律不同.运动电荷穿过有界电场的时间与其入射速度的方向和大小有关,而穿出有界磁场的时间则与电荷在磁场中的运动周期有关.在解题过程中灵活运用运动的合成与分解和几何关系是解题关键.

跟踪训练1 一个带正电的小球沿光滑绝缘的桌面向右运动,速度方

向垂直于一个垂直纸面向里的匀强磁场,如图7所示,小球飞离桌

面后落到地板上,设飞行时间为t 1,水平射程为s 1,着地速度为v 1.

撤去磁场,其余的条件不变,小球飞行时间为t 2,水平射程为s 2,

着地速度为v 2.则下列论述正确的是 ( )

A .s 1>s 2

B .t 1>t 2

C .v 1和v 2大小相等

D .v 1和v 2方向相同

答案:ABC

考点二 带电粒子在匀强磁场中的运动

1.带电粒子在匀强磁场中的运动是各省市每年高考必考内容之一.一般以计算题的形式出现,可以与其他知识相综合,难度中等以上,分值较高,以考查学生的形象思维和逻辑推理能力为主.

2.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系作为辅助.

(1)圆心的确定

①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心.

②两种情形

a .已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图8所示,图中P 为入射点,M 为出射点).

b .已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图9所示,图中P 为入射点,M 为出射点).

图8 图9

(2)半径的确定

用几何知识(勾股定理、三角函数等)求出半径大小.

(3)运动时间的确定 粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为:t =α360°T (或t =α2π

T ). 3.规律总结

带电粒子在不同边界磁场中的运动

(1)直线边界(进出磁场具有对称性,如图10)

图10

(2)平行边界(存在临界条件,如图11)

图11 图12

(3)圆形边界(沿径向射入必沿径向射出,如图12)

图13 图14

图15 1.带电粒子在直线边界磁场中的运动问题

例2 如图13所示,在一底边长为2a ,θ=30°的等腰三角形区域内(D 在底边中点),

有垂直纸面向外的匀强磁场.现有一质量为m ,电荷量为q 的带正电的粒子,从静止

开始经过电势差为U 的电场加速后,从D 点垂直于EF 进入磁场,不计重力与空气阻

力的影响.(1)若粒子恰好垂直于EC 边射出磁场,求磁场的磁感应强度B 为多少?

(2)改变磁感应强度的大小,粒子进入磁场偏转后能打到ED 板,求粒子从进入磁场

到第一次打到ED 板的最长时间是多少?

答案:(1)1a 2mU q (2)πa 3 m 2qU

跟踪训练2 (2011·浙江·20) 利用如图14所示装置可以选择一定速度范围内

的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的

匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质

量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN

进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是

( )

A .粒子带正电

B .射出粒子的最大速度为qB (3d +L )2m

C .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大

D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大

2.带电粒子在圆形边界磁场内的运动问题

例3 可控热核聚变反应堆产生能的方式和太阳类似,因此,它被俗称为“人造

太阳”.热核反应的发生,需要几千万度以上的高温,然而反应中的大量带电

粒子没有通常意义上的容器可装.人类正在积极探索各种约束装置,磁约束托

卡马克装置就是其中一种.如图15所示为该装置的简化模型.有一个圆环形区

域,区域内有垂直纸面向里的匀强磁场,已知其截面内半径为R 1=1.0 m ,磁感

应强度为B =1.0 T ,被约束粒子的比荷为q /m =4.0×107 C/kg ,该带电粒子从中

空区域与磁场交界面的P 点以速度v 0=4.0×107 m/s 沿环的半径方向射入磁场

(不计带电粒子在运动过程中的相互作用,不计带电粒子的重力).

答案:(1)2.41 m (2)5.74×10-7 s

(1)为约束该粒子不穿越磁场外边界,求磁场区域的最小外半径R 2;

(2)若改变该粒子的入射速度v ,使v =33

v 0,求该粒子从P 点进入磁场开始到第一次回到P 点所需要的时间t .

思维突破 带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法

(1)画轨迹:即确定圆心,用几何方法求半径并画出轨迹.

(2)找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系.

(3)用规律:即牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式.

图16

图17

图18

图21

图22

跟踪训练3 如图16所示,在某空间实验室中,有两个靠在一起的等大的圆

柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B =0.10 T ,磁场区

域半径r =23

3 m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外,两区域切点为C .今有质量m =3.2×10

-26 kg 、带电荷量q =1.6×10-19 C 的某种离子,从左侧区边缘的A 点以速度v =1×106 m/s 正对O 1的方向垂直射入磁场,它将穿越C 点

后再从右侧区穿出.求:

(1)该离子通过两磁场区域所用的时间;

(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指垂直初速度方向上移动的距离)

答案:(1)4.19×10-6 s (2)2 m 考点三 带电粒子在多个磁场中运动的分析

例4 如图17所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁

场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ、Ⅱ中,A 2A 4与A 1A 3的夹角为

60°.一质量为m 、带电荷量为+q 的粒子以某一速度从Ⅰ区的边缘点A 1处沿与

A 1A 3成30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进

入Ⅱ区,最后再从A 4处射出磁场.已知该粒子从射入到射出磁场所用

的时间为t ,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力). 答案:5πm 6qt 5πm 3qt

建模感悟 粒子在多个磁场中连续运动时,会画出不同的轨迹,从复杂的轨迹中找出规律,寻找解决问题的突破口,解这类问题时,关键在于能画出轨迹,想清楚粒子的运动过程,借助圆周运动的特点解决问题.

跟踪训练4 如图18所示,以ab 为边界的两匀强磁场的磁感应强度为B 1=

2B 2=B ,现有一质量为m 、带电荷量+q 的粒子从O 点以初速度v 沿垂直于

ab 方向发射.在图中作出粒子的运动轨迹,并求出粒子发射后第7次穿过直

线ab 时所经历的时间、路程及离开点O 的距离.(粒子重力不计)

跟踪训练5.如图21所示,在圆形区域内,存在垂直纸面向外的匀强磁场,ab

是圆的一条直径.一带电粒子从a 点射入磁场,速度大小为2v ,方向与ab 成

30°时恰好从b 点飞出磁场,粒子在磁场中运动的时间为t ;若仅将速度大小改

为v ,则粒子在磁场中运动的时间为(不计带电粒子所受重力) ( )

A .3t B.32t C.12t D .2t 答案:D

跟踪训练6.如图22所示,有一个正方形的匀强磁场区域abcd ,e 是ad 的中点,

f 是cd 的中点,如果在a 点沿对角线方向以速度v 射入一带负电的带电粒子,恰

好从e 点射出,则 ( )

A .如果粒子的速度增大为原来的二倍,将从d 点射出

B .如果粒子的速度增大为原来的三倍,将从f 点射出

图1

图3

图4

图2

C .如果粒子的速度不变,磁场的磁感应强度变为原来的二倍,也将从d 点射出

D .只改变粒子的速度使其分别从e 、d 、f 点射出时,从e 点射出所用时间最短

答案:A

补充训练训练题

(限时:50分钟)

一、选择题

1.两个电荷量相等的带电粒子,在同一匀强磁场中只受洛伦兹力作用而做匀速圆周运动.下列说法中正确的是 ( )

A .若它们的运动周期相等,则它们的质量相等

B .若它们的运动周期相等,则它们的速度大小相等

C .若它们的轨迹半径相等,则它们的质量相等

D .若它们的轨迹半径相等,则它们的速度大小相等

2. 如图1所示,在两个不同的匀强磁场中,磁感强度关系为B 1=2B 2,当不计重力

的带电粒子从B 1磁场区域运动到B 2磁场区域时(在运动过程中粒子的速度始终与磁

场垂直),则粒子的 ( )

A .速率将加倍

B .轨道半径将加倍

C .周期将加倍

D .做圆周运动的角速度将加倍

3. 1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图2所示.这台加速器

由两个铜质D 形盒D 1、D 2构成,其间留有空隙,下列说法正确的是

( )

A .离子由加速器的中心附近进入加速器

B .离子由加速器的边缘进入加速器

C .离子从磁场中获得能量

D .离子从电场中获得能量

4.如图3所示,ABC 为与匀强磁场垂直的边长为a 的等边三角形,磁场垂直

纸面向外,比荷为e m

的电子以速度v 0从A 点沿AB 方向射入,欲使电子能经过BC 边,则磁感应强度B 的取值应为( )

A .

