当前位置:文档之家› IBDV VP2 蛋白研究进展

IBDV VP2 蛋白研究进展

IBDV VP2 蛋白研究进展
IBDV VP2 蛋白研究进展

IBDV VP2蛋白的研究进展

鸡传染性法氏囊病(infectious bursal disease,IBD)是由鸡传染性法氏囊病病毒(infectious bursal disease virus,IBDV)引起鸡的一种急性高度接触性传染病。2~15周龄的雏鸡均可感染IBDV,但3~6周龄的雏鸡最易感。IBDV感染雏鸡后,除引起一定数量感染雏鸡死亡外,更为严重的是导致雏鸡免疫抑制,不但使雏难对其他禽病如ND,MD等的易感性升高,而且对各种疫苗的免疫应答降低,甚至失败。近年来,IBDV在经典血清I型基础上出现了毒力减弱的变异株和毒力大大增强的超强毒株,致使IBD更加难以防制,给养禽业带来了巨大的经济损失。

传染性法氏囊病于1962年首次发现于美国特拉华州贡博罗城(Gumboro)的肉鸡群中,也称之为贡博罗病。1970年,Hitchner建议将该病命名为传染性法氏囊病。1985年,在美国Delmarva家禽生产地区发现了IBDV1型变异株,它能突破标准株的母源抗体的保护;1989年Chettle等在荷兰分离到高致病力的IBDV毒株,此后世界许多地区报道由该毒株引起IBD的严重爆发并伴有高死亡率[1]。由于IBDV可引起免疫抑制以及其变异株、超强毒株的出现,引起了人们的广泛关注。较多的研究结果显示,IBDV的变异主要来自VP2基因。

1 IBDV基因组结构

IBDV的基因组为双股RNA,分A、B两个节段。A节段的核苷酸序列长约3200-3300bp,由5'端非编码区(NCR)、二个开放阅读框架(ORF)和3'端NCR组成。ORFA1编码分子量约为110kDa的前体融合蛋白(NH2-VPX-VP4-VP3-COOH),加工后形成三个成熟的多肽,即VP2(约40kDa)、VP3(约52kDa)、VP4(约28kDa)。ORFA2编码分子量约21kDa的非结构蛋白VP5。B节段的核苷酸长约2800-2900bp,只含一个ORF,编码结构蛋白VP1(约90kDa)[2,3]

2 IBDV蛋白结构和功能

IBDV蛋白及其功能目前已确定的IBDV成熟病毒蛋白有VP1、VP2、VP3、VP4和VP5,其中VP2、VP3为病毒结构蛋白,共同组成病毒的衣壳。

VP1全长878个氨基酸,占IBDV病毒蛋白总量的4%,分子质量约90ku。VP1为病毒依赖于RNA的RNA聚合酶,参与病毒的RNA复制,VP1还有加帽酶的活性,也能催化一个鸟苷酰基化反应,该反应起着引发病毒RNA合成的作用[4,5]。VP1能以连接蛋白VPg的形式,通过G 残基与Serine结合,并紧密结合到IBDV基因组两个节段的5′端而使它们环化。

VP2是IBDV最主要的结构蛋白,占病毒蛋白总量的51%,VP2肽链长454氨基酸,分子质量为37~40ku。除与VP3一起形成病毒的衣壳外,VP2还是病毒的主要保护性抗原蛋白。其上至少有3个构象依赖性中和抗原位点,其中两个重叠的构象依赖性抗原位点位于VP2的中心区(氨基酸残基206~350)[6]。VP2是IBDV的主要结构蛋白,构成病毒衣壳的主要成分,是主要的宿主保护性抗原,含有能诱导中和抗体的抗原决定簇。

VP3占病毒蛋白总量的40%,分子质量32~35ku,约由390氨基酸组成,含有IBDV的群特异性抗原决定簇,同时也有少量的中和位点,具有一定的免疫保护作用。VP3在病毒吸附细胞时对其吸附过程有较大的影响,并参与病毒的包装和稳定基因组的作用[7]。

VP4全长约226个氨基酸,约占病毒总度蛋白的6%,分子质量约24~28ku。是一种具有蛋白酶活性的蛋白质,参与大片段A编码的融合蛋白前体的加工,在病毒蛋白成熟过程中起重要作用,不是病毒粒子的组成部分。

VP5Mundt等运用点突的方法去除VP5的起始密码子,这种不能表达VP5蛋白的IB-DV仍可在细胞中复制,虽然复制时间有滞后性,但最后病毒产量与表达VP5的IBDV类似。说明VP5不是病毒所必需的。

3 VP2的变异

疫苗的免疫效果不尽如人意。近几年,我们对其病原生态学进行了较深入的研究[19,20,21],发现我国不同地区流行的传染性法氏囊病病毒(IBDV)的抗原性和毒力有差异,病毒中和试验和交叉中和试验证实我国存在着IBDV 型变异株和不同的血清亚型。IBDV结构蛋白VP2是

该病毒的主要保护性抗原,能诱导机体产生中和抗体,是机体产生抗病毒免疫的重要因素[22,23]。因此,在分子水平上进一步认识VP2基因序列的变异,不仅有助于深入认识免疫失败或免疫逃避的机理,而且对研制IBD高效疫苗具有重要的指导意义。

VP2是主要的宿主保护性抗原,它含有能诱导中和抗体的抗原决定簇。序列分析表明,IB-DV 宿主保护性抗原VP2基因的序列是相当保守的,血清型病毒的不同毒株之间的基因变异大多数发生在AccI-SpeI2个内切酶位点之间,这一区域称为高可变区[12]。

VP2高可变区有3个重要结构:2个亲水区和1个保守的七肽区。前者与毒株的抗原变异有关,而后者则与毒力有关[8]。但最近的研究结果对这一观点提出了质疑。Dormitorio等[13]分析了几株变异株的VP2高可变区的基因序列,虽然大多数变异株在2个亲水区都发生了氨基酸的变化,但有1株分离自美国的变异株MISS是一个例外。在2个亲水区,MISS与传统IBDV毒株STC、52-70和PBG98等具有完全相同的氨基酸序列。因此,2个亲水区氨基酸的差异可能不是毒株抗原型的决定因素。同时提出,254位的S是变异株的特征氨基酸。曹永长等[14]在分析了多株变异株序列之后指出,249位的K和254位的S是变异株的特征氨基酸。尽管F9502、G9201和G9303在2个亲水区发生了氨基酸的变化,但249位和254位的氨基酸分别为Q和G,与标准型毒株STC和52-70等相同。

曹永长等[15]将F9502、G9201和G9303 3株超强IBDV毒株与英国的超强毒株CS89和UK661以及荷兰的超强毒株DV86比较,发现有4个氨基酸是6个超强毒株所特有的。在222位上,超强毒株均为A,而其他毒株则为P、Q或T;256位,超强毒株为I,其他毒株为V;294位和299位,超强毒株分别为I和S,而其他毒株则分别为L和N。从图3看出,这4个氨基酸中,222A和299S处在亲水部位,而256I和294I则位于疏水部位。除256位的I以外,其他3个氨基酸的变化均引起所在部位亲水性的明显变化。位于亲水部位的222A和299S使该部位的亲水性降低,而处于疏水部位的294I则使得该区域的疏水性升高。因此,3个特异性氨基酸222A、294I和299S可能与超强毒株毒力增强有关。一个可能的解释是,由于这些特异的氨基酸的变化,使得所处部位的疏水性升高或亲水性降低,虽然这些变化不足以引起抗原型的变化,却可以使抗体对病毒的捕捉能力下降,或者使超强毒株作用于其他受体位点,从而在足够高的母源抗体存在的情况下,超强IBDV毒株仍能感染鸡只,并造成鸡只的大量死亡。

