当前位置:文档之家› GIS矢量数据分析与栅格数据分析实验

GIS矢量数据分析与栅格数据分析实验

GIS矢量数据分析与栅格数据分析实验
GIS矢量数据分析与栅格数据分析实验

本科学生实验报告姓名尹永义学号

专业地理科学班级 2014B _

实验课程名称地理信息系统概论(实验)

实验名称矢量数据分析与栅格数据分析

指导教师及职称速绍华(讲师)

开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景:

矢量数据分析矢量数据以点、线和面空间要素为输入数据。

分析结果的准确性取决于空间特征的位置及形状的准确性。

拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。

基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个

区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。

在指定距离之内的区域称为缓冲区。

围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕

每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边界向外延伸的缓冲区。

对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右侧建立缓冲区。

缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变化。

缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。

地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新的输出图层。

输出图层的几何形状代表来自各输入图层的要素的几何交集。

输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于其邻域。

所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。

若使用 AND 连接符,则此叠置操作为求交(Intersect)。

若使用 OR 连接符,则此叠置操作称为联合(Union)。

若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical

Difference)或差异(Difference)。

若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR(Input Layer),则该叠置操作称为识别(Identity)或减去(Minus)。

模式分析是关于二维空间点要素空间分配的研究。

在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚的。

在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的

局部集聚。

模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)

和量测高/低聚集度的G 统计量。

栅格数据分析

栅格数据分析是基于栅格像元和栅格的。

栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上

进行。

一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数据。

栅格数据分析也应考虑像元数值类型(数字型数值,类别型数值)。

栅格数据分析环境包括分析的区域范围和输出像元大小。

局域运算

局域运算是一个像元接一个像元运算,建立栅格数据分析的核心。

局域运算由单个或多个输入栅格生成一个新的栅格。

格局域运算:单一栅格

假定以单一栅格为源数据,基于输入栅格的像元值,局域运算通过空间数学函数计算输出栅格的每个像元值。

由于可以用多个栅格图层进行运算,所以局域运算相当于基于矢量的地图叠置操作。

除了可用于独立栅格的数学公式外,其他的基于输入栅格的像元值或其

频率的度量也都可存储于输出栅格。

邻域运算

邻域运算,涉及一个焦点像元和一组环绕像元。环绕像元是按其相对于焦点像元的距离和(或)方向性关系来选定的。

邻域运算得到的既可以是最小值、最大值、值域、总和、平均值、中值、标准差等统计值,也可以是众数、少数和种类数等测量值列表。

常见的邻域类型有矩形、圆形、环形和楔形。

分区运算

分区运算用于处理相同值或相似要素的像元分组。这些组称为分区。分区可以是连续的或不连续的。

分区运算可对一个或两个栅格进行处理。

若为单个输入栅格,分区运算量测每个分区的几何特征,如面积、周长、厚度(Thickness)和重心。

给定两个栅格(一个输入栅格和一个分区栅格),要求以分区栅格的区

域为范围对输入栅格进行分区运算生成输出栅格,输出栅格对分区栅格的每个分区概括了输入栅格的像元值。

自然距离量测运算

距离可以表达为自然距离和耗费距离。

自然距离量测运算是计算与源像元的直线距离。

配置与方向

配置栅格中的像元值对应于距该像元最近的源像元。

方向栅格中的像元值对应于距它最近的源像元的方向值。

其他的栅格数据运算

1.栅格数据管理的操作包括剪取(Clip)和镶嵌(Mosaic)。

2.栅格数据提取是指从一个现有栅格提取数据生成一个新的栅格。提取栅格

数据的工具可以是一个数据集、图形对象或查询表达式。

3.栅格数据的综合归纳包括聚合(Aggregate)和区组(Regiongroup)。基于矢量与基于栅格的数据分析的比较

矢量数据分析和栅格数据分析是GIS分析的两种基本类型。GIS软件包不

能在相同操作中同时进行这两种分析,因此被分开处理。

一般原则是,对于项目,选择有效的和适当的数据分析类型。

二、实验内容、步骤和结果

三、实验小结

GIS矢量数据分析与栅格数据分析实验

G I S矢量数据分析与栅格 数据分析实验 This model paper was revised by the Standardization Office on December 10, 2020

本科学生实验报告姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。 栅格数据分析也应考虑像元数值类型(数字型数值,类别型数值)。

矢量数据空间分析

一、实验内容 利用实验数据进行缓冲区分析及叠加分析。 二、实验过程 4.1、缓冲区分析。 (1)打开数据。打开SuperMap iDesktop 8C,打开数据源,加载实验数据中的“叠加分析.udb和陕西.udb”,并将陕西数据源下的银行、市界_R和省界_R数据集依次添加到同一图层上,并依据“点线面,由小及大”的原则叠放,如下图所示; (2)建立缓冲区-单重缓冲区-多重缓冲区。 1)单重缓冲区-点数据。选择分析->矢量分析->缓冲区->缓冲区,如下图所 示;

在弹出的面板中选择缓冲数据“陕西数据源-银行数据集”,缓冲半径设置为字段型,设置为缓冲区距离,设置一下结果数据,具体如下图所示,点击确定; 得到结果,如下图所示,生成的缓冲区半径都是不一样的;

2)线数据。将陕西数据源中的水系数据集加载到同一个图层中,点击分析-> 矢量分析->缓冲区->缓冲区,在弹出的面板中,数据类型变为线数据,缓冲类型设置为圆头缓冲,数值型半径设置为5000,将结果数据设置一下,具体如下图所示,点击确定; 调整一下图层顺序,可以看到其结果,如下图所示;