B >

3m v 0ae B .B <2m v 0ae C .B <3m v 0ae D .B >2m v 0ae 5.如图4所示,平面直角坐标系的第Ⅰ象限内有一匀强磁场垂直

于纸面向里,磁感应强度为B .一质量为m 、电荷量为q 的粒子

图5

图6

图7

以速度v 从O 点沿着与y 轴夹角为30°的方向进入磁场,运动

到A 点时速度方向与x 轴的正方向相同,不计粒子的重力,则 ( )

A 该粒子带正电

B .A 点与x 轴的距离为m v 2qB

C .粒子由O 到A 经历时间t =πm 3qB

D .运动过程中粒子的速度不变

6. (2011·海南单科·10)空间存在方向垂直于纸面向里的匀强磁场,图5中的正方形为其

边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子

带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不

计重力.下列说法正确的是 ( )

A .入射速度不同的粒子在磁场中的运动时间一定不同

B .入射速度相同的粒子在磁场中的运动轨迹一定相同

C .在磁场中运动时间相同的粒子,其运动轨迹一定相同

D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大

7.如图6是质谱仪的工作原理示意图,带电粒子被加速电场加速后,进入速

度选择器(带电粒子的重力不计).速度选择器内有互相垂直的匀强磁场和匀强

电场,磁场的磁感应强度为B ,电场的场强为E .挡板S 上有可让粒子通过的

狭缝P 和记录粒子位置的胶片A 1A 2,挡板S 下方有磁感应强度为B 0的匀强磁

场.下列表述正确的是 ( )

A .质谱仪是分析同位素的重要工具

B .速度选择器中的磁场方向垂直纸面向里

C .能通过狭缝P 的带电粒子的速率等于B /E

D .带电粒子打在胶片上的位置越靠近狭缝P ,带电粒子的比荷越小

8.在y >0的区域内存在匀强磁场,磁场垂直于xOy 平面向外,原点O 处有一离子源,沿各个方向射出速率相等的同价负离子,对于进入磁场区域的离子,它们在磁场中做圆周运动的圆心所在的轨迹可用下图给出的四个半圆中的一个来表示,其中正确的是(

)

9. 在x 轴上方有垂直于纸面的匀强磁场,同一种带电粒子从O 点射入磁场,

当入射方向与x 轴的夹角α=60°时,速度为v 1、v 2的两个粒子分别从a 、b

两点射出磁场,如图7所示,当α=45°时,为了使粒子从ab 的中点c 射出

磁场,则速度应为 ( )

A.12(v 1+v 2)

B.64(v 1+v 2)

图8

图9

图11 C.33(v 1+v 2) D.66

(v 1+v 2) 10. 如图8所示,纸面内有宽为L 水平向右飞行的带电粒子流,粒子质量为m ,

电荷量为-q ,速率为v 0,不考虑粒子的重力及相互间的作用,要使粒子都汇聚

到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的形

状及对应的磁感应强度可以是(其中B 0=m v 0qL

,A 、C 、D 选项中曲线均为半径是L 的14圆弧,B 选项中曲线为半径是L 2

的圆) (

)

二、非选择题

11. “上海光源”发出的光,是接近光速运动的电子在磁场中做曲线运动改变运

动方向时产生的电磁辐射.若带正电的粒子以速率v 0进入匀强磁场后,在与磁场

垂直的平面内做半径为m v 0qB

的匀速圆周运动(见图9),式中q 为粒子的电荷量,m 为其质量,B 为磁感应强度,则其运动的角速度ω=______.粒子运行一周所需要

的时间称为回旋周期.如果以上情况均保持不变,仅增大粒子进入磁场的速率v 0,

则回旋周期________(填“增大”、“不变”或“减小”).

12.在图10甲中,带正电粒子从静止开始经过电势差为U 的电场加速后,从G 点垂直于

MN 进入偏转磁场,该偏转磁场是一个以直线MN 为上边界、方向垂直于纸面向外的匀强磁场,磁场的磁感应强度为B ,带电粒子经偏转磁场后,最终到达照相底片上的H 点,如图甲所示,测得G 、H

间的距离为d ,粒子的重力可忽略不计.

图10

(1)设粒子的电荷量为q ,质量为m ,求该粒子的比荷q m

; (2)若偏转磁场的区域为圆形,且与MN 相切于G 点,如图乙所示,其他条件不变.要保证上述粒子从G 点垂直于MN 进入偏转磁场后不能打到MN 边界上(MN 足够长),求磁场区域的半径R 应满足的条件.

13.在某平面上有一半径为R 的圆形区域,区域内、外均有垂直于该平面的匀强

磁场,圆外磁场范围足够大,已知两部分磁场方向相反且磁感应强度都为B ,方

向如图11所示.现在圆形区域的边界上的A 点有一个电荷量为q ,质量为m 的带

正电粒子,以沿OA方向的速度经过A点,已知该粒子只受到磁场对它的作用力.

(1)若粒子在其与圆心O的连线绕O点旋转一周时恰好能回到A点,试求该粒子运动速度v的最大

值;

(2)在粒子恰能回到A点的情况下,求该粒子回到A点所需的最短时间.

磁场对运动电荷的作用力

§3.5 磁场对运动电荷的作用力 ★本课奋斗目标:洛伦兹力的计算和方向的判断 活动一:参考课本P95页,完成下列小题 1、如图所示,玻璃管已抽成真空。当左右两个电极按图示的极性连接到高压电源时,阴极会发射电子。电子在电场的加速下飞向阳极,画出图1中电子束的运动轨迹? 2、如果在图1的基础上加上一个垂直于纸面向里的匀强磁场,图2所示,(电子束向右运动,形成的电流向,如果是一根导线内的电流,导线受安培力的方向向,所以电子受力方向向,于是电子运动轨迹向偏转。)你能画出这时电子束的运动轨迹吗? 3、运动电荷在磁场中受到的作用力,叫做。 4、洛伦兹力的方向的判断──左手定则: 让磁感线手心,四指指向的方向,或负电荷运动的,拇指所指电荷所受的方向。 5、洛伦兹力的大小:洛伦兹力公式。 6、洛伦兹力与电荷运动方向,所以洛伦兹力对运动电荷,不会电荷运动的速率。 反馈1:试判断下图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向. 2:来自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将()A.竖直向下沿直线射向地面B.相对于预定地面向东偏转 C.相对于预定点稍向西偏转D.相对于预定点稍向北偏转 3. 有一匀强磁场,磁感应强度大小为1.2T,方向由南指向北,如有一质子沿竖直向下的方向进入磁场,磁场作用在质子上的力为9.6×10-14N,则质子射入时速为 ,质子在磁场中向方向偏转。