第2个亲水区之后的SWSASGS七肽区多年来被认为是IBDV毒力强弱的标志[16]。但Y a-maguchi等[17]发现,从超强毒株适应细胞培养之后衍生的弱毒株,虽然失去了致病力,但仍然保持了SWSASGS七肽区不发生变化。于是,七肽区与毒力的关系受到怀疑,而另外2个氨基酸即279和284位的氨基酸则被认为是区别强毒株与弱毒株的关键。强毒株在279和284位分别为D和A,而弱毒株则分别为N和T。尽管如此,至今仍未发现强毒株的七肽区发生变化。因此,可以认为SWSASGS七肽区的保守性以及279D和284A2个特征性氨基酸是强毒株的2个重要标志。从图2中可以看出,6个超强毒株及2个典型强毒株52-70和STC的七肽区仍保留了SWSASGS,且279和284位分别为D和A。这与上述假设是吻合的。

根据以上分析,可以看出超强IBDV毒株的主要宿主保护性抗原VP2在其高可变区内具有以下几个重要特征。首先,在249和254位上的氨基酸分别为Q和G,而非K和S,从而保证其抗原型不发生变异;其次,七肽区保持SWSGSAS不变,且279和284位分别为D和A,而非N和T,这是IBDV毒株具有致病力的必要条件;第三,在222、294和299位上具有3个特征性氨基酸,分别为A、I和S,这3个氨基酸使得超强毒株的亲水性发生变化,从而使毒力大大增强。因此,从分子生物学的角度来看,超强IBDV毒株就是一些在诱导中和抗体的抗原决定簇中发生了少数氨基酸的突变,导致抗原决定簇空间结构的细微变化,从而使得毒力增强的特殊毒株。

曾祥伟等[18]通过对CEF-9(vvIBDV-Gx在鸡胚成纤维细胞上传代致弱的第9代毒)的研究,发现细胞毒CEF-8有个别核苷酸发生了改变,但没有影响氨基酸序列;而CEF-10

VP2基因已变得与欧洲标准弱毒Cu-1相似。其毒力(对4周龄SPF鸡致死率为32%)介于原代vvIBDV-Gx和CEF-20毒之间。因此细胞毒第9代可能是具有过渡特征的中间株。七肽区SWSASGS在IBDV高毒力毒株间是保守的,而SWSARGS在弱毒株间是保守的[19]。本研究中CEF-9伴随着七肽区的变化,毒力有了明显的降低但仍保持了较强的致病力,说明七肽区是影响IBDV致病力的一个重要因素。

4 VP2的抗原性

研究IBDV结构与功能最早是由Azad等用大肠杆菌表达IBDV A片段cDNA,其后Macreadie 等用酵母表达IBDVVP2,以此作为亚单位疫苗免疫鸡可产生高滴度抗体和免疫保护力。用于蛋白功能研究的载体有鸡痘病毒、杆状病毒、马立克氏病毒、腺病毒等。表达IBDVVP2的重组鸡痘病毒进行免疫攻毒试验,虽然法氏囊仍有损伤,但可使鸡免于死亡,而表达VP2-VP4-VP3的重组鸡痘病毒免疫接种效果不理想。以杆状病毒表达VP2-VP4-VP3接种鸡可产生中和抗体并产生79%的免疫保护率。Darteil等以HVT为载体表达IBDVVP2,重组HVT 虽然对MD的免疫保护率远低于野生型HVT,但对IBD有100%保护。以MDV疫苗株CV1988/Rispens作为载体表达VP2构建的重组基因工程疫苗,其MDV和IBD的保护率均与野生型弱毒苗一样。且两种抗体至少持续10周以上。为了改善对变异株的保护率,用标准IBDVVP2的一个中和表位替代了变异株的cDNA表位,以杆状病毒表达修饰的变异株的cDNA,结果发现重组亚单位疫苗对IBDV标准强毒株和变异株均有交叉保护性[10]。Fodor 等[11]用HCMV的启动子表达IBDVVP2和VP2-VP4-VP3构建基因疫苗,肌肉注射或腹腔注射免疫两次。结果表明,IBDVVP2-VP4-VP3基因疫苗能诱导鸡体产生抗体和免疫保护作用,而IBDVVP2基因疫苗则不能。

[1] CalnekBW主编,高福、苏敬良主译,禽病学(第10版)[M].北京:中国农业出版社,1999.914~937.

[2]MurphyFA,FauquetCM,BishopDHL.Birnavitidae.SixthreportoftheinternationalcommitteeonTax onomyofviruses[J].ArchV i-rolSupple,1995,10:240-244.

[3]MargretM,MacreadieIG,HarleyVR,etal.Sequenceofthesmalldouble-strandedRNAgenomicsegm entofinfectiousbursaldiseasevirusanditsdeduced90kuproduct[J].V irol,1988,163:240-242.

[4]DobosP.Protein-primedRNAsynthesisinvitrobythevirion-associatedRNApolymeraseofinfectious pancreaticnecrosis[J].ArchV i-rol,1995,208:19-25.

[5] V on Einem UI, Gorbalenya AE, Schirrmeier H, Behrens SE, Letzel T, Mundt E. VP1 of infectious bursal disease virus is an RNA-dependent RNA polymerase.J Gen V irol. 2004 Aug;85(Pt 8):2221-9.

[6]SchnitzlerD.ThegeneticbasisfortheantigenicityoftheVP2proteinoftheinfectiousbursaldiseaseviru s[J].JGenVirol,1993,74:1563-1571.

[7]Y amaguchiT,IwataK,KobayashiM,etal.EpitopemappingofcapsidproteinsVP2andVP3ofinfectiou sbursaldiseasevirus[J].ArchVirol,1996,141:1493-1507.

[8]LanaDP,BeiselCE,SilvaRF.Geneticmecha-nismsofantigenicvariationininfectiousbursaldis-easev irus:analysisofanaturallyoccurringvariantvirus.VirusGenes,1992,6:247~259

[9]GranzowH,BirghanC,MettenletterTC,etal.Asecondformofinfectiousbursaldiseasevirus-associate dtubulecontainsVP4[J].JV i-rol,1997,8879-8885.

[10]SnyderDB,V akhariaVN,Mengel-WhereatS,etal.Activecross-protectioninducedbyarecombi-nan tbaculovirusexpressingchimericinfectiousbur-saldisasevirusstructuralproteins[J].A vianDis,1994,38 (4):701~707.

