高数不定积分
- 格式:pptx
- 大小:635.28 KB
- 文档页数:31
考研高数讲义高数第四章不定积分上课资料考研高数讲义高数第四章不定积分上课资料编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(考研高数讲义高数第四章不定积分上课资料)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为考研高数讲义高数第四章不定积分上课资料的全部内容。
第四章 不定积分⎧⎪⎧⎪⎪⎪⎨⎪→→⎨⎪⎩⎪⎪⎪⎪⎩性质第一类换元法计算第二类换元法原函数不定积分分部积分法简单分式的积分分段函数的积分1第一节 不定积分的概念与性质一、原函数的定义原函数:若对于,有或,称为在区间内的原函数。
I x ∈∀∈)()(x f x F='dx x f x dF )()(=)(x F )(x f I2原函数存在定理:连续函数必有原函数-—即若在上连续,则必存在,使得当时,。
)(x f I )(x F x∈I )()(x f x F='3【例1】设是在上的一个原函数,则在上( )(A )可导 (B )连续(C)存在原函数 (D)是初等函数 【答案】(C ))(x F )(x f (,)a b ()()fx F x(,)a b4【例2】(92二)若的导函数是,则有一个原函数为(A ). (B )。
(C )。
(D). 【答案】(B ))(x f x sin )(x f x sin 1+x sin 1-x cos 1+x cos 1-5二、不定积分的定义不定积分:在区间内,的带有任意常数I )(x f6项的原函数称为在区间内的不定积分,记为:,即 计算方法:求函数的不定积分,只要求得它的一个原函数,加上任意常数即可。
C x F+)()(x f I ⎰dx x f )(⎰+=C x F dx x f )()(C不定积分的几何意义:一个原函数对应于一条积分曲线;不定积分对应于积分曲线簇-—无穷多条积分曲线,被积函数对应于切线的斜率——同一横坐标处切线平行。
高数不定积分24个基本公式高数不定积分24个基本公式是数学学科中的重要内容。
这些基本公式涉及到多种函数的不定积分,如多项式函数、指数函数、对数函数、三角函数等。
这些公式可以方便地帮助我们求得复杂函数的不定积分。
其中一些基本公式包括:1.$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$2.$\int\frac{1}{x}dx=\ln|x|+C$3.$\int e^x dx=e^x+C$4.$\int\frac{1}{1+x^2}dx=\arctan x+C$5.$\int\cos x dx=\sin x+C$6.$\int\sin x dx=-\cos x+C$7.$\int\sec^2x dx=\tan x+C$8.$\int\csc^2x dx=-\cot x+C$9.$\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$10.$\int\frac{1}{\sqrt{x^2+1}}dx=\ln|x+\sqrt{x^2+1}|+C$11.$\int\ln x dx=x\ln x-x+C$12.$\int e^{ax}\cos bx dx=\frac{e^{ax}}{a^2+b^2}(a\cos bx+b\sin bx)+C$13.$\int e^{ax}\sin bx dx=\frac{e^{ax}}{a^2+b^2}(a\sin bx-b\cos bx)+C$14.$\int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C$15.$\int\frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C$16.$\int\frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C$17.$\int\frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln\frac{a+x}{a-x}+C$18.$\int\frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln\frac{a+x}{a-x}+C$19.$\int\frac{1}{\cos^2x}dx=\tan x+C$20.$\int\frac{1}{\sin^2x}dx=-\cot x+C$21.