当前位置:文档之家› 数学人教版九年级上册圆周角定理

数学人教版九年级上册圆周角定理

数学人教版九年级上册圆周角定理
数学人教版九年级上册圆周角定理

《圆周角》教学--利用多媒体技术进行的探索发现学习

【案例实录】

教学过程:

1. 习旧引新

⑴在⊙O 上, 任到三个点A 、B 、C, 然后顺次连接, 得到的是什么图形? 这个图形与⊙O 有什么关系?

⑵由圆内接三角形的概念, 能否得出什么叫圆的内接四边形呢( 类比)?

2. 概念学习

⑴什么叫圆的内接四边形?

⑵如图1, 说明四边形ABCD 与⊙O 的关系。

3. 探讨性质

⑴前面我们已经学习了一类特殊四边形---- 平行四边形, 矩形, 菱形, 正方形, 等腰梯形的性质, 那么要探讨圆内接四边形的性质, 一般要从哪几个方面入手?

⑵打开《几何画板》, 让学生动手任意画⊙O 和⊙O 的内接四边形ABCD 。( 教师适当指导)

⑶量出可测量的所有值( 圆的半径和四边形的边, 内角, 对角线, 周长, 面积), 并观察这些量之间的关系。

⑷改变圆的半径大小, 这些量有无变化? 由(3) 观察得出的某些关系有无变化?

⑸移动四边形的一个顶点, 这些量有无变化? 由(3) 观察得出的某些关系有无变化? 移动四边形的四个顶点呢? 移动三个顶点呢?

⑹如何用命题的形式表述刚才的实验得出来的结论呢?( 让学生回答)

4. 性质的证明及巩固练习

⑴证明猜想

已知: 如图1, 四边形ABCD 内接于⊙O 。求证:∠BAD+∠BCD=180°,∠ABC+∠ADC=180°。

⑵完善性质

①若将线段BC 延长到E( 如图2), 那么,∠DCE 与∠BAD 又有什么关系呢?

②圆的内接四边形的性质定理: 圆内接四边形的对角互补, 并且任何一个外角都等于它的内对角。

⑶练习

①已知: 在圆内接四边形ABCD 中, 已知∠A=50°,∠D-∠B=40°, 求∠B,∠C,∠D 的度数。

②已知: 如图3, 以等腰△ABC 的底边BC 为直径的⊙O 分别交两腰AB,AC 于点E,D, 连结DE,

求证:DE∥BC 。( 演示作业本)

5. 例题讲解

引例已知: 如图4,AD 是△ABC 中∠BAC 的平分线, 它与△ABC 的外接圆交于点D 。

求证:DB=DC 。( 引例由学生证明并板演)

教师先评价学生的板演情况, 然后提出, 若将已知中的“AD 是△ABC 中的∠BAC 的平分线”改为“AD 是△ABC 的外角∠EAC 的平分线”, 又该如何证明? 引出例题。

例已知: 如图5,AD 是△ABC 的外角∠EAC 的平分线, 与△ABC 的外接圆交于点D,

求证:DB=DC 。

6. 小结: 为了使学生对所学的内容有一个完整而深刻的印象, 让学生组成小组, 从概念, 性质, 方法, 特殊性进行讨论, 然后对讨论的结果进行归纳。

⑴本节课我们学习了圆内接四边形的概念和圆内接四边形的和要性质, 要求同学们理解圆内接四边形和四边形的外接圆的概念, 理解圆内接四边形的性质定理; 并初步应用性质定理进行有关命题的证明和计算。

⑵我们结合《几何画板》的使用导出了圆内接四边形的性质, 在这一过程中用到了许多数学方法( 实验, 观察, 类比, 分析, 归纳, 猜想等), 同学们要逐步学会用并关于应用这些方法去探讨有关的数学问题, 提高我们的数学实践能力与创新能力。

7. 作业

⑴如图6, 在等腰直角△ABC 中,∠C=90°, 以AC 为弦的⊙O 分别交BC,AB 于D,E, 连结DE 。求证:△BDE 是等腰直角三角形。

⑵已知:⊙O 和⊙O '相交于A,B 两点, 经过A,B 两点分别作直线CD 和EF,CD 交⊙O,⊙O '于C,D,EF 交⊙O,⊙O '于E,F, 连结

CE,AB,DF 。

问: 当CD 和EF 满足怎样的条件时, 四边形CEDF 是怎样的特殊四边形? 并证明所得的结论。( 选做)

【案例分析】

这一教学案例当然不能被看作是培养学生创新意识的初中数学课堂教学的范例, 其中许多环节还需要进一步改进完善。但其较为真实地反映了目前数学课堂教学的一些情况, 一些教学环节的处理还是值得肯定的。