[11]FodorL,HorvathE,FodorN,etal.Inductionofpro-tectiveimmunityinchickensimmunisedwithplas midDNAencodinginfectiousbursaldiseasevirusanti-gens[J].ActaV etHung,1999,47(4):481~492. [12]BaylissCD,SpiesU,ShawK,etal.Acomparisonofthesequencesofsegmentaoffourinfectiousbursal diseasevirusstrainsandidentificationofavariablere-gioninVP2.JGenVirol,1990,71:1303~1312 [13]DormitorioTV,GiambroneJJ,DuckLW.Se-quencecomparisonsofthevariableVP2regionofeightin fectiousbursaldiseasevirusisolates.A vianDis,1997,41:36~44

[14] 曹永长,毕英佐,罗文新,等.传染性法氏囊病病毒变异株主要免疫原基因cDNA的克隆及鉴定.中国兽医杂志,1997,23(9):3~5

[15] 曹永长,等.超强传染性法氏囊病病毒株宿主保护抗原的分子特征.中国兽医学报,1998,18(16):521-525

[16] 周顺伍,崔静,郭玉璞.传染性法氏囊病毒基因组A片段的结构与功能.病毒学报,1994,10(3):285~289

[17]Y amaguchiT,OgawaM,InoshimaY,etal.Identifi-cationofsequencechangesresponsiblefortheatten u-ationofhighlyvirulentinfectiousbursaldiseasevirus.V irology,1996,223:219~223

[18] 曾祥伟,等. 传染性法氏囊病病毒中间株有关特性的研究.中国预防兽医学报.2002,24(6):456-458.

[19] 周宗安,王永山,邓小昭,等.传染性法氏囊病病毒的生态学与流行病学研究[J].中国兽医学报,1998,18(5):430~433.

[20] 王永山,周宗安,施正良,等.禽鸟源传染性腔上囊病病毒分离株对鸡的致病性试验[J].中国兽医科技,1998,28(4):3~5.

[21] 罗函禄,范文明,张菊英,等.传染性法氏囊病病毒型变异株的分离鉴定及其多价弱毒苗免疫试验[J].中国兽医科技,1996,26(7):3~5.

[22]BaylissCD,SpiesU,ShawK,etal.Acompari-sonofthesequencesofsegmentAoffourinfec-tiousburs aldiseasevirusstrainsandidentificationofavariableregioninVP2[J].JGenVirol,1990,71:1303~1312.

[23]KibengeFSB,JackwoodDJ,MercadoCC.Nu-cleotiedsequenceanalysisofgenomesegmentAofinf etiousbursaldiseasevirus[J].JGenV irol,1990,71:569~577.

重组蛋白药物项目建议书

重组蛋白药物项目 建议书 投资分析/实施方案

摘要 重组蛋白药物是指应用基因重组技术,获得连接有可以翻译成目的蛋 白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从 而表达特定的重组蛋白分子,用于弥补机体由于先天基因缺陷或后天疾病 等造成的体内相应功能蛋白的缺失。 该重组蛋白药物项目计划总投资19539.10万元,其中:固定资产 投资15082.18万元,占项目总投资的77.19%;流动资金4456.92万元,占项目总投资的22.81%。 本期项目达产年营业收入30422.00万元,总成本费用23185.79 万元,税金及附加325.37万元,利润总额7236.21万元,利税总额8559.68万元,税后净利润5427.16万元,达产年纳税总额3132.52万元;达产年投资利润率37.03%,投资利税率43.81%,投资回报率 27.78%,全部投资回收期5.10年,提供就业职位498个。

重组蛋白药物项目建议书目录 第一章项目概论 一、项目名称及建设性质 二、项目承办单位 三、战略合作单位 四、项目提出的理由 五、项目选址及用地综述 六、土建工程建设指标 七、设备购置 八、产品规划方案 九、原材料供应 十、项目能耗分析 十一、环境保护 十二、项目建设符合性 十三、项目进度规划 十四、投资估算及经济效益分析 十五、报告说明 十六、项目评价 十七、主要经济指标

第二章项目建设必要性分析 一、项目承办单位背景分析 二、产业政策及发展规划 三、鼓励中小企业发展 四、宏观经济形势分析 五、区域经济发展概况 六、项目必要性分析 第三章建设规划 一、产品规划 二、建设规模 第四章选址可行性研究 一、项目选址原则 二、项目选址 三、建设条件分析 四、用地控制指标 五、用地总体要求 六、节约用地措施 七、总图布置方案 八、运输组成 九、选址综合评价

跨膜丝氨酸蛋白酶研究进展

跨膜丝氨酸蛋白酶研究进展 郭晓强 (解放军白求恩军医学院生物化学教研室,石家庄050081) 摘要 跨膜丝氨酸蛋白酶(T MPRSSs),又名II型跨膜丝氨酸蛋白酶(TTSPs)是一类定位于细胞膜上具有保守丝氨酸蛋白酶结构域的蛋白家族,哺乳动物中已发现二十多个成员。T MPRSSs基本结构类似,C端蛋白酶结构域在胞外,N端位于胞内,还拥有单跨膜结构域,差异之处在于主干区。T MPRSSs具有多种重要生理功能,功能异常可造成耳聋、癌症、贫血和高血压等多种疾病。本文对T MPRSSs基本特征、结构、生理功能及相关疾病进行综述。 关键词 跨膜丝氨酸蛋白酶;耳聋;癌症;贫血;高血压 中图分类号 Q55 蛋白酶是一类水解蛋白质的酶类,最早于上世纪初在胃液中发现(胃蛋白酶),至今已鉴定多个成员。最早认为蛋白酶主要通过非特异性水解蛋白质参与食物消化,然而一系列研究表明哺乳动物体内还存在一些具有底物选择性的蛋白酶,它们参与更为多样的生理过程,如细胞周期、形态建成、细胞增殖和迁移、排卵、血管生成和细胞凋亡等,功能异常可造成代谢性疾病、神经退行性疾病、心血管疾病、关节炎和癌症等的发生(Puente等.2003)。相对于传统水溶性蛋白酶,新近发现一类特殊蛋白酶———具有单跨膜结构域的丝氨酸蛋白酶,并且C端位于胞外,因此被称为II型跨膜丝氨酸蛋白酶(type II trans me mbrane serine p r oteases,TTSPs)(Hooper等. 2001),又称跨膜丝氨酸蛋白酶(trans me mbrane p r o2 tease serines,T MPRSSs),这些新成员的发现和深入研究使人们对蛋白酶有了全新的认识[1]。 一、T M PRSS结构与基本特征 自1988年发现第一个跨膜丝氨酸蛋白酶T M2 PRSS1(hep sin)(Leytus等.1988)以来,至今已在人、小鼠和大鼠中发现二十多个成员,仅人类就有十几种(表1)。T MPRSS表达具有明显组织特异性,T M2 PRSS6主要在胎儿和成年肝脏中表达(Velasco等. 2002),而T MPRSS10主要存在于心脏(Yan等. 1999),这种表达模式说明不同T MPRSS参与不同生理过程。T MPRSS家族成员在分子量上差别巨大,如人T MPRSS1包含417个氨基酸残基,而T M2 PRSS10由1042个氨基酸构成,两者相差1倍以上,但基本结构却高度相似,均含四部分,从N端到C 端依次为短细胞质结构域、跨膜结构域、主干区和丝氨酸蛋白酶结构域,后两者位于胞外,不同成员区别主要集中于主干区。 根据主干区不同,T MPRSS可被进一步分为四个亚家族:HAT/DESC、hep sin/T MPRSS、matri p tase 和corin[1]。HAT/DESC亚家族包括T MPRSS11d (HAT)和T MPRSS11e(DESC1),它们结构最为简单,主干区仅由单一SE A(sea urchin s per m p r otein, enter opep tidase,agrin)结构域构成[2](图1)。hep2 sin/T MPRSS亚家族包括T MPRSS1~5和T MPRSS13等,是包含种类最多的一个亚家族,主干区包含清道夫受体富含半胱氨酸(scavenger recep t or cys2rich, SRCR)结构域和低密度脂蛋白A类受体(l ow densi2 ty li pop r otein recep t or class A,LDLa)结构域。matri p tase亚家族包括T MPRSS14(matri p tase21)、T MPRSS6(matri p tase22)和T MPRSS7(matri p tase23),其主干区除含有SEA结构域外,还包含2个CUB (comp le ment p r otein subcomponents C1r/C1s,urchin e mbryonic gr owth fact or and bone mor phogenetic p r o2 tein1)结构域及3到4个串联重复LDLa结构域。corin亚家族目前只发现一个成员T MPRSS10(cor2 in),其结构最为复杂,主干区包含8个LDLa结构域,2个frizzled结构域和1个SRCR结构域。 图1 几个典型T MPRSS结构特点[1]