在进行一下分析,将缓冲类型改为平头缓冲,将数值型中的左半径设置为10000,右半径设置为5000,设置一下结果数据,如下图所示,点击确定; 其结果如下图所示,可以看到其缓冲类型与上一个结果的明显不同,左半径明显大于右半径;

3)多重缓冲区。选择分析->矢量分析->缓冲区->多重缓冲区,在弹出的面板 中,数据集选择之前以水系数据集生成的结果数据,在缓冲半径列表部分 选择->批量添加,在弹出的面板中 设置其起始值为500,结束值为5000,步长为500,如下图所示,点击确定;

上机十一 矢量数据分析

上机十一矢量数据分析 一、目的与任务 1. 熟悉并掌握ArcGIS环境下矢量数据分析的基本工具,包括建立Buffer、Overlay和Select。 2. 熟悉并掌握ArcGIS环境下地图叠置、距离量测和空间自相关的基本操作。 二、实验准备 1. 人员组织:以班为单位由教师进行操作上的讲解演示。 2. 仪器资料:计算机、多媒体、已安装的ArcGIS软件、上机实验指导书。 3. 数据:landuse、soils和sewers等shapefile文件,boise_fire、fire1986和fire1992等要素类文件。 三、内容与方法 本节应用部分包括4个习作。习作1涵盖了矢量数据分析的基本工具,包括建立Buffer、Overlay和Select。因为ArcGIS不会自动更新地图叠置输出图层(shapefile格式)中的面积和周长值,所以习作1还用Calculate Geometry 来计算面积和周长。习作2涉及多组分多边形的地图叠置操作。习作3介绍两种不同方法用于点与线要素之间的距离量测。习作4进行空间自相关。 习作1:缓冲区建立和地图叠置 所需数据:landuse、soils和sewers的shapefile文件。 习作1模拟进行实际项目的GIS分析。该习作目的是按以下选址标准,为新的大学水产养殖实验室找到一个合适地点:

土地利用类型以灌木林地为宜(例如landuse.shp中的字段lucode=300)。 选择适宜开发的土壤类型(例如soils.shp中的字段suit>=2)。 必须位于距离下水道300米之内。 1.启动ArcCatalog,连接到Chap11数据库。启动ArcMap,添加sewers.shp、 soils.shp和landuse.shp到图层中,将图层改名为为Task1。其中的3个shapefile图层均以米为距离单位。 2.首先,建立sewers的缓冲区。单击打开ArcToolbox窗口。从ArcToolbox 快捷菜单中设置Environments(环境),将Chap11数据库设置为当前工作空间。在Analysis Tools/Proximity(分析工具/邻域分析)工具箱内双击Buffer(缓冲区)工具。在出现的Buffer对话框中选择sewers为输入要素集,sewerbuf.shp作为输出要素集,输入300(米)作为距离,选择ALL 为dissolved type(融合类型),然后单击OK。打开sewerbuf的属性表。 可以看到属性表中只有一条记录对应于已作边界消除的缓冲区。 3.接着进行soils、landuse和sewerbuf地图叠置操作。在Analysis Tools/Overlay (分析工具/叠加分析)工具箱内双击Intersect(相交)工具。选择soils、landuse和sewerbuf作为输入要素类。输入final.shp,作为输出要素类。单击OK执行操作。 4.最后一步是从final中选择符合前两项标准的多边形。在Analysis Tools/Extract(分析工具/提取分析)工具箱内双击Select(筛选)工具。 选择final为输入要素类命名为sites.shp,并单击用于输入表达式的SOL 按钮。在出现的Query Builder(查询构建器)对话框中,输入以下表达式:“SUIT”>=2 AND “LUCODE”=300。单击OK,退出该对话框。

矢量分析与场论

矢量分析与场论 第一章 矢理分析 1.1 矢性函数 1. 矢性函数的定义:数性变量t 在一范围G 内,对于任意的t 都有唯一确定的矢量A 与其 对应则称A 是t 的矢性函数,并称G 为A 的定义域,记作:()A A t = 2. 矢性函数的极限和连续性 (1) 矢性函数极限的定义:()A t 在0t 某领域内有定义,对于0ε?>,0δ?>,常矢 量0A ,只要为0<0t t δ-<就有0()A t A ε-< ,则称0A 为()A t 当0t t →的极 限,记作:0 0lim ()t t A t A →= ; 极限的性质:(有界性)若0 0lim ()t t A t A →= ,则0δ?>,M>0,0(;)t U t δ?∈ 都有 ()A t M < 。 证明: 0lim ()1,0,..(;) t t A t A s t t U t εδδ→=∴=?>?∈ 都有0()1A t A ε-<= ,00()()1A t A A t A ∴-<-< , 0()1A t A ∴<+ ,取M=01A + 极限的则运算:0 lim ()()lim ()lim ()t t t t t t u t A t u t A t →→→=? 000l i m (()())l i m ()l i m () t t t t t t A t B t A t B t →→→±=± lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? lim(()())lim ()lim ()t t t t t t A t B t A t B t →→→?=? 其中()u t ,()A t ,()B t 当0t t →时极限均存在。 证明:设0 0lim ()t t A t A →= ,0 0lim ()t t u t u →=,0 0lim ()t t B t B →= ; 000000()()()()()()u t A t u A u t A t u A t u A t u A -=-+- ,

全的矢量分析与场论讲义(必考

矢量分析与场论 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5 在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为:

在ArcGIS下基于Python的矢量数据处理方法

测绘技术装备 第18卷 2016年第4期 技术交流 63 在ArcGIS 下基于Python 的矢量数据处理方法 林璐 王爽 李海泉 侯兴泽 马鹏刚 (国家测绘地理信息局第二地形测量队 陕西西安 710054) 摘 要:在ArcGIS 中地理处理可以通过Python 脚本语言来具体实现。通过Python 串联Arcgis 的地理处理工具,实现工作流自动化完成,同时,实践批处理过程,解放人工的机械重复工作,提高效率,进而保证数据质量。现以地形图中示坡线的正确、严谨表达为实践案例,介绍了在ArcGIS 下利用Python 处理矢量数据,为矢量数据处理的高效、自动化提供解决方法。 关键词:Python ARCGIS 地理处理 示坡线 1 引言 地理处理是GIS 用户应用的重要组成部分,ArcGIS 的ArcToolbox 窗口为GIS 用户提供了数百个地理处理。对于数据处理人员在使用ArcGIS 地理处理工具时,就会遇到这样的难题,如何将几个简单的地理处理工具串联起来,自动化地完成一个简单工作流,使得人工操作转换为自动化的程序批处理 过程[1] 。 Python 是一种不受局限、跨平台的开源编程语言,它功能强大且简单易学。同时,它可伸缩程度高,适于大型项目或小型的一次性程序(称为脚本), 并且可嵌入(使ArcGIS 可脚本化)。目前,Python 已延伸到ArcGIS 中,成为了一种用于进行数据分析、数据转换、数据管理和地图自动化的语言。运用 Python 语言可以实现对地理数据的批处理,从而有 助于提高工作效率[2] 。 2 开发案例说明 示坡线,是指示斜坡降落的方向线,它与等高线垂直相交。一般表示在谷地、山头、鞍部、图廓边及斜坡方向不易判读的地方。凹地的最高、最低 一条等高线上也应表示示坡线[3] 。在测绘4D 产品之一的数字线划图(DLG)中,示坡线一般以有向点或有向线(长度为定值的线段)的方式表达。其中,有向点应严格捕捉相应等高线,通过填写要素角度属性项表达所示方向;有向线为线段,起始节点应严格捕捉相应等高线,终止节点指向所示方向,线段长度为规范要求长度。 图1 山丘、山峰和盆地、洼地的示坡线示意图 一般在DLG 制作过程中,特别是中小比例尺地形图,通常利用立体测图系统,在恢复立体影像相对模型的情况下,人工判断地貌,并采集示坡线。采集时要求在对应等高线采集第一点,沿斜坡的方向采集第二点。为提高生产效率及生产工序技术要求,此时采集的示坡线,不符合前述DLG 拓扑规范要求。存在未严格捕捉等高线,造成悬挂和相交的拓扑问题;或示坡线要素长度不定,不符合技术要求;亦或示坡线采集图形上看正确,实际上刚好与要求相反,是由斜坡降落方向向等高线采集。这些情况致使下工序矢量数据编辑处理时,需要人工核对、修改,工作量大且繁琐(尤其是在沙漠、特殊丘陵地区,1幅1∶10000比例尺地形图可能需要上千个示坡线表示地貌形态),如果作业人员责任心不足还易造成质量隐患。 3 处理方案设计 3.1 方案设计思路 数据要素处理的关键是两点:一是解决拓扑问题,二是实现示坡线角度正确表达。因此解决思路是:首先,要满足拓扑要求,即相应要素之间严格

矢量分析与场论讲义

矢量分析与场论 第一章矢量分析 一内容概要 1矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2本章所讨论的,仅限于一个自变量的矢性函数 A t ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数A x,y或者A x, y,z,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3本章的重点是矢性函数及其微分法,特别要注意导矢A't的几何意义,即 A' t是位于A t的矢端曲线上的一个切向矢量,其起点在曲线上对应t值的点处,且恒指向t值增大的一方。 如果将自变量取为矢端曲线的弧长S,即矢性函数成为A = A s,则 A' s =d A不仅是一个恒指向S增大一方的切向矢量,而且是一个单位ds 切向矢量。这一点在几何和力学上都很重要。 4矢量A t保持定长的充分必要条件是 A t与其导矢A' t互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数 e t = cost i si nt j为单 位矢量,故有e t _e't,此外又由于e' t = ei t,故e t — & t。(圆函数还可以用来简化较冗长的公式,注意灵活运用)。 5在矢性函数的积分法中,注意两个矢性函数的数量积和两个矢性函数的矢量积的分部积分法公式有所不同,分别为: A B'dt 二AB— B A'dt