1. 突出了数学课堂教学中的探索性

关于圆的内接四边形性质的引出, 在本教学案例上没有像教材那样直接给出定理, 然后证明; 而是利用《几何画板》采取了让学生动手画一画, 量一量的方式, 使学生通过对直观图形的观察归纳和猜想, 自己去发现结论, 并用命题的形式表述结论。关于圆内接四边形性质的证明, 没有采用教师给学生演示定理证明, 而是引导学生证明猜想, 并做了进一步的完善。这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。这样既调动了学生学习数学的积极性和主动性, 增强了学生参与数学活动的意识, 又培养了学生的动手实践能力。同时, 也向学生渗透了实践---- 认识---- 再实践---- 再认识的辩证观点。一方面, 使数学不再是一门单调枯燥, 缺乏直观印象的高度抽象的学科, 通过提供生动活泼的直观演示, 让学生多角度, 快节奏地去认识教学内容, 达到事半功倍的教学效果; 另一方面, 计算机所特有的, 对数学活动过程的展示, 对数学细节问题的处理可以使学生体验到用运动的观点来研究图形的思想, 让学生充分感受到发现总是代和解决问题带来的愉悦, 培养学生的数学创新意识。

2. 引进了计算机《几何画板》技术

本课例在引导学生得出圆内接四边形的性质时, 通过使用《几何画板》, 从而实现了改变圆的半径, 移动四边形的顶点等, 从而使初中平面几何教学发生了重大的变化, 那就是让图形出来说话, 充分调动学生的直觉思维。这样一来不仅极大地激发了学生学习的兴趣, 而且比过去的教学更能够使学生深刻地理解几何。当然, 本教学案例在这方面的探索还是初步的, 设想今后通过计算机

技术的进一步开发与应用, 初中平面几何课能够给学生更多动手的机会, 让学生以研究的方式学习几何, 进一步突出学生在学习中的主体地位。

3. 引入了数学开放题

本教学案例在增大数学课堂教学的探索性, 计算机技术进入数学课堂的同时, 在学生作业中还增加了开放题( 作业2), 为学生创造了更为广阔的思维空间, 对此应大力提倡。目前, 世界各国在数学教育改革中都十分强调高层次思维能力的培养, 这些高层次思维能力包括了推理, 交流, 概括和解决问题等方面的能力。要提高学生这种高层次的思维, 在数学课堂教学中引进开放性问题是十分有益的。我国的数学题一直是化归型的, 即将结论化归为条件, 所求的对象化归为已知的结果。这种只考查逻辑连接的能力固然重要, 并且永远是主要部分, 但是, 它不能是惟一的。单一的题型已经严惩阻碍了学生数学创新能力的培养。

在数学教学中还可将一些常规性题目发行为开放题。如教材中有这样一个平面几何题“证明: 顺次连接四边形四条边的中点, 所得的四边形是平行四边形。”这是一个常规性题目, 我们可以把它发行为“画一个四边形是什么样的特殊四边形, 并加以证明。”我们还可用计算机来演示一个形状不断变化的四边形, 让学生观察它们四条边中点的连线组成一个什么样的特殊四边形, 在学生完成猜想和证明过程后, 我们进而可提出如下问题:”要使顺次连接四条边的中点所得的四边形是菱形, 那么对原来的四边形应有哪些新的要求? 如果要使所得的四边形是正方形, 还需要有什么新的要求?”通过这些改造, 常规题便具有了“开放题”的形式, 例题的功能也可更充分地发挥。

在此, 我们进一步强调培养学生创新意识的数学课堂教学, 不应仅仅把开放题作为一种习题形式, 而应作为一咱教学思想。这种教学思想反映了数学教学观的转变, 这主要反映在开放性问题强调了数学知识的整体性, 数学教学的思维性, 数学解决问题的过程性, 强调了学生在教学活动中的主体作用于以及有利于提高学生学习的乐趣, 提高了学生学习的内在动力等。

人教版九年级数学上册垂径定理

初中数学试卷 垂径定理 一.选择题 ★1.如图1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,那么弦AB 的长是( ) A .4 B .6 C .7 D .8 ★★2.如图2,⊙O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 长的最小值为( ) A .2 B .3 C .4 D .5 ★★3.过⊙O 内一点M 的最长弦为10 cm ,最短弦长为8cm ,则OM 的长为( ) A .9cm B .6cm C .3cm D .cm 41 ★★4.如图3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位 ★★5.如图4,O ⊙的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点,6cm CD ,则直径AB 的长是( ) A .23cm B .32cm C .42cm D .43cm ★★6.下列命题中,正确的是( ) A .平分一条直径的弦必垂直于这条直径 B .平分一条弧的直线垂直于这条弧所对的弦 C .弦的垂线必经过这条弦所在圆的圆心 D .在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心 ★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米

★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm ★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( ) A .2 B .8 C .2或8 D .3 二.填空题 ★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★★5.如图1,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米 O 图 4E D C B A ★★6.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm. ★★7.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★8.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________ ★★9.如图2,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 ★★10.某蔬菜基地的圆弧形蔬菜大棚的剖面如图3所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m ★★11.如图4,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B 两点,已知P(4,2) 和A(2,0),则点B 的坐标是 ★★12.如图5,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm ★★13.如图6,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么 B A P O y x