蛋白质药物的研究现状

蛋白质药物的研究现状 郭世江20123762 制药二班 摘要:蛋白质药物可分为多肽和基因工程药物、单克隆抗体和基因工程抗体、重组疫苗;本文主要着重讲解多肽和基因工程药物。与以往的小分子药物相比,蛋白质药物具有高活性、特异性强、低毒性、生物功能明确、有利于临床应用的特点。由于其成本低、成功率高、安全可靠,已成为医药产品中的重要组成部分。1982年美国Likky公司首先将重组胰岛素投放市场,标志着第一个重组蛋白质药物的诞生。一种新型生物技术候选药物,它具有高效抗肿瘤、抗病毒功能。经中国药品生物制品标准化研究中心检测证实,其抗肿瘤活性较同类产品高246.7倍,抗病毒活性高10倍以上,可用于治疗多种恶性肿瘤和病毒感染性疾病。 关键词:多肽,基因工程药物,单克隆抗体,基因工程抗体,重组疫苗,高活性,低毒性,抗肿瘤,抗病毒。 Abstract:Polypeptide and protein drugs can be divided into genetic engineering drugs, monoclonal antibodies and genetically engineered antibodies, recombinant vaccine; paper mainly focuses on explaining polypeptides and genetic engineering drugs. Compared with conventional small molecule drugs, protein drugs with high activity and specificity, low toxicity, biological features a clear, beneficial characteristics of clinical applications. Because of its low cost, high success rate, safe and reliable pharmaceutical products has become an important part. 1982 United States Likky company first recombinant insulin market, marking the birth of the first recombinant protein drugs. A new biotech drug candidates, it is an efficient anti-tumor, anti-viral function. By the China Research Center of Pharmaceutical and Biological Products Standardization tests confirmed that the anti-tumor activity of 246.7 times higher than similar products, high antiviral activity more than 10 times, can be used to treat a variety of malignancies and viral infections. Keywords:Peptides, genetic engineering drugs, monoclonal antibodies, genetically engineered antibodies, recombinant vaccine, high activity and low toxicity, anti-tumor, anti-viral 一、前言 生物技术的发展促进了大分子生物活性物质的发现,用于治疗或诊断的多肽、蛋白质、酶、激素、疫苗、细胞生长因子及单克隆抗体等药物不断出现,国外已批准上市的生物技术药物产品约90 多种,进入临床实验的生物技术药品有369种,占美国临床实验药品的1/3,正在研究发展的大分子活性物质或药物达千种以上,生物技术药物的销售增长率在1998 年到2004 年每年增长12%~15%,生物技术药物已涉足于200多种疾病,其研究多数是针对癌症治疗,以及传染性疾病、神经性疾病、心血管疾病、呼吸系统疾病、艾滋病、自体免疫性疾病、皮肤病等。早在上世纪90年代,美国FDA即已批准可以进行临床研究的基因疗法达72种,年初国家食品药品监督管理局也批准了重组人p53腺病毒注射液的生产。由于半衰期短,生物技术药物的基本剂型是冻干注射剂或注射液,需要长期频繁注射给药,面对生物大分子在稳定性及吸收等方面的困难,在研究和生产高质量的冻干粉针及溶液型注射剂的同时,发展多种途径给药的新剂型是制剂工业和研究的重要任务[1]。

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。 [关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体的蛋白酶抑制剂在机体与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体免疫系统的重要组成部分。它不仅能使侵入体的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类 目前,典型的丝氨酸蛋白酶抑制剂基于其序列、拓扑结构及功能的相似性,至少可分为18个家族[5],如表1-1所示。不同家族抑制剂的空间结构也不同。通常这类抑制剂是β片层或混合了α螺旋和β片层的蛋白质,也可能是α螺旋或富含二硫键的不规则蛋白质。但它们都拥有规的反应活性位点环的构象,从而使这些非相关的蛋白质具有相似的生物学功能[6]。因此典型的丝氨酸蛋白酶抑制剂最明确最广泛地代表了蛋白质的趋同进化。 1.2 Serpins Serpins是一类分子量较大的丝氨酸蛋白酶抑制剂超家族,氨基酸残基数为

丝氨酸蛋白酶抑制剂的研究进展教学提纲

丝氨酸蛋白酶抑制剂的研究进展

丝氨酸蛋白酶抑制剂的研究进展 梁化亮 (生物与食品工程学院,江苏常熟 215500) Progress on antimicrobial peptide [摘要]蛋白酶抑制剂(PIs)是一类能抑制蛋白酶水解酶的催化活性的蛋白或多肽,广泛存在于生物体内,在许多生命活动过程中发挥必不可少的作用。根据活性位点氨基酸种类不同可将蛋白酶抑制剂分为四大类型:丝氨酸蛋白酶抑制剂、巯基蛋白酶抑制剂、天冬氨酸蛋白酶抑制剂和金属蛋白酶抑制剂。其中尤以丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用。其能对蛋白酶活性进行精确调控,包括分子间蛋白降解,转录,细胞周期,细胞侵入,血液凝固,细胞凋亡,纤维蛋白溶解作用,补体激活中所起的作用。[关键词]丝氨酸蛋白酶抑制剂分类临床应用防御

1 丝氨酸蛋白酶抑制剂 免疫系统是由组织,细胞,效应分子构成,并逐渐进化形成用于阻挠病原微生物的侵入攻击,限制它们扩散进入宿主内环境。这其中起到主要作用的是宿主产生的蛋白酶抑制剂,广泛存在于生物体内的蛋白酶抑制剂在机体内与相应的蛋白酶形成一个动态的系统,在生物体系以及一系列的生理过程中起着调控作用[1],是生物体内免疫系统的重要组成部分。它不仅能使侵入体内的蛋白酶失活并且能将其清除,使附着在宿主表面的病原细菌无法附着生存。其中丝氨酸蛋白酶及其抑制剂在体内一些重要生理活动中起关键性的调控作用[2]。 丝氨酸蛋白酶抑制剂(serine protease inhibitor)泛指具有抑制丝氨酸蛋白酶水解活性的一类物质,广泛存在于动物、植物、微生物体中[3]。在动物体中,丝氨酸蛋白酶抑制剂是维持体内环境稳定的重要因素,一旦平衡失调即导致多种疾病,任何影响其活性的因素也会造成严重的病理性疾病。它们最基本的功能是防止不必要的蛋白水解,调节丝氨酸蛋白酶的水解平衡。作为调控物,丝氨酸蛋白酶抑制剂参与机体免疫反应,对生物体内的血液凝固、补体形成、纤溶、蛋白质折叠、细胞迁移、细胞分化、细胞基质重建、激素形成、激素转运、细胞内蛋白水解、血压调节、肿瘤抑制以及病毒或寄生虫致病性的形成等许多重要的生化反应和生理功能有重要的影响[4]。鉴于其重要的生理功能,丝氨酸蛋白酶抑制剂一直倍受研究者的关注,目前已分离得到多种天然丝氨酸蛋白酶抑制剂,同时如何将其更好地应用于食品、医药领域也成为近来研究热点。 1.1 丝氨酸蛋白酶抑制剂分类