A B'dt 二 A B B A'dt 前者与高等数学种数性函数的分部积分法公式一致,后者有两两项变为了求和,这是因为矢量积服从于“负交换律”之故。 6在矢量代数中,在引进了矢量坐标之后,一个空间量就和三个数量构成 对应关系,而且有关矢量的一些运算,例如和、差以及数量与矢量的乘积都可以转化为三个数量坐标的相应运算。同样,在矢量分析中,若矢性函数采用坐标表示式,则一个矢性函数就和三个数性函数构成一一对应关系,而且有关矢性函数的一些运算,例如计算极限、求导数、求积分等亦可以转化为对其三个坐标函数的相应运算。 7矢性函数极限的基本运算公式(14)、导数运算公式(p11)、不定积分 的基本运算公式(p16)典型例题: 教材p6 例2、p10 例4、p12 例6、p13 例7。习题一(p19~20) 此外还有上课所讲的例题。补充: 1 2 TT 1)设r 二a0]亠b k,求S 二-i ir r' d^ 2)一质点以常角加速度沿圆周r = ae「运动,试证明其加速度 2 八-£r,其中v为速度v的模。 a 3)已知矢量 A =t i -2t j l nt k , B = e t i si nt j - 3t k ,计算积分.A B' dt。 4)已知矢量 A = t i 2t j , B = cost i sint j ? e,k,计算积分A B'dt。 第二章场论一内容概要1本章按其特点可以划分为三部分:第一部分为第一节,除介绍场的概念外,主要讨论了如何从宏观上利用等值面(线)和矢量线描述场的分布规律;第二部分为第二、三、四节,内容主要是从微观方面揭示场的一些重要特性;第三部分为第五节,主要介绍三种具有某种特性而又常见的矢量场。其中第二部分又为本章之重点。 2空间数量场的等值面和平面数量场的等值线以及矢量场的矢量线等,都是为了能够形象直观地体现所考察的数量uM或矢量A M在场中的宏观分布情况而引入的概念。 比如温度场中的等温面,电位场中的等位面,都是空间数量场中等值

Arcgis矢量数据处理案例

. Arcgis空间数据处理案例 空间数据处理 (2) 第1步裁剪要素 (2) 第2步拼接图层 (4) 第3步要素融合 (5) 第4步图层合并 (7) 第5步图层相交 (9) 定义地图投影 (10) 第6步定义地理坐标系统 (10) 第7步投影变换,(地理坐标系->北京1954坐标系转换->西安80坐标系) (11) 补充:图层相减,计算面积 (12)

空间数据处理 ●数据:云南县界.shp; Clip.shp西双版纳森林覆盖.shp 西双版纳县界.shp ●步骤: 将所需要的数据下载后,解压到到 e:\gisdata, 设定工作区:在ArcMap中执行菜单命令:<地理处理>-><环境>,在“环境设置”选项页里, 点击“工作空间”按钮,在工作空间对话框中的常规设置选项中,设定“临时工作空间”为 e:\gisdata 第1步裁剪要素 ◆在ArcMap中,添数据GISDATA\云南县界.shp,添加数据GISDATA\Clip.shp (Clip 中有四 个要素) ◆激活Clip图层。选中Clip图层中的一个要素,注意确保不要选中“云南县界”中的要素!

点击打开ArcToolbox, 指定输出要素类路径及名称,这里请命名 为“云南县界_Clip11” 指定输入类:云南县界 指定剪切要素:Clip(必须是多边形要素) 依次选中Clip主题中其它三个要素,重复以上的操作步骤,完成操作后将得到共四个图层(“云 南县界_Clip11” , “云南县界_Clip12”,“云南县界_Clip21”,“云南县界_Clip22” )。 注:1.观察剪切后面积是否有变化; 2.如果用split是否可以,如可以,需要怎么做?(用文本型字段进行split)

矢量分析与场论课后答案.

矢量分析与场论 习题1 1.写出下列曲线的矢量方程,并说明它们是何种曲线。 ()1x a t y b t cos ,sin == () 2x t y t z t 3sin ,4sin ,3cos === 解: ()1r a ti b tj cos sin =+,其图形是xOy 平面上之椭圆。 ()2r ti tj tk 3sin 4sin 3cos =++,其图形是平面430x y -=与圆柱面 2223x z +=之交线,为一椭圆。 4.求曲线3 2 3 2,,t z t y t x = ==的一个切向单位矢量τ。 解:曲线的矢量方程为k t j t ti r 3 2 3 2+ += 则其切向矢量为k t tj i dt dr 222++= 模为24221441|| t t t dt dr +=++= 于是切向单位矢量为 2 22122||/t k t tj i dt dr dt dr +++= 6.求曲线x a t y a t z a t 2 sin ,sin2,cos ,===在t π 4 = 处的一个切向矢量。 解:曲线矢量方程为 r a ti a tj a tk 2sin sin2cos =++ 切向矢量为r a ti a tj a tk t τd sin22cos2sin d ==+- 在t π 4 = 处,t r ai a k t π τ4 d d = = =- 7.求曲线t t z t y t x 62,34,12 2-=-=+= 在对应于2=t 的点M 处的切线方程和 法平面方程。 解:由题意得),4,5,5(-M 曲线矢量方程为,)62()34()1(22k t t j t i t r -+-++=

矢量分析与场论讲义

矢量分析与场论 矢量分析是矢量代数和微机分运算的结合和推广,主要研究矢性函数的极限、连续、导数、微分、积分等。而场论则是借助于矢量分析这个工具,研究数量场和矢量场的有关概念和性质。通过这一部分的学习,可使读者掌握矢量分析和场论这两个数学工具,并初步接触到算子的概念及其简单用法,为以后学习有关专业课程和解决实际问题,打下了必要的数学基础。 第一章 矢量分析 一 内容概要 1 矢量分析是场论的基础,本章主要包括以下几个主要概念:矢性函数及其极限、连续,有关导数、微分、积分等概念。与高等数学研究过的数性函数的相应概念完全类似,可以看成是这些概念在矢量分析中的推广。 2 本章所讨论的,仅限于一个自变量的矢性函数()t A ,但在后边场论部分所涉及的矢性函数,则完全是两个或者三个自变量的多元矢性函数()y x ,A 或者()z y x ,,A ,对于这种多元矢性函数及其极限、连续、偏导数、全微分等概念,完全可以仿照本章将高等数学中的多元函数及其有关的相应概念加以推广而得出。 3 本章的重点是矢性函数及其微分法,特别要注意导矢()t 'A 的几何意义,即()t 'A 是位于()t A 的矢端曲线上的一个切向矢量,其起点在曲线上对应t 值的点处,且恒指向t 值增大的一方。 如果将自变量取为矢端曲线的弧长s ,即矢性函数成为()s A A =,则()ds d s A A ='不仅是一个恒指向s 增大一方的切向矢量,而且是一个单位切向矢量。这一点在几何和力学上都很重要。 4 矢量()t A 保持定长的充分必要条件是()t A 与其导矢()t 'A 互相垂直。因此单位矢量与其导矢互相垂直。比如圆函数()j i e t t t sin cos +=为单位矢量,故有()()t t 'e e ⊥,此外又由于()()t t 1'e e =,故()()t t 1e e ⊥。(圆函

