高数不定积分
- 格式:pptx
- 大小:635.28 KB
- 文档页数:31
考研高数讲义高数第四章不定积分上课资料考研高数讲义高数第四章不定积分上课资料编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(考研高数讲义高数第四章不定积分上课资料)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为考研高数讲义高数第四章不定积分上课资料的全部内容。
第四章 不定积分⎧⎪⎧⎪⎪⎪⎨⎪→→⎨⎪⎩⎪⎪⎪⎪⎩性质第一类换元法计算第二类换元法原函数不定积分分部积分法简单分式的积分分段函数的积分1第一节 不定积分的概念与性质一、原函数的定义原函数:若对于,有或,称为在区间内的原函数。
I x ∈∀∈)()(x f x F='dx x f x dF )()(=)(x F )(x f I2原函数存在定理:连续函数必有原函数-—即若在上连续,则必存在,使得当时,。
)(x f I )(x F x∈I )()(x f x F='3【例1】设是在上的一个原函数,则在上( )(A )可导 (B )连续(C)存在原函数 (D)是初等函数 【答案】(C ))(x F )(x f (,)a b ()()fx F x(,)a b4【例2】(92二)若的导函数是,则有一个原函数为(A ). (B )。
(C )。
(D). 【答案】(B ))(x f x sin )(x f x sin 1+x sin 1-x cos 1+x cos 1-5二、不定积分的定义不定积分:在区间内,的带有任意常数I )(x f6项的原函数称为在区间内的不定积分,记为:,即 计算方法:求函数的不定积分,只要求得它的一个原函数,加上任意常数即可。
C x F+)()(x f I ⎰dx x f )(⎰+=C x F dx x f )()(C不定积分的几何意义:一个原函数对应于一条积分曲线;不定积分对应于积分曲线簇-—无穷多条积分曲线,被积函数对应于切线的斜率——同一横坐标处切线平行。
高数不定积分24个基本公式高数不定积分24个基本公式是数学学科中的重要内容。
这些基本公式涉及到多种函数的不定积分,如多项式函数、指数函数、对数函数、三角函数等。
这些公式可以方便地帮助我们求得复杂函数的不定积分。
其中一些基本公式包括:1.$\int x^n dx=\frac{1}{n+1}x^{n+1}+C$2.$\int\frac{1}{x}dx=\ln|x|+C$3.$\int e^x dx=e^x+C$4.$\int\frac{1}{1+x^2}dx=\arctan x+C$5.$\int\cos x dx=\sin x+C$6.$\int\sin x dx=-\cos x+C$7.$\int\sec^2x dx=\tan x+C$8.$\int\csc^2x dx=-\cot x+C$9.$\int\frac{1}{\sqrt{1-x^2}}dx=\arcsin x+C$10.$\int\frac{1}{\sqrt{x^2+1}}dx=\ln|x+\sqrt{x^2+1}|+C$11.$\int\ln x dx=x\ln x-x+C$12.$\int e^{ax}\cos bx dx=\frac{e^{ax}}{a^2+b^2}(a\cos bx+b\sin bx)+C$13.$\int e^{ax}\sin bx dx=\frac{e^{ax}}{a^2+b^2}(a\sin bx-b\cos bx)+C$14.$\int\frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{x}{a}+C$15.$\int\frac{1}{\sqrt{x^2-a^2}}dx=\ln|x+\sqrt{x^2-a^2}|+C$16.$\int\frac{1}{a^2+x^2}dx=\frac{1}{a}\arctan\frac{x}{a}+C$17.$\int\frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln\frac{a+x}{a-x}+C$18.$\int\frac{1}{x^2-a^2}dx=\frac{1}{2a}\ln\frac{a+x}{a-x}+C$19.$\int\frac{1}{\cos^2x}dx=\tan x+C$20.$\int\frac{1}{\sin^2x}dx=-\cot x+C$21.$\int\frac{x}{\sqrt{a^2+x^2}}dx=\sqrt{a^2+x^2}-a\ln\left|x+\sqrt{a^2+x^2}\right|+C$22.$\int x\sin ax dx=-\frac{1}{a}x\cosax+\frac{1}{a^2}\sin ax+C$23.$\int x\cos ax dx=\frac{1}{a}x\sinax+\frac{1}{a^2}\cos ax+C$24.$\int\frac{1}{\sqrt{x^2+a^2}}dx=\ln|x+\sqrt{x^2+a^2}|+C$这24个基本公式对于高数学科的学习非常重要,我们可以通过多次练习和应用,熟练地掌握这些公式,提高自己在高数学科中的成绩和水平。