线粒体蛋白质组学在肿瘤研究中的进展_凌孙彬

基金项目:国家863高技术研究发展计划项目(2006AA02A309) 收稿日期:2011-10-14;修回日期:2012-02-13作者简介:凌孙彬(1989-),男,浙江杭州人,大连医科大学七年制学生。E -mail :lsb0330@126.com 通信作者:王立明,教授,博士生导师。E -mail :Wangbcc259@yahoo.com.cn 第34卷第2期2012年4月 大连医科大学学报 Journal of Dalian Medical University Vol.34No.2Apr.2012 线粒体蛋白质组学在肿瘤研究中的进展 凌孙彬1 ,唐 博2,王立明 2 (1.大连医科大学七年制2007级,辽宁大连116044;2.大连医科大学附属第二医院普外三科,辽宁大连116027) 摘要:线粒体DNA 的突变和蛋白表达谱的异常,将严重影响细胞的凋亡和能量代谢过程,这一变化可能是恶性肿瘤细胞代谢及功能异常的重要组成部分。蛋白质组学技术可以分析肿瘤细胞或组织在某一时间点内全蛋白的表达情况及活性,而基于亚细胞水平研究的线粒体蛋白质组学较传统蛋白质组学研究有更高的分辨率。线粒体蛋白质组的改变与多种肿瘤相关,随着亚细胞分离技术和蛋白质鉴定技术的发展,线粒体蛋白质组学在寻找新的肿瘤相关特性蛋白研究中显示出越来越重要的意义。关键词:肿瘤;线粒体;蛋白质组学中图分类号:R34 文献标志码:A 文章编号:1671-7295(2012)02-0179-03 Advance of mitochondrial proteomics in cancer research LING Sun -bin 1,TANG Bo 2,WANG Li -ming 2 (1.Grade 2007,Department of Seven -year Curriculum ,Dalian Medical University ,Dalian 116044,China ;2.Department of General Surgery ,the Second Affiliated Hospital of Dalian Medical University ,Dalian 116027,China ) Abstract :The mutational mitochondrial DNA and abnormally expressed mitochondrial proteins ,inducing a severe impact on apoptosis and energy metabolism of cells ,may serve as a significant composition of overall metabolic and functional dis-order in malignant cells.Proteomics displayed the capability on analysis of entire proteins expression in certain period in cells or tissues.Furthermore ,mitochondrial proteomics ,focusing on phenotype on subcellular level ,has higher resolution.Numbers of researches have shown the correlation between changes in mitochondrial proteome and tumors.Along with the progress of subcellular isolation and proteins identification technics ,mitochondrial proteomics plays an increasingly signifi-cant role in finding cancer -related specific molecules.Key words :tumor ;mitochondria ;proteomics 近年来,蛋白质组学的发展为肿瘤研究提供了 全新的方法和思路,细胞水平的肿瘤蛋白质组学研究得到了广泛的开展,但是,现有分离技术下往往难以一步到位地获得细胞的全蛋白质组,大量的低丰度蛋白质未能得到显现和分析。因此,亚细胞蛋白质组学的开展可以作为传统蛋白质组学的重要补充,同时也极大地降低了针对全细胞蛋白质组学研 究的复杂性。线粒体(mitochondria , Mt )是真核细胞中一种重要的细胞器,除作为能量产生的场所外,已发现其参与包括肿瘤细胞发生发展在内的多种病理 生理过程[1] 。线粒体蛋白质组学已被运用于部分 肿瘤的研究中, 进一步阐明线粒体蛋白质与肿瘤的关系,有助于寻找新的肿瘤相关特异性蛋白。本文就线粒体蛋白质组学在肿瘤研究中的进展进行综

重组蛋白药物项目规划方案

重组蛋白药物项目规划方案 规划设计/投资方案/产业运营

报告说明— 该重组蛋白药物项目计划总投资13094.30万元,其中:固定资产投资10361.50万元,占项目总投资的79.13%;流动资金2732.80万元,占项目总投资的20.87%。 达产年营业收入27035.00万元,总成本费用21261.96万元,税金及附加249.39万元,利润总额5773.04万元,利税总额6818.71万元,税后净利润4329.78万元,达产年纳税总额2488.93万元;达产年投资利润率44.09%,投资利税率52.07%,投资回报率33.07%,全部投资回收期4.52年,提供就业职位421个。 重组蛋白药物是指应用基因重组技术,获得连接有可以翻译成目的蛋白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从而表达特定的重组蛋白分子,用于弥补机体由于先天基因缺陷或后天疾病等造成的体内相应功能蛋白的缺失。

第一章项目概况 一、项目概况 (一)项目名称及背景 重组蛋白药物项目 (二)项目选址 xxx工业新城 场址应靠近交通运输主干道,具备便利的交通条件,有利于原料和产成品的运输,同时,通讯便捷有利于及时反馈产品市场信息。对周围环境不应产生污染或对周围环境污染不超过国家有关法律和现行标准的允许范围,不会引起当地居民的不满,不会造成不良的社会影响。 (三)项目用地规模 项目总用地面积38459.22平方米(折合约57.66亩)。 (四)项目用地控制指标 该工程规划建筑系数76.78%,建筑容积率1.02,建设区域绿化覆盖率7.97%,固定资产投资强度179.70万元/亩。 (五)土建工程指标

重组蛋白药物项目规划设计方案

重组蛋白药物项目规划设计方案 规划设计/投资分析/产业运营

重组蛋白药物项目规划设计方案 重组蛋白药物是指应用基因重组技术,获得连接有可以翻译成目的蛋 白的基因片段的重组载体,之后将其转入可以表达目的蛋白的宿主细胞从 而表达特定的重组蛋白分子,用于弥补机体由于先天基因缺陷或后天疾病 等造成的体内相应功能蛋白的缺失。 该重组蛋白药物项目计划总投资20320.87万元,其中:固定资产投资14356.61万元,占项目总投资的70.65%;流动资金5964.26万元,占项目 总投资的29.35%。 达产年营业收入50080.00万元,总成本费用39907.27万元,税金及 附加404.31万元,利润总额10172.73万元,利税总额11980.18万元,税 后净利润7629.55万元,达产年纳税总额4350.63万元;达产年投资利润 率50.06%,投资利税率58.96%,投资回报率37.55%,全部投资回收期 4.16年,提供就业职位761个。 报告依据国家产业发展政策和有关部门的行业发展规划以及项目承办 单位的实际情况,按照项目的建设要求,对项目的实施在技术、经济、社 会和环境保护、安全生产等领域的科学性、合理性和可行性进行研究论证;本报告通过对项目进行技术化和经济化比较和分析,阐述投资项目的市场 必要性、技术可行性与经济合理性。

......