$\int\frac{x}{\sqrt{a^2+x^2}}dx=\sqrt{a^2+x^2}-a\ln\left|x+\sqrt{a^2+x^2}\right|+C$22.$\int x\sin ax dx=-\frac{1}{a}x\cosax+\frac{1}{a^2}\sin ax+C$23.$\int x\cos ax dx=\frac{1}{a}x\sinax+\frac{1}{a^2}\cos ax+C$24.$\int\frac{1}{\sqrt{x^2+a^2}}dx=\ln|x+\sqrt{x^2+a^2}|+C$这24个基本公式对于高数学科的学习非常重要,我们可以通过多次练习和应用,熟练地掌握这些公式,提高自己在高数学科中的成绩和水平。
高数积分总结一、不定积分1、不定积分的概念也性质定义1如果在区间I上,可导函数F (x)的导函数为f(x),即对任一x I , 都有F'(x)=f(x) 或dF(x)=f(x)dx,那么函数F(x) 就称为f(x)( 或f(x)dx) 在区间I 上的原函数。
定义2:在区间I上,函数f (x)的带有任意常数项的原函数称为f (x)(或者f(x)dx )在区间I上的不定积分,记作f(x)dx 。
性质1:设函数f(x) 及g(x) 的原函数存在,则[ f(x) g ( x)] dx f (x)dx g(x)dx 。
性质2:设函数f(x) 的原函数存在,k 为非零常数,则kf(x)dx k f (x)dx 。
2、换元积分法(1) 第一类换元法:定理1:设f(u) 具有原函数,(x) 可导,则有换元公式f[ (x)] '(x)dx [ f( )d ] 。
其中1(x)是 x (t)的反函数。
例:: dx求2 2x a(a 0) 解 •/ 1 tan 21 sec 2t , 设xta nt2t-,那么x 2a 2、a 2a 2tan 2t a\ 1asect,dx asec f tdt ,•/ sectdx2 2x a2 .a sec t1( dt asectdx22x adx22■- x a2 2——,且 sect tant 0 ar~22\ x aIn sect sectdttant CC ln(x > x 2 a 2) C 1 , C 1C ln a例:求 2cos2xdx解 2cos2xdx cos2x?2dx cos2x?(2x)'dx cos d 将 2x 代入,既得2cos2xdx sin2x C(2)第二类换元法:定理2:设x (t)是单调的、可导的函数,并且'(t) 0.又设f[ (t)] '(t)具有原函数,则有换元公式f(x)dx [ f[ (t)] '(t)dt]t i (x)于是tan 213、分部积分法 定义:设函数 (x)及 (x)具有连续导数。
积 分 整个高数课本整个高数课本整个高数课本,,我们一共学习了不定积分我们一共学习了不定积分,,定积分,重积分重积分((二重二重,,三重三重),),),曲线积分曲线积分曲线积分((两类两类),),),曲面积分曲面积分曲面积分((两类两类).).).在此在此在此,,我们对积分总结积分总结,,比较比较,,以期同学们对积分有一个整体的认识以期同学们对积分有一个整体的认识. .一、不定积分一、不定积分一、不定积分不定积分是微分的逆运算不定积分是微分的逆运算不定积分是微分的逆运算,,其计算方法、各种技巧是我们后面各种积分计算的基础,希望同学们熟记积分公式,及各种方法方法((两类换元两类换元,,分部积分分部积分,,有理函数积分等有理函数积分等) )二、定积分二、定积分二、定积分1. 1.定义式定义式定义式::()baf x dx ò2. 2.定义域定义域定义域::一维区间一维区间,,例如[,]a b3. 3.性质性质性质::见课本P 229-P 232特殊特殊::若1f =,则()baf x dx b a =-ò,即区间长度即区间长度.. 4. 4.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性. .注意注意注意::定积分中积分变量可以任意替换即()()bbaaf x dx f y dy =òò,而不定积分不具有这种性质而不定积分不具有这种性质.. 5. 5.积分方法积分方法积分方法::与不定积分的方法相同与不定积分的方法相同. . 6. 6.几何应用几何应用几何应用: : 定积分的几何意义定积分的几何意义定积分的几何意义: :()baf x dx ò表示以()f x 为顶与x 轴所夹区域面积的代数和轴所夹区域面积的代数和((注意如()0f x <,则面积为负则面积为负); ); 其他应用其他应用其他应用::如()f x 表示截面积表示截面积,,则积分为体积则积分为体积;;平面弧长2()1[()]b af x y x dx ¢+ò等.