矢量数据与栅格数据

矢量数据与栅格数据 1.矢量数据 矢量数据主要是指城市大比例尺地形图。此系统中图层主要分为底图层、道路层、单位 层,合理的分层便于进行叠加分析、图形的无逢拼接以实现系统图形的大范围漫游。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误,显示的图形一般分为矢量图和位图。 矢量数据是计算机中以矢量结构存贮的内部数据。是跟踪式数字化仪的直接产物。在矢量数据结构中,点数据可直接用坐标值描述;线数据可用均匀或不均匀间隔的顺序坐标链来描述;面状数据(或多边形数据)可用边界线来描述。矢量数据的组织形式较为复杂,以弧段为基本逻辑单元,而每一弧段以两个或两个以上相交结点所限制,并为两个相邻多边形属性所描述。在计算机中,使用矢量数据具有存储量小,数据项之间拓扑关系可从点坐标链中提取某些特征而获得的优点。主要缺点是数据编辑、更新和处理软件较复杂。 2..栅格数据 栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。一个优秀的压缩数据编码方案 是:在最大限度减少计算机运算时间的基点上进行最大幅度的压缩。 栅格数据是按网格单元的行与列排列、具有不同灰度或颜色的阵列数据。栅格结构是大小相等分布均匀、紧密相连的像元(网格单元)阵列来表示空间地物或现象分布的数据组织。是最简单、最直观的空间数据结构,它将地球表面划分为大小、均匀、紧密相邻的网格阵列。每一个单元(象素)的位置由它的行列号定义,所表示的实体位置隐含在栅格行列位置中,数据组织中的每个数据表示地物或现象的非几何属性或指向其属性的指针。对于栅格结构:点实体由一个栅格像元来表示;线实体由一定方向上连接成串的相邻栅格像元表示;面实体(区域)由具有相同属性的相邻栅格像元的块集合来表示。

第一章矢量分析

1矢量分析 1.在球面坐标系中,当?与φ无关时,拉普拉斯方程的通解为:()。 2.我们讨论的电磁场是具有确定物理意义的(),这些矢量场在一定的区域内具有一定的分布规律,除有限个点或面以外,它们都是空间坐标的连续函数。 3. 矢量场在闭合面的通量定义为,它是一个标量;矢量场的()也是一个标量,定义为。 4. 矢量场在闭合路径的环流定义为,它是一个标量;矢量场的旋度是一个(),它定义为。 5.标量场u(r)中,()的定义为,其中n为变化最快的方向上的单位矢量。 6. 矢量分析中重要的恒等式有任一标量的梯度的旋度恒为()。 任一矢量的旋度的散度恒为()。 7. 算符▽是一个矢量算符,在直角坐标内,,所以 是个(),而是个(),是个()。

8. 亥姆霍兹定理总结了矢量场的基本性质,分析矢量场总要从它的散度和旋度开始着手,()方程和()方程组成了矢量场的基本微分方程。 9. ()坐标、()坐标和球坐标是电磁理论中常用的坐标 10. 标量:()。如电压U、电荷量Q、电流I、面积S 等。 11. 矢量:()。如电场强度矢量、磁场强度矢量、作用力矢量、速度矢量等。 12. 标量场:在指定的时刻,空间每一点可以用一个标量()地描述,则该标量函数定出标量场。例如物理系统中的温度、压力、密度等可以用标量场来表示。 13. 矢量场:在指定的时刻,空间每一点可以用一个矢量()地描述,则该矢量函数定出矢量场。例如流体空间中的流速分布等可以用矢量场来表示。 14. 旋度为零的矢量场叫做() 15. 标量函数的梯度是(),如静电场 16.无旋场的()不能处处为零 17. 散度为零的矢量场叫做() 18. 矢量的旋度是(),如恒定磁场 19.无散场的()不能处处为零 20.一般场:既有(),又有() 21.任一标量的梯度的旋度恒为()

矢量数据的获取与处理

第3章矢量数据与栅格数据的获取及处理 导读:GIS项目中费用最大的部分是数据库建设,即基础地理信息的获取与处理,这其中就包括矢量数据和栅格数据的获取与处理,例如遥感影像数据现已作为地理信息系统的重要数据来源。本章分别介绍了矢量数据的获取与处理以及栅格数据的获取与处理,以及他们的应用。并在最后一节介绍了矢栅一体化数据结构的基本概念。 3.1矢量数据的获取与处理方法 3.1.1矢量数据的概念 矢量数据(Vector Data)即在直角坐标系中,用X、Y坐标表示地图图形或地理实体的位置的数据。矢量数据一般通过记录坐标的方式来尽可能将地理实体的空间位置表现的准确无误。 在计算机地图制图中,各地图图形元素在二维平面上的矢量数据表示为:点——用一对(x,y)坐标表示; 线——用一串有序的(x,y)坐标对表示; 面——用一串有序的但首尾坐标相同的(x,y)坐标对表示其轮廓范围。 地图数据与其他大多数由计算机处理的科学数据是极其不同的。大部分地图数据都是反映制图现象的地理分布,故具有定位的性质,也称这类地图数据为空间数据(或几何数据)。空间数据可反映点、线和面状物体的定位特性。还有一部分地图数据是用来描述制图现象的质量和数量特征,如哪是河流,哪是道路,哪是居民点以及它们的名称和其他有关的特征描述等,这类数据通常称之为属性数据。任何地图数据都有时间性,即现势性,这是显而易见的。 3.1.2几何数据的获取 几何数据是根据给定各要素相对位置或绝对位置的坐标来描述的。其获取的方法主要有:

1)由外业测量获得,如数字测图。野外实地测量等获取的数据可转换后直接进入GIS的地理数据库,以便于进行实时的分析和进一步的应用。GPS所获取的数据也是GIS的重要数据源。 2)由栅格形式的空间数据转换获得。栅格数据结构向矢量数据结构的转换又称为矢量化。如卫星测地、扫描数字化仪扫描、航摄像片等。可以用此类数据转化为矢量数据。 基于图像数据的矢量化方法: ①二值化:线画图形扫描后产生图像栅格数据,这些数据是按0~255的不同灰度值量度的,将这种256级不同的灰度压缩到2个灰度形成二值图,即0和1两级灰度图。 ②细化:细化是消除线画横断面栅格数的差异,使得每一条线只保留代表其轴线或周围轮廓线位置的单个栅格的宽度。对于栅格线画的细化方法,可分为“剥皮法”和“骨架法”。 ③跟踪:跟踪的目的是将细化处理后的栅格数据转化为从节点出发的线段或闭合的线条,并以矢量形式存储线段的坐标。跟踪时,从起始点开始,根据八个邻域进行搜索下一个相邻点的位置,记录坐标,直到完成全部栅格数据的矢量化。 3)对现有地图跟踪数字化获得,将现有的地图图形离散化为数据。 跟踪数字化是目前应用最广泛的一种地图数字化方式,是通过记录数字化板上点的平面坐标来获取矢量数据的。其基本过程是:将需数字化的图件(地图、航片等)固定在数字化板上,然后设定数字化范围、输入有关参数、设置特征码清单、选择数字化方式(点方式和流方式等),就可以按地图要素的类别分别实施图形数字化了。 由于跟踪数字化本身几乎不需要GIS的其它计算功能,所以跟踪数字化软件往往可以与整个GIS系统脱离开,因而可单独使用。

第一章 矢量分析典型例题

第一章 矢量分析 1.1.试证明下列三个矢量: x y z 11e 9e 18e A =++ ,x y z 17e 9e 27e B =++ ,x y z 4e 6e 5e C =-+ 在同一平面上。 1.2.给定三个矢量A ,B 和C 如下: x y z e 2e 3e A =+- ,y z 4e e B =-+ ,x y 5e 2e C =- 求:1)A e (A e 表示矢量A 方向上的单位矢量)。 2)B A ? 3)A C ? 1.3.证明:如果C A B A ?=?且A B A C ?=? ,则B C = 。 1.4.如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确 定该未知矢量。设A 为一已知矢量,P A X = 而P A X =? ,P 和P 已知,试求X 。 1.5.设标量2 3 u xy yz =+,矢量x y z 2e 2e e A =+- ,试求标量函数u 在(2,1,1) -处沿矢量A 的方向上的方向导数。 1.6.设232(,,)3u x y z x y y z =-,求u 在点(1,2,1)M -处的梯度。 1.7.设23 x y z e e (3)e A x y z x =++- ,求A 在点(1,0,1)M -处的散度。 1.8.设324x y z e 2e 2e A xz x yz yz =-+ ,求A 在点(1,1,1)M --处的旋度。 1.9.求1 ()r ?。 1.10.设r =(,,)M x y z 的矢径r 的模,试证明:0r r r r ?= = 。 1.11.计算:1)矢量r 对一个球心在原点,半径为a 的球表面的积分。 2)??对球体积的积分。 1.12.求矢量22 x y z e e e A x x y z =+- 沿,x y 平面上的一个边长为2的正方形回 路的线积分,此正方形的两个边分别与x 轴和y 轴相重合。再求A ?? 对此回路

GIS矢量数据分析与栅格数据分析实验完整版

G I S矢量数据分析与栅 格数据分析实验 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本科学生实验报告 姓名尹永义学号 专业地理科学班级 2014B _ 实验课程名称地理信息系统概论(实验) 实验名称矢量数据分析与栅格数据分析 指导教师及职称速绍华(讲师) 开课学期 2014 _至_ 2015_学年_下学期云南师范大学旅游与地理科学学院编印