重组蛋白药物项目规划设计方案目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

长效重组蛋白药物的研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(2):79~82 综 述 长效重组蛋白药物的研究进展 戚 楠3  马清钧 (军事医学科学院生物工程所 北京 100850) 摘要 重组蛋白药物经静脉和皮下注射后通常半衰期较短,目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物分子量;2、利用血浆药物平衡;3、减少免疫原性。针对构建突变体、PEG 化修饰和与血清白蛋白融合三种延长重组蛋白药物半衰期的方法,及其已上市的和正在研发中的长效重组蛋白药物的特征、半衰期和免疫原性问题进行了综述。 关键词 长效重组蛋白药物 半衰期 分子量 药物平衡 免疫原性 突变体 PEG 化 血清 白蛋白 中图分类号 Q819 收稿日期:2005212223 修回日期:20052122263电子信箱:qinan_8@hot m ail .com 重组蛋白药物是生物技术药物中很重要的一类,临床上一般通过静脉和皮下注射给药。经静脉和皮下注射后常伴有蛋白质降解,导致活性降低,生物利用度低,要达到需要的血药浓度和治疗效果需要反复给药,不仅给患者带来不便,且易产生耐受性,耐药性及免疫原性等不良反应,因此临床上需要研制长效的重组蛋白药物。 目前延长蛋白药物半衰期的方法主要基于三种原理:1、增大蛋白药物的分子量,减少肾小球滤过率;2、利用游离型药物和结合型药物在血浆内形成平衡的特点,缓慢释放游离型蛋白药物,使结合型药物和游离型药物的平衡向游离型药物方向移动;3、减少异源蛋白的免疫原性,从而减少其体内清除率。现将常用延长半衰期技术应用于重组蛋白药物的进展作一介绍。 1 构建突变体 通过构建突变体延长蛋白药物半衰期,常用方法有1、增加蛋白药物的糖基化程度,通过糖基化一方面在蛋白药物表面增加了侧链,增加蛋白质稳定性,阻碍了蛋白酶对蛋白药物的降解作用,另一方面使蛋白药 物分子量增大,减少了肾小球滤过;2、通过形成缓释的微沉淀物,使释放游离型药物的时间延长。其已经研制成功并上市的药物如重组人EPO 突变体(Amgen 公司的A ranes p )和重组人胰岛素的突变体(Aventis 公司的Lantus )。 重组人EP O 有3个N 糖基化位点(as p24,as p38, as p83),1个O 糖基化位点(Ser126)。重组人EP O 的O 糖基化与否与体内外活性及体内清除速率无关,而N 糖基化不完全的重组人EPO 体外活性正常,体内活性则降低到体外活性的1/500,且其体内清除率也明显加快。N 糖基化EPO 对热和pH 变化稳定,等电点P I 为 4.2~4.6,而未经糖基化EP O 等电点P I 为9.2 [1,2] 。由 此可以看出,N 糖基化对维持重组人EP O 活性和减少体内清除率有重要作用,在此基础上构建了重组人 EPO 突变体A ranesp 。A ranes p 有165个氨基酸,采用定 点突变技术,将其中5个氨基酸位点进行了改变,而与重组人EPO 不同,即A la30A sn,H is32Thr,Pro87Val, Trp88A sn 和Pro90Thr,N 连接的寡糖链从原来的3条增 加到5条 [3] ,除as p24,asp38,as p83位点外,在30和 88两个位点多了两个N 连接寡糖链,从而使分子量从 原来的30kDa 增加到50kDa,在慢性肾衰病人中半衰期 由原来的4~13h 延长到平均49h [4] (27~89h )。 Lantus 是从大肠杆菌K12株表达的重组人胰岛素

生物制药报告之重组蛋白篇

生物制药报告之重组蛋白篇 2007-03-28 19:09:12来源: 长江证券进入生物制药贴吧共0 条黑马推荐 报告要点 重组蛋白质是指利用DNA重组技术生产的蛋白质。最早的一批生物制药公司主要就是利用基因工程的技术来获得蛋白质。我们称为“采用基因工程的加工技术来生产蛋白质”。 重组蛋白药物安全性显著高于小分子药物。虽然生产条件苛刻,服用程序复杂且价格昂贵,但对某些疾病具有不可替代的治疗作用,因而具有较高的批准率。同时,重组蛋白药物的临床试验期要短于小分子药物,专利保护相对延长,给了制药公司更长的独家盈利时间。这些特点成为重组蛋白药物研发的重要动力。 基因工程重组蛋白药物是新药开发的重要发展方向之一。如今,重组蛋白药物虽然仅占全球处方药市场的7-8%,但发展非常迅速,其中排名前10位的“重磅炸弹”药占总销售额60%以上。 未来5-10年中国生物制药领域仍将以重组蛋白为主流,这与世界生物制药领域的发展趋势吻合。中国重组蛋白药物仍将以跟踪型研发、改进型研发为主,在研发品种选择上,“重磅炸弹”产品仍将是主要的研究起点,这并不完全归因于国内生物制药企业“一哄而上”,从世界范围来看,对现有“重磅炸弹”蛋白药品进行改造是一大发展趋势。 另一个值得注意的方面是生产能力的提高。不仅在中国,世界范围内生物制药行业生产能力不足已经成为重组药物发展的瓶颈。生产能力不足导致生产成本提高,在一定程度上限制了产业化,换个角度说,在生产能力方面具有优势就是壁垒。 重点公司方面,我们看好双鹭药业(行情论坛)的上下游垂直一体化的研发优势和通化东宝(行情论坛)胰岛素的市场前景,分别维持“推荐”评级。 基因重组蛋白药物——原理、市场、发展方向 一、重组蛋白药物生产原理 1