三、二重积分三、二重积分三、二重积分 1. 1.定义式定义式定义式: :(,)xyD f x y d s òò2. 2.定义域定义域定义域::二维平面区域二维平面区域3. 3.性质性质性质::见下册课本P 77 特殊特殊: : : 若若1f =,则(,)xyD f x y dxdy S =òò,即S 为x y D 的面积的面积. .4.4.坐标系坐标系坐标系: :①直角坐标系①直角坐标系::X 型区域型区域,,Y 型区域型区域 ②极坐标系②极坐标系::适用范围为圆域或扇形区域,注意坐标转换后不要漏掉r ,积分时一般先确定q 的范围的范围,,再确定r 的范围的范围. . 5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性((见后见后),),),质心质心质心; ; 6.6.几何应用几何应用几何应用: : 二重积分的几何意义二重积分的几何意义::若(,)0f x y ³,则(,)xyD f x y dxdy òò表示以(,)f x y 为顶以x y D 为底的曲顶柱体体积为底的曲顶柱体体积; ;其他应用其他应用::求曲面(,)z z x y =的面积221xyx y D z z dxdy ++òò四、三重积分四、三重积分 1.1.定义式定义式(,,)f x y z d v Wòòò2.2.定义域定义域定义域::三维空间区域三维空间区域; ;3.3.性质性质性质::与二重积分类似与二重积分类似; ; 特殊特殊特殊: : : 若若1f =,则(,,)f x y z d v V W=òòò,其中V 表示W 的体积的体积. .4.4.坐标系坐标系坐标系: :①直角坐标系①直角坐标系::投影法投影法,,截面法截面法((一般被积函数有一个自变量,而当该变量固定时所得截面而当该变量固定时所得截面 积易求时采用积易求时采用) ) ②柱坐标系②柱坐标系②柱坐标系::积分区域为柱形区域积分区域为柱形区域,,锥形区域锥形区域,,抛物面所围区域时可采用抛物面所围区域时可采用; ;③球坐标系③球坐标系③球坐标系::积分区域为球域或与球面相关的区域时,确定自变量范围时确定自变量范围时,,先q ,后j ,最后最后r .5. 5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性((见后见后),),),质心等质心等质心等. .6. 6.应用应用应用: : (,,)f x y z 表示密度表示密度,,则(,,)f x y z d v Wòòò为物体质量为物体质量.(.(.(不考虑几何意义不考虑几何意义不考虑几何意义) )五、第一类曲线积分五、第一类曲线积分1.1.定义式定义式定义式::(,)Lf x y ds ò(二维二维) ) |(,,)Lf x y z ds ò(三维三维) )2.2.定义域定义域定义域::平面曲线弧平面曲线弧 | 空间曲线弧空间曲线弧空间曲线弧3.3.性质性质性质::见课本P 128 特殊特殊特殊: : 1f =则Lfds s =ò,s 表示曲线弧长表示曲线弧长. .4.4.计算公式计算公式计算公式((二维为例二维为例): ):22(,)((),())1()()bLaf x y dsf t t t t dt j y j y ¢¢=++òò:(),(),[,]L x t y t t a b j y ==Î类似可推出:(),[,]L y y x x a b =Î的公式的公式..注意化为定积分时下限小于上限.5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性,,质心质心; ;6.6.几何应用几何应用几何应用::见上3. 六、第二类曲线积分六、第二类曲线积分 1.1.定义式定义式定义式: :(,)(,)LP x y dx Q x y dy +ò(二维二维) )(,,)(,,)(,,)LP x y z dx Q x y z dy R x y z dy ++ò(三维三维) )2.2.定义域定义域定义域::有向平面曲线弧有向平面曲线弧((二维二维))或有向空间曲线弧或有向空间曲线弧((三维三维) )3.3.性质性质性质::见课本P 1354.4.计算公式计算公式计算公式: :(,)(,)[((),())()((),())()][(,())(,())()]bLadcP x y dx Q x y dy P t t t Q t t t dt P x f x Q x f x f x dxj y j j y y ¢¢+=+¢ =+òòò注意注意::曲线积分化为定积分时曲线积分化为定积分时,,下限为起始点下限为起始点,,上限为终点上限为终点. . 