华东师大版九年级数学下册 圆周角教案

《圆周角》教案 教学目标: 一.知识技能 1.理解圆周角概念,理解圆周用与圆心角的异同; 2.掌握圆周角的性质和直径所对圆周角的特征; 3.能灵活运用圆周角的性质解决问题; 4.使学生掌握圆内接四边形的概念,掌握圆内接四边形的性质定理; 5.使学生初步会运用圆的内接四边形的性质定理证明和计算一些问题. 教学重点: 1.圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征. 2.圆内接四边形的性质定理. 教学难点: 1.发现并证明圆周角定理. 2.理解“内对角”这一重点词语的意思. 教学过程: 一.创设情景 如图是一个圆柱形的海洋馆,在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗⌒ AB观看窗内的海洋动物.大家请看海洋馆的横截面的示意图,想想看:同学甲站在圆心O的位置,同学乙站在正对着下班窗的靠墙的位置C,他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁分别站在其他靠墙的位置D和E,他们的视角(∠ADB和∠AEB)和同学乙的视角相同吗? 二.认识圆周角. 1.观察∠ACB、∠ADB、∠AEB,这样的角有什么特点? 2.给出定义,顶点在圆上,并且两边都与圆相交的角叫做圆周角.(注意两点:1.角的顶点在圆上;2.角的两边都与圆相交,二者缺一不可.) 3.辩一辩,图中的∠CDE是圆周角吗?引导学生识别,加深对圆周角的了解.

4.圆周角与圆心角的联系和区别是什么? 三.探究圆周角的性质. 1.如图所示图中,∠AOB=180°,则∠C等于多少度呢?从中你发现了什么?(推论2:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.可用圆周角定理说明.) B 如图,AB为⊙O的直径,弦CD交AB于点P,∠ACD=60°,∠ADC=70°,求∠APC的度数. 解:连接BC,则∠ACB=90°, ∠DCB=∠ACB-∠ACD=90°-60°=30°. 又∵∠BAD=∠DCB=30°,∴∠APC=∠BAD+∠ADC=30°+70°=100°. 2.在下图中,同弧⌒ AB所对的圆周角有哪几个?观察并测量这几个角,你有什么发现?大胆说出你的猜想.同弧⌒ AB所对的圆心角是哪个角?观察并测量这个角,比较同弧所对的圆周角你有什么发现呢?大胆说出你的猜出想. 3.由学生总结发现规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半,教师再利用几何画板从动态的角度进行演示,验证学生的发现. 四.证明圆周角定理及推论. 1.问题:在圆上任取一个圆周角,观察圆心角顶点与圆周角的位置关系有几种情况? 2.学生自己画出同一条弧的圆心角和圆周角,将他们画的图归纳起来,共有三种情况:①圆心在圆周角的一边上;②圆心在圆周角的内部;③圆心在圆周角的外部.如下图

九年级数学尖子生培优竞赛专题辅导第十讲锐角三角函数(含答案)

第十讲锐角三角函数 趣题引路】 甲、乙两名运动员在陆地赛跑的速度以及在水中游泳的速度都相同,有一次他俩进行赛跑和游泳综合测试,比赛路线如图10-1所示,陆地跑道与河岸所成的角为30°,水路泳道与岸所成的角为60°,甲赛跑、游泳 的线路是折线AA扎,乙赛跑、游泳的线路是折线BB’B:,起跑点的连线与线路垂直,终点连线也与线路垂直,开始两人并肩跑,甲先到岸边跳入水中,接着乙再到岸边,在水中两人齐头并进同时到达终点:你知道 他们在陆地上的跑步速度V,与水中游泳的速度比之比是多少吗? 解析如图,作AiBs丄BB“ AA,垂足分别为凡、B,:因两人在陆地上赛跑的速度相同,故甲跑完AA’与乙跑完BB,所用时间相同。同样,甲游完A此所花时间与乙游完B品所花时间也相同。又因为两人从出发至到达终点所花的总时间相同,所以甲游完AA的时间恰好等于乙跑完Bb的时间, 设这个时间为t,贝I]:心丛=邑色..:冬=色如.……①, 岭v i 叫A A 在冲,COS60—篇……③. 知识延伸】 “锐角三角函数”中我们学列了锐角的正弦、余弦、正切,余切以及一些特殊角的三角函数值的有关讣算.在解与锐角三角函数有关的问题时,还要充分利用其余角或同角函数关系。我们知道,在RtAABC 中,sin A=cos (90° -A), cos A=sin (90° -A), tan A=cot (90° -A), cot A=tan (90: -A) ?这是互余两角的三角函数关系. 同时,同角三角函数间也存在着一些特殊的关系。如图10-2在RtAABC中, 在中cos30。=处,二B、B\