活动二:阅读课本P97页,分析电视显像管工作原理 1、如右图所示,没有磁场时,电子束打在荧光屏上 点; 2、如果要是电子束打在A 点,偏转磁场应该沿什 么方向? 3、如果要是电子束打在B 点,偏转磁场应该沿什 么方向? 4、如果要使电子束打在荧光屏上的位置由B 逐渐向A 点移动,偏转磁场应该怎样变化? 5、显像管中使电子束偏转的磁场是由两对线圈产生的,叫做偏转线圈。为了与显像管的管颈贴在一起,偏转线圈做成 。 6、实际上在偏转区的水平方向和竖直方向都有偏转磁场,其方向、强弱都在不断变化,因此电子束打在荧光屏上的光点就像课本图 3.5-5那样不断移动,这在电视技术中叫做 。电子束从最上一行到最下一行扫描一遍叫 ,电视机中每秒要进行50场扫描,所以我们感觉整个荧光屏都在发光。 【同步检测】 1. 一个电子穿过某一空间而未发生偏转,则 ( ) A .此空间一定不存在磁场 B .此空间可能有方向与电子速度平行的磁场 C .此空间可能有磁场 ,方向与电子速度垂直 D .以上说法都不对 2. 如图所示,带电粒子所受洛伦兹力方向垂直纸面向外的是 ( ) 3. 电子以速度v 0垂直进入磁感应强度为B 的匀强磁场中,则 ( ) A .磁场对电子的作用力始终不做功 B .磁场对电子的作用力始终不变 C .电子的动能始终不变 D .电子的加速度始终不变 4.如图所示,空间有磁感应强度为B ,方向竖直向上的匀强磁场, 一束电子流以初速v 从水平方向射入,为了使电子流经过磁场时不偏 转(不计重力),则在磁场区域内必须同时存在一个匀强电场,这个 电场的场强大小与方向应是 ( ) A .B/v ,方向竖直向上 B .B/v ,方向水平向左 C .Bv ,垂直纸面向里 D .Bv ,垂直纸面向外 第2题 第4题

磁场对运动电荷的作用

课题:3.6磁场对运动电荷的作用(3) 编印 审核高二物理组 课时安排: 课时 总第 课时 执教时间 【学习目标】理解几种仪器的工作原理。. 【重难点】速度选择器、回旋加速器 【自主学习】 一、速度选择器 如图所示,由于电子等基本粒子所受重力可忽略不计,运动方向相同而速率不同的正离子组成的离子束射入相互正交的匀强电场和匀强磁场所组成的场区,已知电场强度大小为E 、方向向下,磁场的磁感强度为B ,方向垂直于纸面向里,若粒子的运动轨迹不发生偏转(重力不计),必须满足平衡条件:Bqv =qE ,故v=E/B ,这样就把满足v=E/B 的粒子从速度选择器中选择了出来。带电粒子不发生偏转的条件跟粒子的质量、所带电荷量、电荷的性质均无关,只跟粒子的速 度有关,且对速度的方向进行选择。若粒子从图中右侧入射则不能穿出场区。 二、质谱仪 容器A 中含有电荷量相同而质量有微小差别的粒子,这些粒子从小孔S 1飘入下方电势差为U 的加速电场中,经加速电场后从小孔S 2进入速度选择器的带 电粒子,只有速度大小为v =1 B E 的粒子能做匀速直线运动,从小孔S 3进入磁感应强度为B 的匀磁场中做匀速圆周运动, 在经半个周期后,打在照相底片D 上,在底片上形成谱线 状的细条,叫做质谱线,根据质谱线的位置可以算出粒子的 质量。粒子进入加速电场时的速度很小,可以认为等于零。 粒子通过加速电场,根据动能定理在:2 1m v 2=q U , 粒子通过速度选择器,根据匀速运动条件有:v =1 B E 若测出粒子在偏转磁场中的轨道直径为d ,则又有:d =2r = 2qB mv 2=21B qB mE 2 所以,同位素的荷质比和质量分别为:m q =21B dB E 2;m =E 2B qdB 21。 三、回旋加速器 D 形盒状电极装在真空室中,整个真空室放在磁极之间,磁场方向 垂直于D 形盒,两个D 形盒之间留一个窄缝,两极分别与高频电源的 两极相连。当粒子经过D 形电极之间的窄缝处的电场时,得到高频电压 的加速,在D 形盒内,由于屏蔽作用,盒内只有磁场分布,这样带电粒 子在D 形盒内沿螺线轨道运动,达到预期的速率后,用引出装置引出。

第2节 磁场中的运动电荷

第2节磁场中的运动电荷 1.通过实验,认识运动电荷在磁场中受到的洛伦兹力. 2.知道影响洛伦兹力大小和方向的因素.当电荷的运动方向与磁场方向垂直时,会运用左手定则判断洛伦兹力的方向,会计算特殊情况下洛伦兹力的大小.(重点+难点) 3.知道电子是由汤姆孙发现的.认识洛伦兹力在发现电子中的作用. 4.了解极光产生的机理,体会自然界的奥妙. 一、洛伦兹力 1.定义:磁场对运动电荷的作用力叫洛伦兹力. 2.方向:洛伦兹力的方向用左手定则来判断:伸开左手,使拇指与其余四指垂直,且处于同一平面内.让磁感线垂直穿入手心,四指指向正电荷运动的方向(若是负电荷,则四指指向负电荷运动的反方向),拇指所指的方向就是洛伦兹力的方向. 3.大小 (1)当电荷的运动方向与磁场方向垂直时,电荷受到的洛伦兹力的大小:F=qvB. (2)当电荷的运动方向与磁场方向平行时,电荷不受洛伦兹力作用F=0. 所有电荷在磁场中都受力吗? 提示:不一定,只有运动电荷且速度与磁场方向不平行时,才受力的作用. 二、电子的发现 电子的发现与X射线和物质放射性的发现一起被称为19世纪、20世纪之交的三大发现.电子的发现为近代物理的发展奠定了重要的实验基础,同时它也突破了原子不可再分的传统思想,促使人们去探寻原子内部的奥秘. 三、极光的解释 太阳或其他星体时刻都有大量的高能粒子放出,称为宇宙射线.地球是个巨大的磁体,当宇宙射线掠过地球附近时,带电粒子受到地磁场的作用朝地球的磁极方向运动.这些粒子在运动过程中撞击大气,激发气体原子产生光辐射,这就是极光. 宇宙射线是有害的,地磁场改变了宇宙射线中带电粒子的运动方向,对地球上的生命起到了保护作用. 对洛伦兹力的理解和方向判断 1.决定洛伦兹力方向的因素有三个:电荷的电性(正、负)、速度方向、磁感应强度的方向.当电荷一定(电性一定)时,其他两个因素中,如果只让一个因素相反,则洛伦兹力方向必定相反;如果同时让两个因素相反,则洛伦兹力方向不变. 2.当电荷运动方向与磁场方向垂直时,由左手定则可知,洛伦兹力F的方向既与磁场B的方向垂直,又与电荷的运动方向垂直,即力F垂直于v与B所决定的平面. 所以,已知电荷电性及v、B的方向,则F的方向唯一确定,但已知电性及B(或v)、F的方向,v(或B)的方向不能唯一确定. 命题视角1对洛伦兹力的理解 关于洛伦兹力的下列说法中正确的是() A.洛伦兹力的方向总是垂直于磁场方向但不一定垂直电荷运动的方向