5.5.积分技巧积分技巧积分技巧::二维曲线积分可以应用格林公式(注意使用条件注意使用条件).).).积分与路径无关积分与路径无关积分与路径无关. . 不能使用奇偶对称性不能使用奇偶对称性. . 6.6.应用应用应用::力做功力做功. .七、第一类曲面积分七、第一类曲面积分 1.1.定义式定义式定义式: :(,,)f x y z dS Sòò2.2.定义域定义域定义域::空间曲面空间曲面 注意注意注意::空间曲面与坐标面重合或平行时,即为二重积分即为二重积分,,故二重积分时第一类曲面积分的特例故二重积分时第一类曲面积分的特例. .3.3.性质性质性质::见课本见课本::与第一类曲线积分类似与第一类曲线积分类似 特殊特殊特殊: : 1f =则(,,)f x y z dS S S=òò,S 表示曲线面积表示曲线面积. .4.4.计算公式计算公式计算公式::22(,,)(,,(,))1xyx y D f x y z dS f x y z x y z z dxdy S=++òòòò类似可得在另两个曲面上的投影公式类似可得在另两个曲面上的投影公式.. 注意对于特殊的曲面如柱面考虑使用柱坐标注意对于特殊的曲面如柱面考虑使用柱坐标,曲面考虑使用球坐标曲面考虑使用球坐标. . 5.5.积分技巧积分技巧积分技巧::奇偶对称性奇偶对称性,,变量对称性变量对称性,,质心质心. .6.6.几何应用几何应用几何应用::见上3. 八、第二类曲面积分八、第二类曲面积分 1.1.定义式定义式Pdydz Q dzdx Rdxdy S ++òò2.2.定义域定义域定义域::有向空间曲面有向空间曲面3.3.性质性质性质::见课本P 1624.4.计算公式计算公式计算公式: :(,,)(,,(,))xyD R x y z dxdy R x y z x y dxdy S =±òòòò,类似可得另两个类似可得另两个. .5.5.积分技巧积分技巧积分技巧::高斯公式高斯公式,,循环对称性循环对称性..不能使用奇偶对称性不能使用奇偶对称性. .注:要熟练掌握使用高斯公式做第二类曲面积分的题目,使用时要注意曲面方向以及是否封 闭. 6.6.应用应用应用::求流量求流量,,磁通量等磁通量等. . 奇偶对称性奇偶对称性: :定积分定积分::若积分区间关于原点对称若积分区间关于原点对称,,例如[,]a a - 若()f x 关于x 为奇函数为奇函数,,则()0aaf x dx -=ò若()f x 关于x 为偶函数为偶函数,,则()2()aaaf x dx f x dx -=òò二重积分二重积分二重积分::若积分区域D 关于y 轴对称轴对称,,记1D 为0x >的部分的部分若(,)f x y 关于x 为奇函数为奇函数,,则()()(,)(,)0x y Dx y f x y dxdy dyf x y dx -==òòòò若(,)f x y 关于x 为偶函数为偶函数,,则1()()()(,)(,)2(,)2(,)x y x y Dx y D f x y dxdy dy f x y dx dyf x y dx f x y dxdy -===òòòòòòòò同样可以得到积分区域D 关于x 轴对称时轴对称时, , (,)f x y 关于y 为奇、偶函数的公式为奇、偶函数的公式. .三重积分三重积分: : : 若积分区域若积分区域W 关于o x oy y 面对称面对称,,记1W 为0z >的部分的部分若(,,)f x y z 关于z 为奇函数为奇函数,,则(,)(,)(,,)(,,)0z x y z x y f x y z dxdydz dxdy f x y z dz W-==òòòòòò若(,,)f x y z 关于z 为偶函数为偶函数,,则1(,)(,)(,)0(,,)(,,)2(,,)2(,,)z x y z x y z x y f x y z dxdydz dxdyf x y z dzdxdy f x y z dz f x y z dxdydzWW -===òòòòòòòòòòòò同样可以得到区域关于另两个曲面对称的情况同样可以得到区域关于另两个曲面对称的情况. . 例题例题:P :P 123#1(1)(2) P 124#2(4)第一类曲线积分第一类曲线积分::若积分曲线L 关于y 轴对称轴对称,,记1L 为0x >的部分的部分 若(,)f x y 关于x 为奇函数为奇函数::(,)0Lf x y ds =ò 若(,)f x y 关于x 为偶函数为偶函数::1(,)2(,)LL f x y d s f x y d s =òò同样可以得到曲线关于x 轴对称的情况轴对称的情况. .