另外,锐角三角函数还有两个非常重要的性质:1?单调性?当◎为锐角时,sina 与sna 的值随a 的 增大而增大,cos a 与cot a 的值随◎增大而减小:2 ?有界性,当OW a W90 °时,OWsinaWl, OWcosa Wl ? 例 1 在 RtAABC 中,ZC=90° ,若 sinA=tanB.求 cosA 的值 解析在RtAABC 中, ?.? ZA+ZB 二90" ? /. tanB=cotA. ?/ sinA=tanB,.?? sinA=cotA ? ?/ 0 < A < 90°,.?.0 < cos A,故 cos A = 点评:本例也可以将sinA, tanB 用线段的比表示,如结合RtAABC, WsinA = - c lanB = -,再设法求纟,即得到cosA 的值 a c 例2已知关于x 的方程4x c -2 (m+1) x+m=0的两根正好是某直角三角形两个锐角的正弦,求m 的值。 解析依题意,可设方程4宀2 (m+1) x+m=0的两根为sin A 、sinB,其中ZA+ZB 二90° ,由根与系 数关系,得:sinA+sinB 二"‘一 [,sinA ? sinB= —? 2 4 由ZA+ZB 二90° ,知 sinB=sin (90° -A) =cosA. 将①.②代入③,W(—)2-2 - = 1解得:"=点阻=-点 2 4 ■ v0 /. 0 0

人教版九年级数学上册教案《圆周角》

《圆周角》 《圆周角》这节内容是在学生学习了圆心角、弧、弦之间关系的基础上的延续,圆周角 定理在圆的有关证明、作图、计算中应用十分广泛。本节内容既可以巩固圆心角与弧、弦之间的关系,又为后面研究圆与其它几何图形的关系提供了条件。 圆周角定理及其推论是本章的重点内容之一,圆周角定理的分情况证明是本章的教学难点。教材一开始先给出圆周角的概念,紧接着安排了一个探究活动,从介绍圆周角概念的图形出发,让学生探究同弧所对的圆周角和圆心角的数量关系,然后分三种情况证明定理。通过对圆周角定理的探讨,达到培养学生严谨的思维品质的目的。同时,还可以让学生掌握从特殊到一般以及分类讨论的思维方法。 圆内接四边形的四个内角都是圆周角,利用圆周角定理可以把圆的内接四边形的四个内角和相应的圆心角联系起来,得到圆内接四边形的性质,圆内接四边形的性质在圆中探索相关角相等或互补时常常用到。 【知识与能力目标】

1、理解圆周角的概念; 2、掌握圆周角定理及其推论; 3、能运用圆周角定理及其推论进行简单计算和证明; 4、掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。 【过程与方法目标】 在探索圆周角和圆心角的关系的过程中,让学生学会运用分类讨论的数学思想、转化的数学思想来解决问题。 【情感态度价值观目标】 在探索圆周角定理过程中,帮助学生树立运动变化和对立统一的辩证唯物主义观点,增强学好数学的信心。 【教学重点】 圆周角定理及其推论。 【教学难点】 圆周角定理证明方法的探讨。 多媒体课件、教具等。 一、创设情境,引入新课 问题1 在圆中,满足什么条件的角是圆心角? 顶点在圆心的角叫做圆心角。 问题2 在同圆或等圆中,弧、弦、圆心角之间有什么关系? 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等; 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等; 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等。 问题3 足球训练场上教练在球门前划了一个圆圈,进行无人防守的射门训练。如图,甲、乙两名运动员分别在C、D两地,他们争论不休,都说自己所在位置对球门AB的张角大。如果请你来评判,你知道他们的位置对球门AB的张角大小吗?

初中数学人教版九年级上册24.1.4圆周角定理教案

初中数学人 教版九年级 上册实用资 料 作课类别 课题24.1.4圆周角定理课型新授教学媒体多媒体 教学目标知识 技能 1.了解圆周角的概念,理解圆周角的定理及其推论. 2.熟练掌握圆周角的定理及其推论的灵活运用. 3.体会分类思想. 过程 方法 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证 明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理及其推论解决问题. 情感 态度 激发学生观察、探究、发现数学问题的兴趣和欲望. 教学重点圆周角定理、圆周角定理的推导及运用它们解题. 教学难点运用数学分类思想证明圆周角的定理. 教学过程设计 教学程序及教学内容师生行为设计意图 一、导语上节课我们学习了圆心角、弧、弦之间的关系定理,如果角的顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探究新知 (一)、圆周角定义 问题:如图所示的⊙O,我们在射门游戏中,设EF 是球门,?设球员们只能在所在的⊙O其它位置射 门,如图所示的A、B、C点.观察∠EAF、∠EBF、∠ECF这样的角,它们的共同特点是什么? 得到圆周角定义:顶点在圆上,且两边都与圆相交的角叫做圆周角. 分析定义:○1圆周角需要满足两个条件; ○2圆周角与圆心角的区别 (二)、圆周角定理及其推论 1.结合圆周角的概念通过度量思考问题: ○1一条弧所对的圆周角有多少个? ②同弧所对的圆周角的度数有何关系? ③同弧所对的圆周角与圆心角有何数量关系吗? 2.分情况进行几何证明教师联系上节课所学知 识,提出问题,引起学生 思考,为探究本节课定理 作铺垫 学生以射门游戏为情境, 通过寻找共同特点,总结 一类角的特点,引出圆周 角的定义 学生比较圆周角与圆心 角,进一步理解圆周角定 义 教师提出问题,引导学生 思考,大胆猜想.得到: 1一条弧上所对的圆周角 有无数个.2通过度量,同 从具体生活情境 出发,通过学生 观察,发现圆周 角的特点 深化理解定义 激发学生求知 欲,为探究圆周 角定理做铺垫.