磁场对运动电荷的作用力

第四节磁场对运动电荷的作用力 学习目标:1.知道磁场对电流作用实质是磁场对运动电荷作用的宏观表现。 2.能根据安培力的表达式F=BIL推导洛仑兹力的表达式f=qvB,培养学生的推理能 力和知识迁移能力。并能够应用公式进行简单计算。 3.理解洛仑兹力的方向由左手定则判定,并会用左手定则熟练地判定。 重、难点:洛仑兹力产生、大小、方向、特点。 【导学过程】 ◇课前预习◇ 一、相关知识点的回顾 1.磁场对电流的作用力叫安培力,安培力的大小与哪些因素有关?写出安培力的表达式。2.安培力的方向怎样判断?左手定则的内容?安培力的方向与电流、磁场的方向有什么关系? 3.在第二章我们曾经学过电流,电流的大小是怎样定义的?电流的流向与电荷的运动方向有怎样的关系 二、预习能掌握的内容 1.阴极射线是一束高速运动的(“质子”、“电子”)流。课文中实验发现阴极射线在磁场中发生偏转说明。我们把这个力叫。 2.通电导线受到的安培力,实际上是洛仑兹力的。 3.与安培力方向判断类似,洛仑兹力的方向判断也用。 4.在宏观图中画出安培力的方向,在微观图中画出洛仑兹力的方向。(思考:如果是电子定向移动,在微观图上怎样画电荷的速度、洛仑兹力方向)。体会左手定则判断洛仑兹力方法。 宏观微观 ◇课堂互动◇ 一、洛仑兹力的定义 【探究活动】观察实验演示阴极射线在磁场中的偏转现象。 ⅰ)不加磁场 ⅱ)射线与磁场垂直 总结:⑴叫洛仑兹力。 ⑵安培力是大量电荷所受的宏观体现。

二、洛仑兹力的大小 【探究讨论】如何定量描述洛仑兹力的大小?可以建立如下的电流物理模型,推导出洛伦兹力的计算式: 设有一段长度为L 的通电导线,横截面积为S ,导线每单位体积中含有的自由电荷数为n , 每个自由电荷的电量为q ,定向移动的平均速率为v ,将这段导线垂直于磁场方向放入磁感应强度B 的匀强磁场中 1.这段导线中电流I 的微观表达式是多少? I= 2.这段导体所受的安培力为多大? F= 3.这段导体中含有多少自由电荷数? N= 4.每个自由电荷所受的洛伦兹力大小为多大? f= 问: ①f=qvB 的适用条件如何? ②当电荷速度V 的方向与磁感应强度B 的方向平行时,洛伦兹力f 又怎样? ③运动电荷在磁场中一定受洛仑兹力的作用吗?为什么?(实验观察阴极射线 v ∥B 现象) 总结:①当电荷运动方向与磁场方向平行时, 。 ②当电荷运动方向与磁场方向垂直时, 。 【例1】电子的速率v =3×106 m/s ,垂直射入B =0.10 T 的匀强磁场中,它受到的洛伦兹力是多 大? 【例2】下列说法正确的是:( ) A 、运动电荷在磁感应强度不为零的地方,一定受到洛仑兹力的作用 B 、运动电荷在某处不受洛仑兹力,则该处的磁感应强度一定为零 宏观 微观 v +q

磁场对电流的作用

《磁场对电流的作用》教案 教学目标 知识与能力 1.知道磁场对通电导体有作用力。 2.知道通电导体在磁场中受力的方向与电流方向和磁感应线方向有关,改变电流方向或改变磁感线方向,导体的受力方 向随着改变。 3.知道通电线圈在磁场中转动的道理。 4.知道通电导体和通电线圈在磁场中受力而运动,是消耗了电能,得到了机械能。 5.培养学生观察能力和推理、归纳、概括物理知识的能力。 过程与方法 培养学生理论联系实际的意识 感态度与价值观 通过了解物理知识如何转化成实际技术应用,进一步提高学习科学技术知识的兴趣。

教学重点、难点 重点 1磁场对通电的导体有力的作用 2通电的导体的受力方向跟磁场方向和电流方向有关 难点 左手定则的运用 (二)教具 小型直流电动机一台,学生用电源一台,大蹄形磁铁一块,干电池一节,用铝箔自制的圆筒一根(粗细、长短与铅笔差不 多),两根铝箔条(用透明胶与铝箔筒的两端相连接),支架 (吊铝箔筒用),如课本图12—10的挂图,线圈(参见图12 —2),抄有题目的小黑板一块(也可用幻灯片代替)。 (三)教学过程 1复习相关知识并提问: 1.磁场的基本性质是它对放入其中的磁体产生()作用, 磁体间的相互作用就是通过()发生的。 2.将一根导线平行地放在静止的小磁针上方,当导线通电时, 发现小磁针(),说明电流周围存在()。

2.引入新课 本章主要研究电能:第一节和第二节我们研究了获得电能的原理和方法,第三节我们研究了电能的输送,电能输送到用电单位,要使用电能,这就涉及到用电器,以前我们研究了电灯、电炉、电话等用电器,今天我们要研究另一种用电器一电动机。 出示电动机,给它通电,学生看到电动机转动,提高了学习兴趣。 提问:电动机是根据什么原理工作的呢? 讲述:要回答这个问题,还得请同学们回忆一下奥斯特实验的发现—电流周围存在磁场,电流通过它产生的磁场对磁体施加作用力(如电流通过它的磁场使周围小磁针受力而转动)。根据物体间力的作用是相互的,电流对磁体施加力时,磁体也应该对电流有力的作用。下面我们通过实验来研究这个推断。 3.进行新课 (1)通电导体在磁场里受到力的作用 板书课题:〈第四节磁场对电流的作用〉

磁场对运动电荷的作用

磁场对运动电荷的作用 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

磁场对运动电荷的作用 对点训练:对洛伦兹力的理解 1.(多选)(2017·广东六校联考)有关电荷所受电场力和磁场力的说法中,正确的是() A.电荷在磁场中一定受磁场力的作用 B.电荷在电场中一定受电场力的作用 C.电荷受电场力的方向与该处的电场方向一致 D.电荷若受磁场力,则受力方向与该处的磁场方向垂直 解析:选BD带电粒子受洛伦兹力的条件:运动电荷且速度方向与磁场方向不平行,故电荷在磁场中不一定受磁场力作用,A项错误;电场具有对放入其中的电荷有力的作用的性质,B项正确;正电荷受力方向与电场方向一致,而负电荷受力方向与电场方向相反,C项错误;磁场对运动电荷的作用力垂直磁场方向且垂直速度方向,D项正确。 2.(多选)(2017·南昌调研)空间有一磁感应强度为B的水平匀强磁场,质量为m、电荷量为q的质点以垂直于磁场方向的速度v0水平进入该磁场,在飞出磁场时高度下降了h,重力加速度为g,则下列说法正确的是() A.带电质点进入磁场时所受洛伦兹力可能向上 B.带电质点进入磁场时所受洛伦兹力一定向下 C.带电质点飞出磁场时速度的大小为v0 D.带电质点飞出磁场时速度的大小为v02+2gh 解析:选AD因为磁场为水平方向,带电质点水平且垂直于磁场方向飞入该磁场,若磁感应强度方向为垂直纸面向里,利用左手定则,可以知