3、实验理论依据或知识背景: 矢量数据分析矢量数据以点、线和面空间要素为输入数据。 分析结果的准确性取决于空间特征的位置及形状的准确性。 拓扑关系是一些矢量数据分析(如建立缓冲区和叠置分析)的一个因素。 基于邻近(Proximity)概念,建立缓冲区可把地图分为两个区域:一个区域位于所选地图要素的指定距离之内,另一个区域在指定距离之外。 在指定距离之内的区域称为缓冲区。 围绕点建立缓冲区产生圆形缓冲区。围绕线建立缓冲区形成一系列围绕每条线段的长条形缓冲带。围绕多边形建立缓冲区则生成由该多边形边 界向外延伸的缓冲区。 对线要素建立缓冲区未必在线两侧都有缓冲区,可以只在线的左侧或右 侧建立缓冲区。 缓冲距离(又叫缓冲大小)未必为常数,可以根据给定字段取值而变 化。 缓冲区边界也可以被融合掉,使得缓冲区之间没有叠置区。 地图叠置操作是将两个要素图层的几何形状和属性组合在一起,生成新 的输出图层。 输出图层的几何形状代表来自各输入图层的要素的几何交集。 输出图层的每个要素包含所有输入图层的属性组合,而这种组合不同于 其邻域。 所有叠置方法都是基于布尔连接符的运算,即AND、OR 和 XOR。 若使用 AND 连接符,则此叠置操作为求交(Intersect)。 若使用 OR 连接符,则此叠置操作称为联合(Union)。 若使用 XOR 连接符,则此叠置操作称为对称差异(Symmetrical Difference)或差异(Difference)。 若使用以下表达式 [(Input Layer)AND(Identity Layer)] OR (Input Layer),则该叠置操作称为识别(Identity)或减去 (Minus)。 模式分析是关于二维空间点要素空间分配的研究。 在整体水平上,模式分析可以揭示某分布模式是随机、离散还是集聚 的。 在局部水平上,模式分析可以检测出分布模式中是否含有高值或低值的局部集聚。 模式分析包括点模式分析、量测空间自相关的莫兰指数(Moran’s I)和量测高/低聚集度的G 统计量。 栅格数据分析 栅格数据分析是基于栅格像元和栅格的。 栅格数据分析能在独立像元、像元组或整个栅格全部像元的不同层次上进行。 一些栅格数据运算使用单一栅格,而另一些则使用两个或更多栅格数 据。

矢量及栅格数据分析实验报告

. 信息工程学院资源环境学院《GIS原理》实验报告 实验名称矢量及栅格数据分析 实验时间2015.4.22 实验地点资环楼229 姓名 学号 班级遥感科学与技术131

《GIS原理》实验报告 一、实验目的及要求 1)掌握矢量数据插值分析、栅格数据重分类、叠加分析的基本原理; 2)熟悉ArcGis 中离散点数据插值分析的基本方法; 3)熟悉ArcGis 中栅格数据重分类、栅格计算器的基本操作; 4)熟悉ArcGis 中栅格数据分区统计的基本方法; 5)了解ArcGis 中缓冲区分析、按掩膜提取的基本方法。 二、实验设备及软件平台 ArcCatalog 10、ArcMap 10.2 三、实验原理 1)数据插值分析 2)栅格数据重分类原理 3)叠加分析的基本原理 四、实验容与步骤 1 空间插值分析 1)打开ArcMap中,将数据框更名为“任务1”,加入省边界图层。

2)将2011 年02 月27 日08 时观测资料.xls、2011 年02 月27日14 时.xls 通过Add Xy Data 功能,生成点图层。导出数据,分别命名为Obs2708.shp 和Obs2714.shp。 3)对Obs2708.shp 中的属性“温度”在四川围进行插值分析。可以通过“Arctoolbox->Spatial Analyst(空间分析)工具中的Interpolate to Raster(插值)工具选择。(本实验采用反距离权重法IDW),点插值成栅格表面。

4)通过属性中的符号系统,修改显示样式。

2 多栅格局域运算 1)启动ArcMap,添加数据框,并更名为“任务2”,将温度栅格数据IDW2708、IDW2714 加入。 2)确认是否选择扩展模块的许可。“自定义菜单(Customize)”中的“扩展模块Extensions”功能对话框中的Spatial Analyst 均已打钩。

第一章矢量分析与场论基础题解

第一章 矢量分析与场论基础 1-1 求下列温度场的等温线 1)T xy =,2)T x y = +12 2 解 求等温线即设定相关的方程为常数,因此可得 ⑴ C xy =,x C y = ;⑵ C y x =+2 2 1-2 求下列标量场的等值面 1)u a x b y cz = ++1 ,2) =- u z x y 2 2 +, 3)u x y z =ln(++) 2 2 2 解 据题意可得 ⑴ k cz by ax =++ ⑵ c y x z =+- 2 2 ,() 2 2 2 c z y x -=+ ⑶ ()c z y x =++222ln ,c e z y x =++222,2222k z y x =++ 1-3 求矢量场A e e e =++x y z x y z 2 经过点M (.,.,.)102030的矢量线方程。 解 根据矢量线的定义,可得 z z y y x x 2d d d == 解微分方程,可得 x c y 1=,22x c z = 将点M (.,.,.)102030的坐标代入,可得 21=c ,32=c 即 x y 2=,23x z = 为所求矢量线方程。 1-4 求矢量场A e e e =++y x x y y z x y z 222的矢量线方程。 解 根据矢量线的定义,可得 z y z y x y x y x 2 2 2 d d d = = 解微分方程,可得 122c y x =-,x c z 2= 为所求矢量线方程。 1-5 设u x z yz xz ()M =+-+32222,求: 1)u ()M 在点M 0102030(.,.,.)处沿矢量l e e e =++yx zx xy x y z 方向的方向 导数, 2)u ()M 在点M 0(.,.,.)102030处沿矢量 l e e e =+-+-+()()622222x z z z y x x y z 方向的方向导数。 解 l 的方向余弦为 1722 32 2 cos 2 22 = ++= α, 17 32 32 3 cos 2 22 = ++= β,17 22 32 2cos 2 22 = ++= γ ;