数学尖子生的培优策略

数学尖子生的培优策略 无论在任何时代都需要出类拔萃的人才,没有这样的人才就谈不到文化科学的进步。这是时代的需要,更是国家建设的需要。当前社会正是知识、经济突飞猛进的年代,各行各业都呼唤着杰出的人才的出现。富有数学天赋的优等生并不能自发地出现。不管他们有多聪明、多好学,都不可能无师自通。他们需要培养,需要接受有针对性的指导和进行严格的训练。而教师也同样不能忽视在普遍提高的基础上去发现和培养数学尖子生的任务。作为一名为国家输送优秀栋梁的人民教师,对于优秀学生的重点培养有着义不容辞的责任。 培养数学尖子生,首先要善于发现和选择好的苗子。尖子生的苗子应该具备基础扎实,思想活跃,思维敏捷,学习上优较大的潜力和较强的分析问题和解决问题的能力,并且具有浓厚的数学兴趣和勇于创新的精神。主要从以下几个方面来考察: 1、注意学生各学科学习水平的全面、均衡发展。作为尖子生的苗子,既要有扎实的数理化实力,又要有良好的文科基础,从而具备较强的理解能力、表达能力和归纳总结能力。这正是尖子生成材必不可缺的前提。 2、重视学生的智力水平。有些学生学习勤奋,善于模仿,心细有耐性。他们在常规的考试中往往成绩优秀,但仅仅局限于书本,学习上缺乏潜力,这类学生不适合作为尖子生的苗子。另一些学生具有较强的思维能力,喜欢钻研,喜欢看课外书,喜欢超前自学,喜欢别

出心裁,但比较粗心大意。其数学成绩不大稳定。这类学生学习潜力很大,只要引导得法,就是好苗子。 3、了解学生的非智力因素。数学尖子的好苗子往往都有强烈的学习欲望,有良好的自信和毅力,有独特的学习方法和科学的学习习惯。而这些非智力方面的因素恰恰能起到强化学习深度和提高学习效率的作用。 准确选拔数学尖子的苗子是很重要的,但这仅仅是第一步,更重要的还在于如何培养数学尖子生。这里必须解决好一个普及与提高的关系,解决好尖子与一般的矛盾。不解决好这些问题,就必然会顾此失彼。如何处理好这些问题,使数学尖子生得以充分发展,知识、技能水平更上一层楼呢?要结合这些尖子生的具体特点,采取有力的相应措施: 1、严格要求,打下坚实的基础。严师出高徒。培养数学尖子生,首先要严格要求,使学生打下坚实的基础。有了坚实的基础,才能深入钻研,进一步培养能力,发展智力。有些尖子生因为有了一些成绩就产生骄傲自满的情绪,在学习上好高骛远,不愿意扎扎实实打好基础,这是十分致命的弱点。对尖子生要肯定成绩,树立信心。但不能过分表扬,更要指出缺点,因势利导,稳扎稳打。学习数学必须加强练习巩固。特别是要勤动脑,多动手。 2、精选内容,注重培养思考钻研能力,提高自学能力。根据数学尖子生的学习水平,整理编选一些较有质量的学习内容,提供一些必要的课外学习资料,帮他们制定一定的学习计划。在学习方法上给

九年级数学尖子生培优竞赛专题辅导第二十讲数学建模(含答案)