第一类曲面积分第一类曲面积分第一类曲面积分::若积分曲面S 关于o x oy y 面对称面对称,,记1S 为0z >的部分的部分, ,若(,,)f x y z 关于z 为奇函数为奇函数::(,,)0f x y z dz S =òò 若(,,)f x y z 关于z 为偶函数为偶函数::1(,,)2(,,)f x y z d z f x y z d z SS =òòòò同样可以得到曲面关于另两个坐标面对称的情况同样可以得到曲面关于另两个坐标面对称的情况. .例题例题::课本P 158#6(3),P 184#2 变量对称性变量对称性::一般在做重积分、曲面积分时使用,使用时要注意曲面或区域必须是关于变量是对称的,即对于曲面方程自变量相互替换后方程不改变,例如2222,1x y z R x y z ++=++=等,此时此时()()()f x dS f y dS f z dS SS S ==òòòòòò例题例题1:2,I x ds G=ò 其中G 为球面2222x y z a ++=被平面0x y z ++=所截的曲线.例题2:2: 22()d ,I x y S å=+òò 其中S 为球面2222().x y z x y z ++=++循循环对称性(适用第二类曲面积分):若积分曲面满足变量对称,而且,,P Q R 中,,x y z 依次替换,即,,x y y z z x ®®®后积分表达式不改变后积分表达式不改变,,则可以使用该对称性则可以使用该对称性,,有3Pdydz Qdzdx Rdxdy Rdxdy S S ++=òòòò 例题例题::课本168页#3(4)质心质心质心::适用重积分适用重积分,,第一类积分第一类积分. . 请同学们思考如何区别各种积分请同学们思考如何区别各种积分?(?(定义域定义域定义域) ) 区别区别区别::以下两个例题应该怎样算以下两个例题应该怎样算? ?222222()d ,()x y z S x y z dxdydz Wå++++òòòòò , 其中22222222:,:x y z R x y z R S W ++=++£。
高数不定积分
不定积分是一个基本的数学应用,也是高数的重要部分之一。
不定积分指对某个函数进行求导的反向操作,也就是对某个函数进行积分操作,得到一个带有未知常数的函数族。
因为一个函数的导数可能有很多个,所以一个不定积分可能会有不同的结果。
常见的不定积分函数包括常数函数、幂函数、指数函数、三角函数及其反函数等。
在高数中,常见的不定积分方法包括换元法、分部积分法、三角函数的积分公式、分式分解法等。
其中,换元法是一种比较常用的方法,通过寻找一个合适的变量代替被积变量,将积分转化为对新变量的积分。
分部积分法则是利用“乘积求导等于
导数之积减去另一项乘以它的原函数”这个定理来对积分进行
分解,求解积分。
三角函数积分公式则是列出一系列已知的三角函数和反三角函数的积分公式,利用这些公式对积分进行化简。
除了以上这些方法,还有一些特殊的不定积分方法,如积化和差法、积化和同法、有理函数的积分、有理根下式的积分、分式变形法等。
这些方法需要在实际问题中根据具体情况进行灵活运用,以实现对不定积分的准确求解。
高数不定积分公式
高等数学中不定积分是求函数的原函数(或者称为不定积分)。
不定积分的结果是一个含有常数项的函数,因为它与原函数相差一个常数。
以下是一些常见的高等数学不定积分公式:
1.常数函数的不定积分:
∫c dx=cx+C
2.幂函数的不定积分:
∫x^n dx=(x^(n+1))/(n+1)+C,其中n≠-1
3.正弦函数的不定积分:
∫sin(x)dx=-cos(x)+C
4.余弦函数的不定积分:
∫cos(x)dx=sin(x)+C
5.正切函数的不定积分:
∫tan(x)dx=-ln|cos(x)|+C
6.以e为底的指数函数的不定积分:
∫e^x dx=e^x+C
7.以a为底的指数函数的不定积分:
∫a^x dx=(a^x)/(ln(a))+C,其中a>0且a≠1
8.1/x的不定积分:
∫(1/x)dx=ln|x|+C
9.三角函数与幂函数的组合:
∫sin^2(x)dx=(1/2)*(x-sin(x)*cos(x))+C
∫cos^2(x)dx=(1/2)*(x+sin(x)*cos(x))+C
这些是高等数学中一些常用的不定积分公式,它们在求解定积分、求解微分方程等问题中经常会用到。
在具体应用时,还需要根据具体情况使用积分公式并添加适当的常数项。