重组蛋白药物研究进展解析

转自<丁香园> 重组蛋白药物也称rDNA药物,不包括重组疫苗、单克隆抗体药物(抗体药物的市场和研发趋势另有文章详述[1]、检测用重组蛋白和生化提取的天然蛋白,也不包括仿制药物。重组蛋白药物虽然仅占全球处方药市场的7-8%左右,但是发展非常迅速,尤其到了21世纪其发展更是进入黄金时节,1989年的销售额为47亿美元,2001年为285亿美元,2004年达到347亿美元[2],2005年约410亿美元,是1989年的9倍。 相对小分子药物,重组蛋白药物生产条件苛刻、服用复杂和价格昂贵,但对于有些疾病的治疗是不可替代的。绝大部分重组蛋白药物是人体蛋白或其突变体,以弥补某些体内功能蛋白的缺陷或增加人体内蛋白功能为主要作用机理,其安全性显著大于小分子药物,因而具有较高的批准率,同时,重组蛋白药物的临床试验期要短于小 分子药物,专利保护相对延长,给制药公司更长的独家销售时间[3]。这些特点成为重组蛋白药物研发的重要动力。从重组蛋白药物市场的地理分布角度,美国和欧洲占有全球市场的81% [4]。重组蛋白药物研发公司6强(Amgen, Biogen IDEC, Johnson & Johnson,Eli Lily,Novo Nordisk和Roche全部来自美国或欧洲,占有75%市场份额[2]。从新药上市的数量和速度看,美国居首位,这与美国拥有较自由的药物价格环境 以及医生接受新药的需求和高速度有明显关系。欧洲近几年发展也较快,率先批准上市了转基因动物(羊生产的重组人抗凝血酶(美国GTC生物治疗公司[5],以及第一个重组蛋白药物的仿制药物(Biosimilar,通用名生物药,下通称重组药物仿制药[6,7],后者结束了多年来重组蛋白药物是否能有仿制药的争论。鉴于美国和欧洲实际上主 导着全球市场,分析其市场和研发趋势,也就能准确把握重组蛋白药物整体发展的脉搏。专家们对“新”重组蛋白药物的定义不尽相同,所以,不同文献中的新重组蛋白药 物统计数量可能存在较大的差别。 本文以在美国和/或欧洲新上市的重组蛋白药物注册品名为准(以下通称重组药 后者2005年销售额即达278亿美元,占销售总物,计有82个,包括15个“重磅炸弹”, 额的66%。目前的研发重点在于解决生产能力不足、更加合理的改变重组药物结 构和给药途径多样化。尽管重组药物发展面临着种种挑战,但是我们认为该市场会

蛋白质组学在肿瘤研究的应用

蛋白质组学在肿瘤研究的应用 姓名:学号 专业:病理学与病理生理学导师: 摘要随着人类全基因组计划(HGP)测序工作的完成, 对基因功能即基因表达产物蛋白的研究已经拉开了序幕。蛋白质组学研究直接定位于蛋白质水平, 大规模地分析组织细胞的蛋白质表达水平、翻译后修饰以及蛋白质间相互作用, 是后基因组计划的重要组成部分。肿瘤的发生涉及一系列复杂的分子事件, 蛋白质组学研究手段可以大规模地定量分析细胞内的蛋白质表达水平、翻译后修饰等性质以及定义信号网络中的蛋白质间相互作用, 从而有希望发现控制肿瘤进程的关键分子, 为肿瘤的诊断、分型、药物研制带来新的思路和途径。蛋白质组学为肿瘤的研究提供了新的平台。本文就蛋白质组学研究的技术方法和在肿瘤研究方面的应用做一个综述。 关键词蛋白质组学肿瘤应用 蛋白质组学(Proteomics)是研究一种细胞或一种生物中全部蛋白质的表达、结构、功能等的新兴学科,与基因组学、代谢组学等一起构成了当代生命科学的组学( -omics) 系列。蛋白质组学一般分为表达蛋白质组学( expression proteomics)、结构蛋白质组学( structural proteomics) 和功能蛋白质组学( functional proteomics) 3 个方面。表达蛋白质组学也叫差异蛋白质组学,主要对正常、疾病或药物处理细胞或亚细胞中的所有蛋白质进行定性或定量的研究; 结构蛋白质组学主要研究特定细胞或细胞器中蛋白质及蛋白质复合体的组成,确定其定位并了解蛋白质间相互作用; 功能蛋白质组学是一个较为广义的概念,主要研究蛋白质转录后修饰,为细胞信号转导、疾病机制等提供重要信息。恶性肿瘤的发生是一个涉及多因素、多基因的多阶段病理过程. 以往的研究主要集中在基因组和转录组分析. 随着人类基因组计划的完成, 肿瘤研究开始进入“后基因组时代”, 肿瘤蛋白质组学应运而生. 蛋白质作为基因功能的主要执行者, 一方面在肿瘤发生发展过程中扮演重要角色, 另一方面在很大程度上决定正常细胞和肿瘤细胞之间的差异(如异型性、恶性特征等).李国庆[1]等参考了他人的研究成果,通过对肿瘤发生与蛋白质表达(谱)的改变、肿瘤与翻译后修饰蛋白质

蛋白质药物的研究进展

蛋白质药物的研究进展 生命科学系07级生物科学(3)班魏海涛 摘要:蛋白质药物是生物技术药物中重要组成部分之一。由于其成本低、成功率高、安全可靠,已成为医药产品中重要组成部分。现就蛋白质药物研究的现状做一个综述。 关键词:蛋白质合成给药系统 近年随着化学合成和生物工程技术的迅速发展,大量的多肤和蛋白质药物不断涌现[1],目前国内外此药物已批准上市的约50多种,处于早期或临床研究的也多达700多种[2]。所谓蛋白质经物,就是采用DNA重组技术或其他新生物技术生产的,在蛋白质水平对疾病进行诊断、预防和治疗的药物。 1蛋白药物的合成 1.1化学法合成蛋白质类药物 用化学法合成多肽主要依赖于固相肽自动合成仪,它是将氨基端被保护的第1个氨基酸的羧基结合到一个不溶性载体上,使之固定,然后脱掉该氨基酸的氨基端保护基,再将第2个氨基端被保护的氨基酸的羧基与固定的第1个氨基酸的游离氨基缩合形成不溶性二肽,如此反复进行,最后经化学降解和脱保护基后,从载体上脱落目的多肽。由于产率随每个氨基酸的缩合而递降,合成多肽的长度受到一定限制,一般在30~50氨基酸残基水平。目前,硫酯键介导的化学连接法已被成功地应用于较小蛋白质和蛋白质结构域的合成,其主要缺点是在连接位点需要特定的亲核性氨基酸残基。随着方法学的改进与发展,现在已经能够进行连续几个肽片断的连接,促红细胞生成素(EPO)变异体的合成就是一个成功的例子[3]。下面是用化学法合成的多肽与蛋白质。 表1化学法合成的多肽与蛋白质[4,5]

1.2化学—生物法合成蛋白质类药物 化学—生物法合成蛋白质主要是利用分子克隆与生物工程技术将化学合成的小片断经特定的介导途径连接于大片断上,例如蛋白质内含子介导法,该法既解决了生物法合成的蛋白质局限于编码氨基酸又能避免化学合成法受到片断大小限制。近年来,已成功地合成了一些多肽与蛋白质。 表2化学-生物法合成的多肽与蛋白质[6] 1.3利用(His)6标识辅助的蛋白类药物合成 最近有报道用(His)6标识辅助蛋白质合成的方法[(His)6tag-assistedprotein synthesis][5]。该方法既利用硫酯键介导又根据固相肽合成原理将2个或多个大片断缩合成多肽或蛋白质,并利用(His)6tag与Ni2+-NTA-树脂的亲和性快速纯化合成蛋白质。Bang和Kent利用该法合成了Crambin和Tetrat-rico peptide repeat(TPR)[7]。然而,利用亲和纯化柱,不可逆吸附是不可避免的,因而导致产率不够理想。 1.4蛋白质内含子介导法合成蛋白质类药物 蛋白质自剪接(protein self-splicing)是细胞内蛋白质生物合成中后转译水平上的一种加工过程,其主要元件是蛋白质内含子(intein)。自20世纪90年代蛋白质自剪接机理被阐明后[8],为利用蛋白质内含子介导蛋白质的连接(intein-mediated pro-tein ligation,IPL)奠定了基础[9]。IPL不但可以连接化学合成的肽段,也可连接2个表达的大肽片断或蛋白质,大大拓宽了蛋白类药物制备的方法学。Arnold等[10]首次成功地探索了IPL法半合成含有124个氨基酸残基的RNase A。蛋白质内含子介导的蛋白质连接法在蛋白质的合成中具有重要意义:(1)它可以直接缩合大片段肽,而且产率高,从而使合成蛋白的大小远远超过蛋白子介导的蛋白质连接[9]了化学合成法;(2)通过该方法可以对蛋白质进行模拟转录后修饰,如糖基化、磷酸化等;(3)通过该法可在蛋白质中引入非天然序列,如非天然氨基酸残基、非天然辅助因子等;(4)对大分子蛋白进行分段连接与标记如荧光、同位素、生物素等,制备高分子质量标记蛋白质,可为N M R分析蛋白质构象提供样品。 2给药系统 2.1注射类给药