趣题引路】 某工厂生产某种产品,每件产品的出厂价为50元,其成本为25元。因为在生产过程中,平均每生产 一件产品有0.5m )污水排出,为了净化环境,工厂设计两种方案对污水进行处理.方案1:工厂污水先净化 处理后再排出:每处理Inf 污水所有原材料费为2元,并且每月排污设备损耗费为30000元;方案2:工 厂将污水排到污水厂统一处理,每处理lnr :污水需付14元排污费. 问题:(1)设工厂每月生产x 件产品,每月利润为y 元,分别求岀依方案1和方案2处理污水时y 与x 的函数关系式:(2)设工厂每月生产量为6000件产品时,你若作为厂长在不污染环境,又节约资金的前 提下,应选用哪种处理污水的方案?请通过计算加以说明. 解析(1)设选用方案1,每月利润为屮,元,选用方案2,每月利润为户,元,贝叽 yi=(5O-25) X -2X 0.5A -30000=24.1-30000,),2=(50~25) A -14x0.5.x-1 8A . 故 yj=24A —30000, >'2= 18x : (2)当 *6000 时,yi=24x6000-30000= 114000 (元),力=1 8A -= 18x6000= 108000 (元) 答:我若作为厂长,应选方案1. 点评本例是生产经营决策问题,英难点在于建立相应的数学模型,构建函数关系式,然后,通过问题 中所给的条件判断,若不能判断,就要进行分类讨论. 知识延伸】 例 某工厂有14m 长的旧墙一面,现在准备利用这而旧墙,建造平面图形为矩形,而积为126m?的厂 房,工程条件为:①建lm 新墙的费用为“元:②修lm 旧墙的费用为£元;③拆去Im 旧墙,用所得材料 4 建适lm 新墙的费用为£元,经过讨论有两种方案:(I )利用旧墙的一段兀m (A <14)为矩形厂房一面的边 2 长:(1【)矩形厂房利用旧墙的一面边长为x (x>14).问:如何利用旧墙,即x 为多少米时,建墙费用最省? (I )(II )两种方案哪个更好? 解析 设利用旧墙的一面矩形边长为xm,则矩形的另一边长为竺m ? x (I )利用旧墙的一段xm (x<14)为矩形一而边长,则修旧墙费用为元.将剩余的旧墙拆得材料建新 4 墙的费用为(14小£号元,其余建新墙的费用为("+艺竺"4)?“元. 2 x 故总费用为 y = 巴 + —_ + (2x + 兰? — 14 \^a = 7a\ 丄 4- —— 1)?(0

九年级数学垂径定理

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲 一. 本周教学内容: 垂径定理、圆心角、弧、弦、弦心距间的关系 [学习目标] 1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。已知其中两项,可推出其余三项。注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。 2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。(M点是两点重合的一点,代表两层意义) C O A B M D 3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。 4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。 5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。四项“知一推三”,一项相等,其余三项皆相等。源于圆的旋转不变性。即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。 ()()()() 1234 ??? O B' M' A' B M A 6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。 7. 圆心角的度数与弧的度数等,而不是角等于弧。

浙教版-数学-九年级上册-拓展延伸:圆周角定理

拓展延伸:圆周角定理 综合运用 一、利用圆周角定理计算线段的长度,证明线段相等或线段成比例 有关圆的题目中,圆周角与它所对的弧常相互转化,即欲证圆周角相等,可转化为证明它们所对的弧相等,要证线段相等可以转化为证明它们所对的弧相等,要证线段成比例可以利用圆周角定理将其转化为证明三角形相似,这是重要的解题思路. 例如,如图,AB 是半圆的直径,C为弧AE的中 点,CD⊥AB 于D交AE于F,求证:AF=CF. 方法一:欲证AF=CF,只需证∠ACD=∠CAE,所以只需证这两个角所对的弧相等即可.又因为∠CAE 所对的弧为CE,所以只要画出整个圆找到∠ACD 所对的弧即可. 如图,延长CD 交⊙O 于H,连接AC,BC. ∵CD⊥AB,AB 是直径, ∴∠ACD=∠ABC. = ∴AC AH ∵C为AE的中点 = ∴CE AC ∴CE AH = ∴∠CAE=∠ACD. ∴AF=CF. 方法二:如图,欲证∠CAE=∠ACD,连接OC后,得到 ∠CAO=∠ACO(因为OC=OA),故只需证∠EAO=∠OCD, 因CD⊥AB,只需证OC⊥AE,由C为AE的中点,便有 OC⊥AE. 再如:已知△ABC 是圆内接正三角形,M是弧BC上的一点(如图).求证:

MA=MB +MC. 要证明一条线段MA 等于两条线段 MB 和 MC 之和, 可将 MA 分为两段, 其中一段 MD 等于已知线段 MC ,再去证明另一段 AD 等于已知线段 MB. 如图,在 MA 上取点D ,使 MD =MC. ∵△ABC 为正三角形, ∴∠1=∠2=60°.∴△MDC 是正三角形.∴CD =MC. 在△ADC 和△BMC 中, 34120AC BC ADC BMC ?∠=∠?=??∠=∠=? ∴△ADC ≌△BMC. ∴AD =BM.∴MA =MB +MC. 二、圆周角的性质的灵活运用 本节的探索性问题以考查我们对圆周角的性质的灵活运用为主,有利于培养我们的探索能力,解决这类问题要善于把握住本质,采用各种变通的方式来探索和分析. 例如,如图,已知直线AB 交圆于A 、B 两点,点M 在圆上,点P 在圆外,且点M 、P 在AB 的同侧,∠AMB =35°,设∠P =x ,当点 P 移动时,求 x 的变换范围,并说明 理由. 0°∠P , ∴∠P<35°.∵P 、M 在 AB 的同侧, ∴∠P>0°.∴0°

三角函数的应用-方向角问题-2020-2021学年九年级数学下册尖子生同步培优题典(原卷版)