矢量分析与场论第三版(谢树艺著)课后习题答案下载

矢量分析与场论第三版(谢树艺著)课后习题答案下载《矢量分析与场论(第3版)》由谢树艺编,是在《工程数学——矢量分析与场论》(第2版)的基础上修订而成的下面是由分享的矢量分析与场论第三版(谢树艺著)课后习题答案下载,希望对你有用。 ???点击此处下载???矢量分析与场论第三版(谢树艺著)课后习题答案 出版社:高等教育出版社;第4版(xx年5月1日) 平装:170页 语种:简体中文 开本:32 ISBN:7040348489,9787040348484 条形码:9787040348484 商品尺寸:19.6x13.6x0.8cm 商品重量:159g 品牌:高等教育出版社 ASIN:B0084XU730 本书各章包括:矢量分析,场论,哈密顿算子V,梯度、散度、旋度与调和量在正交曲线坐标系中的表示式。此外,考虑到某些学科领域的需要,作为本书的附录,增讲了若干正交曲线坐标系。《矢量分析与场论(第3版)》可作为一般工科院校本课程的教材使用。 第一章矢量分析 第一节矢性函数

1.矢性函数的概念 2.矢端曲线 3.矢性函数的极限和连续性 第二节矢性函数的导数与微分 1.矢性函数的导数 2.导矢的几何意义 3.矢性函数的微分 4.矢性函数的导数公式 5.导矢的物理意义 6.拉格朗日中值定理 第三节矢性函数的积分 1.矢性函数的不定积分 2.矢性函数的定积分 习题1 第二章场论 第一节场 1.场的概念 2.数量场的等值面 3.矢量场的矢量线 4.平行平面场 习题2 第二节数量场的方向导数和梯度

1.方向导数 2.梯度 习题3 第三节矢量场的通量及散度 1.通量 2.散度 3.平面矢量场的通量与散度 习题4 第四节矢量场的环量及旋度 1.环量 2.旋度 习题5 第五节几种重要的矢量场 1.有势场 2.管形场 3.调和场 习题6 第三章哈密顿算子▽ 习题7 第四章梯度、散度、旋度与调和量在正交曲线坐标系中的表示式 第一节曲线坐标的概念

实验四矢量数据与栅格数据分析2

测绘工程学院 GIS软件应用 实验报告书 实验名称:实验四、矢量数据与栅格数据分析2专业班级: 姓名: 学号: 实验地点: 实验时间: 实验成绩: 地理信息系

一、实验目的与要求 通过练习,熟悉ArcGIS栅格数据距离制图、成本距离加权、数据重分类、多层面合并等空间分析功能,熟练掌握利用ArcGIS上述空间分析功能分析和结果类似学校选址的实际应用问题的基本流程和操作过程。 练习一 1、新学校选址需注意如下几点: 1)新学校应位于地势较平坦处; 2)新学校的建立应结合现有土地利用类型综合考虑,选择成本不高的区域; 3)新学校应该与现有娱乐设施相配套,学校距离这些设施愈近愈好; 4)新学校应避开现有学校,合理分布。 2、各数据层权重比为:距离娱乐设施占0.5,距离学校占0.25,土地利用类型和地势位置因素各占0.125。 3、实现过程运用ArcGIS的扩展模块(Extension)中的空间分析(Spatial Analyst)部分功能,具体包括:坡度计算、直线距离制图功能、重分类及栅格计算器等功能完成。 4、最后必须给出适合新建学校的适宜地区图,并对其简要进行分析。 练习二 1、新建路径成本较少; 2、新建路径为较短路径; 3、新建路径的选择应该避开主干河流,以减少成本; 4、新建路径的成本数据计算时,考虑到河流成本(Reclass_river)是路径成本中较关键因素,先将坡度数据(reclass_slope)和起伏度数据(reclass_QFD)按照0.6:0.4权重合并,然后与河流成本作等权重的加和合并,公式描述如下: cost = Reclass_river + ( reclass_slope*0.6+reclass_QFD*0.4) 5、寻找最短路径的实现需要运用ArcGIS的空间分析(Spatial Analyst)中距离制图中的成本路径及最短路径、表面分析中的坡度计算及起伏度计算、重分类及栅格计算器等功能完成; 6、最后提交寻找到的最短路径路线图。 练习三 1、熊猫活动具有一定的槽域范围,一个槽域范围只有一个或一对熊猫,在此练习中,假设熊猫槽域半径为5km。 2、虽然一个采样点代表一个熊猫,但由于熊猫的生存具有确定槽域特征,不同的采样点具有不同的空间控制面积。假定熊猫活动范围分布满足以采样点为中心的泰森多边形,如何将这一信息加入密度分布图是本练习的重点。 3、在野外实采的熊猫活动足迹数据的基础上,以每个熊猫槽域范围为权重,运用ArcGIS 中的区域分配功能制作该地区熊猫分布密度图。 练习四 1、经济的发展具有一定的连带效应和辐射作用。以该地区各区域年GDP数据为依据, 采用IDW和Spline内插方法创建该地区GDP空间分异栅格图。 2、分析每种插值方法中主要参数的变化对内插结果的影响。 3、分析两种内插方法生成的GDP空间分布图的差异性,简单说明形成差异的主要原因。 4、通过该练习,熟练掌握两种插值方法的适用条件。 练习五 1、应用栅格数据空间分析模块中的等高线提取功能,分别提取等高距为15米和75米的等高线图,并按标准地形图绘制等高线方法绘制等高线,作为山顶点、凹陷点空间分布的

相关主题
文本预览
相关文档 最新文档