丝氨酸蛋白酶 (2)

丝氨酸蛋白酶 摘要:丝氨酸蛋白酶是一种种类丰富的酶类【1】,之所以以此命名是因为在酶的催化活性位点上包含丝氨酸在内的丝氨酸、组氨酸、天冬氨酸组成的催化三联体。有些丝氨酸蛋白酶类如凝血酶类蛋白酶,其中包括凝血酶,组织纤维蛋白溶酶原激活剂、血纤维蛋白溶酶,它们参与凝血的发生以及炎症应答反应;也有些如胰蛋白酶类的丝氨酸蛋白酶类的参与消化的酶类,包括胰蛋白酶、弹性蛋白酶、胰凝乳蛋白酶;还有一些表达在神经系统中的丝氨酸蛋白酶类,这些酶类与神经系统正常的维持或是介导病理情况的发生。其实丝氨酸蛋白酶类在执行功能的时候也受到许多因素的限制,如受一些抑制剂的影响等,这些物质对蛋白酶功能的执行起到重要的作用。 关键词:丝氨酸蛋白酶催化机制功能调节 酶的功能 已知所有的蛋白分解酶类丝氨酸蛋白酶占到了其中的三分之一,这些酶又可以细分成很多种类有胰蛋白酶、胰凝乳蛋白酶、弹性蛋白酶、凝血酶、纤溶酶、组织纤溶酶原激活剂、神经源类的丝氨酸蛋白酶等。这些酶类具有消化凝血、纤溶、消化、受精、生长发育、凋亡、免疫等方面都有重要的作用。 酶的催化位点 由于丝氨酸蛋白酶的种类很多根据其催化的特点以及种树亲疏性可以分成不同的类别,不同的组织器官,不同的生物种系中酶的分布与种类是不同的(见表格)。但是其催化特点通常都是其反应的催化三联体,丝氨酸的亲核攻击,即丝氨酸的羟基攻击酰胺键的羰基碳,但是在生物进化的长时间了这种催化活性结构也发生了改变。如在有些酶中其催化三联体不在是固定的丝氨酸、天冬氨酸、组氨酸,而是只有丝氨酸与天冬氨酸或是组氨酸的一种组成催化活性位点,也有的如组氨酸成对出现于丝氨酸组合形成新的催化结构,但是无论怎样其上的丝氨酸残基是固定保守的。 酶的活化 对于丝氨酸蛋白酶类的活化,一般来说是通过对酶前体【2】的加工使其形成具有催化活性的酶,或者是通过一些辅助因子的协同作用使其由闭合的非活化状态转成活性状态,也有通过信号的捕获诱发一系列的级联反应从而活化蛋白,或是通过一些关键因子的作用使得构想发生改变来实现活化等等。通常来说酶的状态一种是抑制非活化状态,另一种是活化的活性状态,但是在一些研究中酶具有新的状态,而这种状态与酶原或是缺少辅因子而显示无活性的酶的状态是不同的,虽然这种状态下的酶也没有活性,但是其结构上出现一些特有的变化,在对凝血酶的研究中发现,这种状态称为E*【3】,其伴有一些氨基酸链陷入酶的催化活性部位从而破坏其中的氧离子空穴,致使没得活性受阻,因此对于这种酶的活化一定有其他的方式,研究发现当E*状态下在远离活性部位连接一种配体时会将这种氨基酸陷入活性位点的状况扭转过来,从而恢复酶的活性位点,并在其他因子的作用下得到活化。 酶的催化机制 对于丝氨酸蛋白酶类的催化活性,有的是通过前体酶原的活化,比如胰蛋白酶类

2019年中国重组蛋白药物市场现状及需求趋势分析报告

关注公众号“三个皮匠”获取最新行业资讯 更多行业研究投资报告下载请搜索https://www.doczj.com/doc/65752827.html,/hybg.html

目录 1. 生物制药:持续高景气的朝阳产业 (6) 1.1 结构复杂、壁垒更高的大分子药 (6) 1.2 长期持续高景气的制药细分领域 (7) 1.2.1 产品优化疗效致胜,全球市场高速发展 (7) 1.2.2 政策利好渗透加强,国内迎来庞大机遇 (9) 1.2.3 生物新药研发投入加大,拉动相关产业发展 (10) 2. 抗体药物:政策支持国产上市,迎来高速发展黄金期 (11) 2.1 生物药物领域的璀璨明珠 (11) 2.1.1 技术升级打造出的重磅炸弹 (11) 2.1.2 主要应用于肿瘤和免疫疾病领域 (12) 2.2 国内市场尚未充分打开,迎来高速发展黄金期 (12) 2.2.1 全球市场持续领跑,国内市场尚未充分打开 (13) 2.2.2 政策支持叠加国产上市,迎来高速发展黄金期 (13) 2.3 先发优势形成领先梯队,质量与速度构成制胜要素 (14) 2.3.1 早期布局初见曙光,领先梯队逐步形成 (14) 2.3.2 临床价值制胜关键,重点跟踪研发进度 (14) 3. 重组蛋白药物:潜在市场巨大,关注国产替代与产品升级 (16) 3.1 生物药物领域的专科王牌 (16) 3.1.1 重组蛋白药物,细分领域各具特色 (16) 3.1.2 重组人生长激素,增高领域的王牌 (17) 3.2 潜在市场巨大,关注国产替代与产品升级 (18) 3.2.1 国内市场增长放缓,水针粉针增速均有下滑 (18) 3.2.2 国产品种优势明显,金赛药业龙头地位稳固 (19) 3.2.3 治疗渗透率相对较低,潜在市场空间巨大 (20) 3.2.4 长效、水针更具优势,产品迭代升级大势所趋 (20) 4. 血液制品:行业平稳发展,渠道恢复强者恒强 (21) 4.1 生物药物领域的资源稀缺品 (21) 4.1.1 单采血浆,国内血制品企业唯一采浆途径 (21) 4.1.2 血液制品,长期供不应求的资源稀缺品 (22) 4.2 渠道恢复平稳发展,血制品持续高景气 (23) 4.2.1 全球市场稳定增长,行业集中度较高 (23) 4.2.2 历经整顿到规范,国内市场恢复平稳 (24) 4.2.3 两票制带来一过性的高库存逐渐恢复 (26) 4.3 浆站资源为王,龙头强者恒强 (27) 4.3.1 受制于严格的政策监管,国内采浆量增长空间巨大 (27) 4.3.2 千吨级别采浆量领先梯队,有望实现强者恒强 (28)

相关主题
文本预览
相关文档 最新文档