2020-2021学年九年级数学下册尖子生同步培优题典【北师大版】 专题1.5三角函数的应用-方向角问题 姓名:__________________ 班级:______________ 得分:_________________ 注意事项: 本试卷满分100分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2020?深圳)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为() A.200tan70°米B.200 tan70° 米 C.200sin 70°米D.200 sin70° 米 2.(2020?济宁)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C 在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里 3.(2019?济南)某数学社团开展实践性研究,在大明湖南门A测得历下亭C在北偏东37°方向,继续向北走105m后到达游船码头B,测得历下亭C在游船码头B的北偏东53°方向.请计算一下南门A与历 下亭C之间的距离约为()(参考数据:tan37°≈3 4,tan53°≈ 4 3)

A.225m B.275m C.300m D.315m 4.(2020?岱岳区一模)如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A处时,发现它的北偏东30°方向有一灯塔B.轮船继续向北航行2小时后到达C处,发现灯塔B在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?() A.1小时B.√3小时C.2小时D.2√3小时 5.(2020?开平区一模)如图,甲、乙两船同时从港口O出发,其中甲船沿北偏西30°方向航行,乙船沿南偏西70°方向航行,已知两船的航行速度相同,如果1小时后甲、乙两船分别到达点A、B处,那么点B位于点A的() A.南偏西40°B.南偏西30°C.南偏西20°D.南偏西10° 6.(2019?泰安)如图,一艘船由A港沿北偏东65°方向航行30√2km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.

人教版九年级数学讲义垂径定理(含解析)(2020年最新)

第11讲垂径定理 知识定位 讲解用时:3分钟 A、适用范围:人教版初三,基础一般 B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定 理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的 应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。希望同学们认真学习,为后面圆 的其他内容理解奠定良好基础。 知识梳理 讲解用时:15分钟 垂径定理及其推论 (1)垂径定理 如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平 分这条弦所对的弧。 (2)相关推论 ①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这 条弦,并且平分这条弦所对的弧; ①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦; ①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平 分这条弦所对的弧;

①如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心, 并且垂直于这条弦; ①如果一条直线垂直于弦,并且平分弦所对的一条弧,那么这条直线 经过圆心,并且平分这条弦。 总结:在圆中,对于某一条直线“经过圆心”、“垂直于弦”、“平分弦”、“平分弦所对的弧”这四组关系中,如果有两组关系成立,那么其余两组关 系也成立。

课堂精讲精练 【例题1】 下列判断中,正确的是()。 A.平分一条弦所对的弧的直线必垂直于这条弦 B.不与直径垂直的弦不能被该直径平分 C.互相平分的两条弦必定是圆的两条直径 D.同圆中,相等的弦所对的弧也相等 【答案】C 【解析】本题考查了垂径定理及圆心角、弧、弦、弦心距之间关系的定理 同时平分一条弦所对优弧、劣弧的直线必垂直于这条弦,故A错误; 任意两条直径互相平分,故B错误; 同圆中,相等的弦所对的优弧、劣弧分别相等,故D错误。 讲解用时:3分钟 解题思路:根据垂径定理及圆心角、弧、弦、弦心距之间关系的定理逐项排除。 教学建议:基本概念题,逐项排除。 难度:3 适应场景:当堂例题例题来源:无年份:2018 【练习1】 下列说法正确的个数是()。 ①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对 的优弧和劣弧分别相等。 A.1个B.2个C.3个D.4个 【答案】B 【解析】本题主要考查了垂径定理以及圆的基本性质, ①垂直于弦的直径平分弦;故错误; ①平分弦(不是直径)的直径垂直于弦;故错误;

九年级数学圆周角定理易错题总结(含答案)

九年级数学圆周角定理易错题总结(含答案) 一、选择题(本大题共12小题,共36.0分) 1.如图,四边形ABCD内接于⊙O,连结AC,BD,点E 在AD的延长线上,下列说法正确的是() A. 若DC平分∠BDE,则AB=BC B. 若AC平分∠BCD,则AB2=AM?MC C. 若AC⊥BD,BD为直径,则BC2+AD2=AC2 D. 若AC⊥BD,AC为直径,则sin∠BAD=BD AC 【答案】B 【解析】解:选项B正确. 理由:∵AC平分∠BCD, ∴∠ACB=∠ACD, ∵∠ACD=∠ABM, ∴∠ABM=∠ACB, ∵∠BAM=∠CAB, ∴△BAM∽△CAB, ∴AB AC =AM AB , ∴AB2=AM?AC, 故选:B. 选项B正确.利用相似三角形的性质解决问题即可. 本题考查相似三角形的判定和性质,角平分线的性质,圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型. 2.如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4, ∠AOC=120°,P为⊙O上的动点,连AP,取AP中点 Q,连CQ,则线段CQ的最大值为() A. 2 B. √7