道若质点带正电,从左向右飞入瞬间洛伦兹力方向向上,若质点带负电,飞入瞬间洛伦兹力方向向下,A 对,B 错;利用动能定理mgh =12m v 2-12 m v 02,得v =v 02+2gh ,C 错,D 对。 对点训练:带电粒子在匀强磁场中的运动 3.如图所示,匀强磁场中有一电荷量为q 的正离子,由 a 点沿半圆轨道运动,当它运动到 b 点时,突然吸收了附近 若干电子,接着沿另一半圆轨道运动到c 点,已知a 、b 、c 在同一直线上,且ac =12 ab ,电子的电荷量为e ,电子质量可忽略不计,则该离子吸收的电子个数为( ) 解析:选D 正离子由a 到b 的过程,轨迹半径r 1= ab 2,此过程有q v B =m v 2 r 1 ,正离子在b 点附近吸收n 个电子,因电子质量不计,所以正离子的速度不变,电荷量变为q -ne ,正离子从b 到c 的过程中,轨迹半径r 2 =bc 2=34ab ,且(q -ne )v B =m v 2r 2,解得n =q 3e ,D 正确。 4.(2017·深圳二调)一个重力不计的带电粒子垂直进入匀强磁场,在与磁场垂直的平面内做匀速圆周运动。则下列能表示运动周期T 与半径R 之间的关系图像的是( ) 解析:选D 带电粒子在匀强磁场中做匀速圆周运动时,q v B =m v 2 R R =m v qB ,由圆周运动规律,T =2πR v =2πm qB ,可见粒子运动周期与半径无关,

运动电荷在磁场中的偏转

运动电荷在磁场中的偏转 针对运动电荷在磁场中的偏转这类问题的分析、解答,是高考命题中的一个热点,也是教学中的重点、难点。因为在这类问题中对物理过程的分析能力,电荷在磁场中:运动轨迹的想象能力均有较高的要求,因此在历届高考中考生的得分率都很低。为了更好地把握这类问题的教学,提高学生的解题能力,本文试就这类问题的题型特点及解答技巧作一些探讨。 高考要求:针对运动电荷在匀强磁场中偏转问题的复杂性,高考中只限于,带电微粒在匀强磁场中(只受 洛仑兹力)做匀速圆周运动,这种特殊情况的分析。 知识要求: (1)在匀强磁场中做匀速圆周运动所需向。心力由洛仑兹力充当:Bqv f =向 (2)粒子在磁场中运动时间的由来确定,式中的为粒子的速度偏转 角度,通常借助数学几 ωθ=t θ何中有关“四点共圆’’的知识来确定,为粒子旋转的角速 度,由来确定。ωm Bq =ω (3)圆心位置的确定:一般借助两确切位置速度垂线的交点;或一位置速度 的垂线和一条弦的中垂 线的交点,等办法来确定。 (4)轴道半径的确定:一般借助于几何知识或运用来确定。 Bq mv R = 这类问题的多样性和复杂性主要来源于轨道半径和圆心位置的确定上,因此,这两个方面即是重点,又是难点。下面我就这类问题中有关由已知条件的变化,而引起的题型变化情况来探讨这类问题的解题规律。 一、单一圆心位置型 这类题目的特点是:不仅V 、B 的大小确定,而且粒子进、出磁场时速度的方向也唯一确定。于是就可以利用粒子进、出磁场时作其速度的垂线来确定圆心的位置,这样它就具有确定的圆心位置和轨道半径,属于基础题型。 【例题1】如图:一束电子(电量为e)以速度垂直射入磁感应强度为B ,宽度为d 的匀 v 强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量和穿透磁 场的时间是多少. 【解析】电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆周的一部分,结合题目 的条件,在电子进入磁场的A 点和出磁场的B 点分别作其速度的垂线,其交点0即为圆心 分别作其速度的延长线得交点C ,由几何知识可知;AOBC 这四点共圆,于是有AB 弧对应的 圆心角,0B 为半径R , 又由几何知识可得;030=∠AOB d d R 230sin 0==由; 有; R mv Bev 2=v Bed m 2=由; , 有; v R t θωθ==v d t 3π=【例题2】如图,三个同样的带电粒子,分别以速度、 2v 和3v 沿水平方向从 1v 同一点射入同一匀强磁场中,且离开磁场时与水平边界线的夹角依次为, o 0190=θ,,(忽略粒子重力)试计算: 粒子在磁场中运动时间之比, 0260=θ0330=θ【解析】这道题目与例题(1)属于同一类型,粒子进、出磁场时速度的方向都唯一确 定。我们可以采用同样的方法,分别得出它们做圆周运动的圆心01、02、03的位置和对+应的偏转角900、600、300,由特征方程:,有;,由此可知,其运动的角速度相同.由, R m Bqv 2ω=m Bq =ωωθ=t

人教版物理选修1-1第二章第四节磁场对运动电荷的作用同步训练D卷(考试)

人教版物理选修1-1第二章第四节磁场对运动电荷的作用同步训练D卷(考试)姓名:________ 班级:________ 成绩:________ 一、选择题(共15小题) (共15题;共30分) 1. (2分) (2020高二下·大庆月考) 如图所示,直角坐标系xOy位于竖直平面内。第Ⅲ、Ⅳ象限内有垂直于坐标平面向外的匀强磁场,第Ⅳ象限同时存在方向平行于y轴的匀强电场(图中未画出),一带电小球从x轴上的A点由静止释放,恰好从P点垂直于y轴进入第Ⅳ象限,然后做匀速圆周运动,从Q点垂直于x轴进入第Ⅰ象限,Q点距O点的距离为d,重力加速度为g。根据以上信息,能求出的物理量有() A . 小球做圆周运动的动能大小 B . 电场强度的大小和方向 C . 小球在第Ⅳ象限运动的时间 D . 磁感应强度大小 【考点】 2. (2分) (2017高二上·福建期末) 两个带电粒子由静止经同一电场加速后垂直磁感线方向进入同一匀强磁场,两粒子质量之比为1:2.电量之比为1:2,则两带电粒子受洛仑兹力之比为() A . 2:1 B . 1:1 C . 1:2 D . 1:4 【考点】

3. (2分)(2018·杭州模拟) 在玻璃皿的中心放一个圆柱形电极,紧贴边缘内壁放一个圆环形电极,并把它们与电池的两极相连,然后在玻璃皿中放入导电液体,例如盐水.如果把玻璃皿放在磁场中,如图所示,.通过所学的知识可知,当接通电源后从上向下看() A . 液体将顺时针旋转 B . 液体将逆时针旋转 C . 若仅调换N、S极位置,液体旋转方向不变 D . 若仅调换电源正、负极位置,液体旋转方向不变 【考点】 4. (2分) (2020高二上·吉林期末) 带正电的甲、乙、丙三个粒子(不计重力)分别以v甲、v乙、v丙速度垂直射入电场和磁场相互垂直的复合场中,其轨迹如图所示,则下列说法正确的是() A . v甲

磁场对运动电荷的作用

年级:高复班授课时间:2015.01.14-15 授课教师:科目:物理课题磁场对运动电荷的作用 教学目标1.熟练掌握磁场对运动电荷的作用,理解洛伦兹力的特点,会计算洛伦兹力的大小,能用左手定则判断洛伦兹力的方向 2.熟练掌握带电粒子在匀强磁场中做圆周运动的规律,能对实际问题进行分析和计算 教学重点与难点 1.带电粒子在匀强磁场中运动的特点 2.带电粒子在匀强磁场中运动的极值问题 教学过程一、洛伦兹力 1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力. 2.洛伦兹力的方向 (1)判定方法 左手定则:掌心——磁感线穿过掌心; 四指——指向正电荷运动的方向或负电荷运动的反方向; 拇指——指向洛伦兹力的方向. (2)方向特点:F⊥B,F⊥v,即F垂直于B和v决定的平面(注意:洛伦兹力不做功).3.洛伦兹力的大小 (1)v∥B时,洛伦兹力F=0.(θ=0°或180°) (2)v⊥B时,洛伦兹力F=q v B.(θ=90°) 二、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动. (1)向心力由洛伦兹力提供:q v B= R v m 2 =2 ω mR; (2)轨道半径公式:R= m v qB; (3)周期:T= 2πR v= 2πm qB;(周期T与速度v、轨道半径R无关) (4)频率:f= R v π2 = m qB π2 ; (5)角速度:ω= 2π T=m qB . 三、带电粒子在匀强磁场中做匀速圆周运动的圆心、半径、运动时间的确定 1.圆心的确定 (1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图1所示,P为入射点,M为出射点,O 为轨道圆心.

运动电荷在磁场中受到的力——说课稿

《运动电荷在磁场中受到的力》说课稿 一.说教材分析 1. 物理学体系中本章是经典电磁学理论的基本内容,而本节课是安培力的延续,又是后面学习带电体在磁场中运动的基础,反应磁场和运动电荷的相互作用,是学生后面了解现代科技回旋加速器,质谱仪,磁流体发电机等的基础,还是力、电、磁综合问题分析中重要的一部分。从新课程改革以来,几乎每年高考都有涉及洛仑兹力的计算大题,由此,足以说明其重要性。 2. 教材结构:分三部分首先通过观察演示实验,讨论洛伦兹力的方向,这一部分是学生的一个实验探究活动。然后将安培力看作是大量运动电荷所受洛伦兹力的宏观表现,通过安培力公式导出洛伦兹力的公式,这一部分是学生的一个理论探究活动。最后,研究带电粒子在磁场中的运动,这一部分是学生的一个理论分析和实验验证的探究活动。 教材的这种安排,符合了新课程标准,起到了承上启下的作用,使物理学习能连续进行;符合学生的发展的要求;体现了教材重视课堂教学中的师生互动,学生自觉参与活动和学生合作探究的新课程教学理念。 二.说学情分析 1. 知识与能力基础 学生已具备力学、电磁学相关知识,学习完磁场对通电导线作用即安培力。并且也熟悉一直以来物理学的“提出问题—猜想假设—实验验证” 的科学探究方法。而且高二的学生已经有了一定的观察、分析、推理能力及空间想象能力,是学习洛仑兹力的能力基础 2. 思维障碍 对微观粒子具体运动形态模糊不清,容易导致洛伦兹力大小学习过程产生困难。 三.说教学目标: 知识与技能: 1. 通过实验,认识洛伦兹力,理解洛伦兹力跟安培力之间的关系。会判断洛伦兹力的方向。 2. 了解洛仑兹力公式的推导,会计算洛伦兹力的大小。 3. 会运用洛伦兹力对运动电荷不做功分析带电粒子垂直进入磁场中做匀速圆周运动,并能推导其半径和周期。 过程与方法 1. 观看“神奇的极光” 幻灯片,复习安培力,从微观的角度分析猜想磁场对运动的电荷有洛仑兹

磁场对运动电荷的作用试题

磁场对运动电荷的作用试题

————————————————————————————————作者:————————————————————————————————日期:

磁场对运动电荷的作用练习题 1.带电荷量为+q 的粒子在匀强磁场中运动,下列说法中正确的是( ) A .只要速度大小相同,所受洛伦兹力就相同 B .如果把+q 改为-q ,且速度反向,大小不变,则洛伦兹力的大小、方向均不变 C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子在只受到洛伦兹力作用下运动的动能、速度均不变 答案 B 2.如图1所示,匀强磁场的磁感应强度均为B ,带电粒子的速率均为v ,带电荷量均为q . 试求出图中带电粒子所受洛伦兹力的大小,并指出洛伦兹力的方向. 3.如图所示,半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出,若∠AOB =120°,则该带电粒子在磁场中运动的时间为( ) A.2πr 3v 0 B.23πr 3v 0 C.πr 3v 0 D.3πr 3v 0 答案 D 4.如图4所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM ∶ON =3∶4,则下列说法中错误的是 ( ) A .两次带电粒子在磁场中经历的时间之比为3∶4 B .两次带电粒子在磁场中运动的路程长度之比为3∶4 C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4 D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3 答案 AD

运动电荷在磁场中受到的力教学设计

高中物理教学设计 选修3-1第三章第5节《运动电荷在磁场中受到的力》 17号选手 2016年10月27日教师格言:因材施教、教学相长

第三章磁场 3.5 磁场对运动电荷的作用力 ★新课标要求 (一)知识与技能 1、知道什么是洛伦兹力。 2、利用左手定则会判断洛伦兹力的方向。 3、知道洛伦兹力大小的推理过程。 4、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 5、理解洛伦兹力对电荷不做功。 6、了解电视机显像管的工作原理。 (二)过程与方法 通过洛伦兹力大小的推导过程进一步培养学生的分析推理能力。 (三)情感、态度与价值观 让学生认真体会科学研究最基本的思维方法:“推理—假设—实验验证”★教学重点 1、利用左手定则会判断洛伦兹力的方向。 2、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 ★教学难点 1、理解洛伦兹力对运动电荷不做功。 2、洛伦兹力方向的判断。 ★教学方法 实验观察法、讲述法、分析推理法 ★教学用具: 电子射线管、电源、磁铁、投影仪、投影片 一、引入新课 教师:让全体同学

1,观看东方卫视的极光视频, 2、观看磁场对示波器图像的影响。 [演示实验]用阴极射线管研究磁场对运动电荷的作用。如图3.5-1 教师:说明电子射线管的原理: 从阴极发射出来电子,在阴阳两极间的高压作用下,使电子 加速,形成电子束,轰击到长条形的荧光屏上激发出荧光,可以 显示电子束的运动轨迹。 学生:观察实验现象。 实验结果:在没有外磁场时,电子束沿直线运动,将蹄形磁 铁靠近阴极射线管,发现电子束运动轨迹发生了弯曲。 学生分析得出结论:磁场对运动电荷有作用。 二、进行新课 1、洛伦兹力的方向 教师讲述:通电导线在磁场中所受到的力叫安培力,电荷的定向移动形成电流,运动电荷在磁场中受到的作用力称为洛伦兹力, 推理和猜想:安培力是洛伦兹力的宏观表现,洛伦兹力是安培力的微观本质问题:安培力的方向用左手定则判定,那么洛伦兹力的方向能不能也用左手定则来判定呢? 实验验证:(投影) 学生观察 结论:洛伦兹力的方向也用左手定则来判定 左手定则:伸开左手,使大拇指跟其余四个手指垂直, 并且都和手掌在一个平面内,让磁感线垂直穿入手心,并使伸开的四指指向正电荷运动的方向,那么,大拇指所指的方向就是运动的正电荷在磁场中所受洛伦兹力的方向。 如果运动的是负电荷,则四指指向负电荷运动的反方向,那么拇指所指的方向就是负电荷所受洛伦兹力的方向。 回到导学案:

磁场对运动电荷的作用

磁场对运动电荷的作用 1.洛伦兹力的方向:用左手定则判定 (1)让磁感线穿过左手的手心,四指指向正电荷的运动方向(或负电荷运动的相反方向),则拇指指的方向就是洛伦兹力的方向。 (2)洛伦兹力的方向既垂直于磁感应强度方向,同时也垂直于电荷运动的方向。 (3)洛伦兹力永远与电荷速度方向垂直,故洛伦兹力对电荷永远不做功。 2.洛伦兹力的大小; (1)当电荷运动速度v的方向与磁感应强度B的方向垂直时,f=qvB。 (2)当电荷运动速度v的方向与孩感应强度B的方向平行时,f=0。 (3)当电荷相对磁场静止时,f=0 (二)带电粒子的圆周运动 1.若带电粒子以一定的速度与磁场方向垂直进人匀强磁场,洛伦兹力f充当向心力,它一定做匀速圆周运动。 2.轨道半径 (l)由qvB=mv2/R(=mω2R=m(2πm/T)2R)得轨迢半径为: R=mv/qB (ω=qB/m,T=2πm/q B) (2)由运动轨迹确定轨道半径的方法;带电粒子在射入和射出匀强磁场两处所受洛伦兹力的延长线一定交于圆心,由圆心和轨迹运用几何知识来确定半径。 (3)运动周期: T=2πmR/v=2πm/qB 带电粒子的运动周期跟粒子的质荷比m/q成正比,跟兹感应强度B成反比,与粒子运动的速率和轨道半径无关。 (一)选择题 1.关于洛伦兹力的下列说法中正确的是 A洛伦兹力的方向总是垂直于磁场方向和电荷运动方向所在的平面。 B.洛伦兹力的方向总是垂直于电荷速度方向,所以它对电荷永远不做功。 C.在磁场中,静止的电荷不受洛伦兹力,运动的电荷一定受洛伦兹力。 D运动电行在某处不受洛伦兹力,则该处的磁感应强度一定为零。 2.如图7-27所示,有一磁感应强度为B,方向竖直向上的匀强磁 场,一束电子流以速度V从水平方向射入,为了使电子流经过磁场时 不发生偏转(不计重力),则磁场区域内必须同时存在一个匀强电场, 这个电场的场强大小和方向是 A.B/v,竖直向上B.B/v,水平向左 C.B/v,垂直纸面向里D.Bv,垂直纸面向外 图7-27 3.一带电粒子(不计重力)以初速度v0。垂直进入匀强磁场中,则 A磁场对带电粒子的作用力是恒力B.磁场对带电粒子的作用力不做功 C.带电粒子的动能不变化 D.带电粒子的动量不发生变化 4.在长直螺线管中,通以交流电,一个电子沿螺线管的轴线方向以初速度v射入长螺线管中,电子在螺线管中的运动情况是 A.做匀速直线运动 B. 沿螺线管轴线做匀加速直线运动 C.沿螺线管轴线做往复运动D.可能沿螺线管轴线做匀减速运动

《磁场对运动电荷的作用力》学案

第五节磁场对运动电荷的作用力 学习目标 1、知道什么是洛伦兹力。 2、利用左手定则会判断洛伦兹力的方向,理解洛伦兹力对电荷不做功。 3、掌握洛伦兹力大小的推理过程。 4、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 5、了解电视机显像管的工作原理。 学习重点 1、利用左手定则会判断洛伦兹力的方向。 2、掌握垂直进入磁场方向的带电粒子,受到洛伦兹力大小的计算。 学习难点 1、理解洛伦兹力对运动电荷不做功。 2、洛伦兹力方向的判断。 自主学习 1.运动电荷在磁场中受到的作用力,叫做。 2.洛伦兹力的方向的判断──左手定则: 让磁感线手心,四指指向的方向,或负电荷运动的,拇指所指电荷所受的方向。 3.洛伦兹力的大小:洛伦兹力公式。 4.洛伦兹力对运动电荷,不会电荷运动的速率。 5.显像管中使电子束偏转的磁场是由两对线圈产生的,叫做偏转线圈。为了与显像管的管颈贴在一起,偏转线圈做成。 同步导学 例1.试判断图中所示的带电粒子刚进入磁场时所受的洛伦兹力的方向.

解答:甲中正电荷所受的洛伦兹力方向向上;乙中正电荷所受的洛伦兹力方向向下;丙中正电荷所受的洛伦兹力方向垂直于纸面指向读者;丁中正电荷所受的洛伦兹力的方向垂直于纸面指向纸里。 例2:来自宇宙的电子流,以与地球表面垂直的方向射向赤道上空的某一点,则这些电子在进入地球周围的空间时,将 ( ) A .竖直向下沿直线射向地面 B .相对于预定地面向东偏转 C .相对于预定点稍向西偏转 D .相对于预定点稍向北偏转 解答:。地球表面地磁场方向由南向北,电子是带负电,根据左手定则可判定,电子自赤道上空竖直下落过程中受洛伦兹力方向向西。故C 项正确 例3:如图3所示,一个带正电q 的小带电体处于垂直纸面向里的匀强磁场中,磁感应强度为B ,若小带电体的质量为m ,为了使它对水平绝缘面正好无压力,应该( ) A .使 B 的数值增大 B .使磁场以速率 v =mg qB ,向上移动 C .使磁场以速率v =mg qB ,向右移动 D .使磁场以速率v =mg qB ,向左移动 解答:为使小球对平面无压力,则应使它受到的洛伦兹力刚好平衡重力,磁场不动而只增大B ,静止电荷在磁场里不受洛伦兹力, A 不可能;磁场向上移动相当于电荷向下运动,受洛伦兹力向右,不可能平衡重力;磁场以V 向右移动,等同于电荷以速率v 向左运动,此时洛伦兹力向下,也不可能平衡重力。故B 、C 也不对;磁场以V 向左移动,等同于电荷以速率 v 向右运动,此时洛伦兹力向上。当 qvB =mg 时,带电体对绝缘水平面无压力,则v =mg qB ,选项 D 正确。 例4: 单摆摆长L ,摆球质量为m ,带有电荷+q ,在垂直于纸面向里的磁感应强度为B 的匀强磁场中摆动,当其向左、向右通过最低点时,线上拉力大小是否相等? 解答:摆球所带电荷等效于一个点电荷,它在磁场中摆动时受到重力mg ,线的拉力F 与洛伦兹力F ′,由于只有重力做功,故机械能守恒,所以摆球向左、向右通过最低点时的 图3

磁场对电荷的作用

磁场对电荷的作用 1.初速度为v 0的电子沿平行于通电长直导线的方向射出,直导线中电 流方向与电子初始运动方向如图所示,则( ) A.电子将向右偏转,速率不变 B.电子将向左偏转,速率改变 C.电子将向左偏转,速率不变 D.电子将向右偏转,速率改变 2.如图所示,水平绝缘面上一个带电荷量为+q 的小带电体处 于垂直于纸面向里的匀强磁场中,磁感应强度为B ,小带电体的质 量为m .为了使它对水平绝缘面正好无压力,应该( ) A.使B 的数值增大 B.使磁场以速率v =mg qB 向上移动 C.使磁场以速率v =mg 向右移动 D.使磁场以速率v =mg 向左移动 3.一m 1∶m 2=1A.B.C.D.4.A.B.C.D.5.磁场中(中,圆环运动的速度图象可能是下图中的( ) 6.一个带电粒子沿垂直于匀强磁场的方向射入云室中.粒子的一段径迹如 图所示,径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的气体电 离,因而粒子的能量逐渐减小(带电荷量不变).从图中情况可以确定粒子的运动 方向和带电情况分别为( ) A.粒子从a 运动到b ,带正电 B.粒子从a 运动到b ,带负电 C.粒子从b 运动到a ,带正电 D.粒子从b 运动到a ,带负电 7.如图甲所示,在屏MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂 直纸面向里,P 为屏上的一小孔,PC 与MN 垂直.一群质量为m 、带 电荷量为-q 的粒子(不计重力)以相同的速率v 从P 处沿垂直于磁 场的方向射入磁场区域,粒子的入射方向在与磁场B 垂直的平面 内,且散开在与PC 夹角为θ的范围内.求在屏MN 上被粒子打中 的区域的长度.

《课堂新坐标》2014届高考物理一轮复习配套word版文档:第八章 第2讲 磁场对运动电荷的作用

第2讲 磁场对运动电荷的作用 (对应学生用书第141页) 洛伦兹力的方向和大小 1.洛伦兹力:磁场对运动电荷的作用力. 2.洛伦兹力的方向 (1)判断方法:左手定则 ???? ? 磁感线垂直穿过掌心四指指向正电荷运动的方向拇指指向正电荷所受洛伦兹力的方向 (2)方向特点:f ⊥B ,f ⊥v .即f 垂直于B 和v 决定的平面.(注意:B 和v 不一定垂直). 3.洛伦兹力的大小 f =q v B sin_θ,θ为v 与B 的夹角,如图8-2-1所示. 图8-2-1 (1)v ∥B 时,θ=0°或180°,洛伦兹力f =0. (2)v ⊥B 时,θ=90°,洛伦兹力f =q v B . (3)v =0时,洛伦兹力f =0. (1)判断洛伦兹力的方向一定要分清电荷的正、负. (2)应用公式f =q v B 计算洛伦兹力,一定要注意公式的条件. 【针对训练】 1.带电荷量为+q 的粒子在匀强磁场中运动,下列说法中正确的是( ) A .只要速度大小相同,所受洛伦兹力就相同 B .如果把+q 改为-q ,且速度反向,大小不变,则洛伦兹力的大小、方向均不变 C .洛伦兹力方向一定与电荷速度方向垂直,磁场方向一定与电荷运动方向垂直 D .粒子在只受到洛伦兹力作用下运动的动能、速度均不变 【解析】 因为洛伦兹力的大小不但与粒子速度大小有关,而且与粒子速度的方向有关,如当粒子速度与磁场垂直时F =q v B ,当粒子速度与磁场平行时F =0.又由于洛伦兹力的方向永远与粒子的速度方向垂直,因而速度方向不同时,洛伦兹力的方向也不同,所以A 选项错.因为+q 改为-q 且速度反向,由左手定则可知洛伦兹力方向不变,再由F =q v B 知

高中物理选修3-1 磁场对运动电荷的作用力例题解析

磁场对运动电荷的作用力·典型例题解析 【例1】图16-49是表示磁场磁感强度B,负电荷运动方向v和磁场对电荷作用力f的相互关系图,这四个图中画得正确的是(B、v、f两两垂直) [ ] 解答:正确的应选A、B、C. 点拨:由左手定则可知四指指示正电荷运动的方向,当负电荷在运动时,四指指示的方向应与速度方向相反. 【例2】带电量为+q的粒子,在匀强磁场中运动,下面说法中正确的是 [ ] A.只要速度大小相同,所受洛伦兹力就相同 B.如果把+q改为-q,且速度反向且大小不变,则洛伦兹力的大小、方向均不变 C.只要带电粒子在磁场中运动,它一定受到洛伦兹力作用 D.带电粒子受到洛伦兹力越小,则该磁场的磁感强度越小 解答:正确的应选B. 点拨:理解洛伦兹力的大小、方向与哪些因素有关是关键. 【例3】如果运动电荷除磁场力外不受其他任何力的作用,则带电粒子在磁场中作下列运动可能成立的是 [ ] A.作匀速直线运动 B、作匀变速直线运动 C.作变加速曲线运动 D.作匀变速曲线运动 点拨:当v∥B时,f=0,故运动电荷不受洛伦兹力作用而作匀速直线运动.当v与B不平行时,f≠0且f与v恒垂直,即f只改变v的方向.故运动电荷作变加速曲线运动. 参考答案:AC 【例4】如图16-50所示,在两平行板间有强度为E的匀强电场,方向竖直向下,一带电量为q的负粒子(重力不计),垂直于电场方向以速度v飞入两板间,为了使粒子沿直线飞出,应在垂直于纸面内加一个怎样方向的磁场,其

磁感应强度为多大? 点拨:要使粒子沿直线飞出,洛伦兹力必须与电场力平衡. 参考答案:磁感应强度的方向应垂直于纸面向内,大小为E/v 跟踪反馈 1.关于带电粒子所受洛伦兹力f、磁感应强度B和粒子速度v三者方向之间的关系,下列说法正确的是 [ ] A.f、B、v三者必定均保持垂直 B.f必定垂直于B、v,但B不一定垂直于v C.B必定垂直于f、v,但f不一定垂直于v D.v必定垂直于f、B,但f不一定垂直于B 2.下列说法正确的是 [ ] A.运动电荷在磁感应强度不为零的地方,一定受到洛伦兹力作用 B.运动电荷在某处不受洛伦兹力作用,则该处的磁感应强度一定为零 C.洛伦兹力既不能改变带电粒子的动能,也不能改变带电粒子的动量 D.洛伦兹力对带电粒子不做功 3.如图16-51所示的正交电场和磁场中,有一粒子沿垂直于电场和磁场的方向飞入其中,并沿直线运动(不考虑重力作用),则此粒子 [ ] A.一定带正电 B.一定带负电 C.可能带正电或负电,也可能不带电 D.一定不带电 4.如图16-52所示,匀强电场方向竖直向下,匀强磁场方向水平向里,有一正离子恰能沿直线从左到右水平飞越此区域,则

磁场对电流的作用教学设计

磁场对电流的作用教学设计 教学目标: 知识与技能知道磁场对通电导线有力的作用. 知道磁场对通电导线的作用力方向跟磁场方向和电流方向有关. 过程与方法培养学生理论联系实际的意识. 情感、态度与价值观通过了解物理知识如何转化成实际技术应用,进一步提高学习科学技术知识的兴趣。 教学重点: 通电导线在磁场中要受到力的作用。 教学过程 复习相关知识并提问: 1.磁场的基本性质是它对放入其中的磁体产生( ) 作用,磁体间的相互作用就是通过() 发生的。 2. 将一根导线平行地放在静止的小磁针上方,当导线通电时,发现小磁针( ) ,说明电流周围存在( ) 。 演示实验: 演示直流电动机通电转动 提出问题: 1. 电动机为什么会转动呢? 2. 奥斯特实验证明了什么? 通电导体周围存在磁场,并通过磁场使小磁针偏转,即电流对磁体有力的作用。

启发学生: 磁场对电流有没有力的作用呢? 实验: (1) 介绍实验装置,并连接好。渗透设计思想,明确实验研究对象是铜棒。 (2) 让学生明确实验目的,即磁场能否让通电后的铜棒运动。 (3) 实验条件逐步演示并观察实验现象,完成记录表格。 1 静止的铜棒通电后发生什么现象?原因是什么?运动受力 2 铜棒的运动方向、电流的方向和磁感线方向的角度关系? 互相垂直 3 不改变磁场方向而改变电流的方向,铜棒运动方向如何? 改变方向 4 不改变电流的方向,而改变磁场方向,铜棒运动方向怎样?改变方向 (4) 学生根据实验现象,分析得出结论。 通电导体在磁场中受到力的作用。力的方向,电流的方向和磁场线的方向互相垂直。通电导体在磁场里受力的方向跟电流的方向和磁感线的方向有关。 左手定则 伸开左手,使大拇指与四指在同一平面内并跟四指垂直,让磁感线垂直穿入手心,使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受磁力的方向。

相关主题
文本预览
相关文档 最新文档