C. 1+3√2 D. 1+√7 【答案】D 【解析】 【分析】 本题考查圆周角定理、勾股定理、点与圆的位置关系等知识,如图,连接OQ,作CH⊥AB 于H.首先证明点Q的运动轨迹为以AO为直径的⊙K,连接CK,当点Q在CK的延长线上时,CQ的值最大,利用勾股定理求出CK即可解决问题; 【解答】 解:如图,连接OQ,作CH⊥AB于H. ∵AQ=QP, ∴OQ⊥PA, ∴∠AQO=90°, ∴点Q的运动轨迹为以AO为直径的⊙K,连接CK, 当点Q在CK的延长线上时,CQ的值最大(也可以通过CQ≤QK+CK求解) 在Rt△OCH中,∵∠COH=60°,OC=2, ∴∠OCH=30°, ∴OH=1 OC=1,CH=√3, 2 在Rt△CKH中,CK=√(√3)2+22=√7, ∴CQ的最大值为1+√7. 故选D. 3.如图,AB是⊙O的直径,点C是圆上任意一点,点D是AC DF, 中点,OD交AC于点E,BD交AC于点F,若BF=5 4 则tan∠ABD的值为()

九年级数学上垂径定理练习题

B F E O D C A 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点, AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. A B C D O A B C D O O A E F

变式 2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求:AOB ∠的度数和圆的半径。. A C B D O C A D E

最新浙教版九年级数学上册《圆周角1》教学设计(精品教案).docx

3.5圆周角 教学目标: 1.经历探索圆周角定理的另一个推论的过程. 2.掌握圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的 圆周角相等,相等的圆周角所对的弧也相等” 3.会运用上述圆周角定理的推论解决简单几何问题. 重点: 圆周角定理的推论”在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等” 难点:例3涉及圆内角与圆外角与圆周角的关系,思路较难形成,表述也有一定的困难 例4的辅助线的添法. 教学过程: 一、旧知回放: 1、圆周角定义: 顶点在圆上,并且两边都和圆相交的角叫圆周角. 特征:①角的顶点在圆上. ②角的两边都与圆相交. 2、圆心角与所对的弧的关系 3、圆周角与所对的弧的关系 4、同弧所对的圆心角与圆周角的关系 圆周角定理: 一条弧所对的圆周角等于它所对的圆心角的一半.

二. 课前测验 1.100o的弧所对的圆心角等于_______,所对的圆周角等于_______。 2、一弦分圆周角成两部分,其中一部分是另一部分的4倍,则这弦所对的圆周角度数为________________。 3、如图,在⊙O 中,∠BAC=32o,则∠BOC=________。 4、如图,⊙O 中,∠ACB = 130o,则∠AOB=______。 5、下列命题中是真命题的是( ) (A )顶点在圆周上的角叫做圆周角。 (B )60o的圆周角所对的弧的度数是30o (C )一弧所对的圆周角等于它所对的圆心角。 (D )120o的弧所对的圆周角是60o 三, 问题讨论 问题1、如图1,在⊙O 中,∠B,∠D,∠E 的大小有什么关系?为什么? 问题2、如图2,AB 是⊙O 的直径,C 是⊙O 上任一点,你能确定∠BAC 的度数吗? 问题3、如图3,圆周角∠BAC =90o,弦BC 经过圆心O 吗?为什么? A O C B A O C ● O B A C D E ● O B C A 图3

九年级数学尖子生培优竞赛专题辅导第八讲 二次函数综合问题(含答案)

第八讲 二次函数综合问题 趣题引路】 今有网球从斜坡O 点处抛去,网球的抛物路线方程是2 142y x x ,斜坡的方程是1 2 y x ,其中y 是垂直高度(m ),x 是与O 点的水平距离(m ),如图8-1. (1)网球落地时撞击斜坡的落点为A ,写出A 点的垂直高度,以及A 点与O 点的水平距离: (2)在图象中,求标志网球所能达到的最高点B 的坐标,并求0B 与水平线Ox 之间夹角的正切. 解析:(1)由方程组 214212 y x x y x 解得A 点坐标为(7,3.5),即可求得A 点的垂直高度为3.5m ,A 点与O 点水平距离为7m. (2)由2 211 44822 y x x x 知,最高点B 的坐标为(4,8),且8tan 24 (记 α=∠BOx ). 点评:本题是香港考题,在日常情境中,本题运用了许多数学知识,如方程组,一元二次方程,二次函数的画图及求二次函数的极值. 知识延伸】 例1 设a 、b 、c 、d 是任意实数,且满足2 222 24a b c a b c d ,求证:不等式 d ca bc ab 3≥++. 证明:将已知不等式化简整理,得 2 22 2240c a b c a b ab d ,① 设2 22 224y f x x a b x a b ab d ,则①式表明()0≤c f ,故抛物线(开口向上) 与x 轴有交点,则 2 22 44240a b a b ab d , 即2 22 240a b a b ab d 化简,得ab≥d ,② 由于此题关于a 、b 、c 是对称的,故用同样的方法可证得bc d ,③ d ca ≥,④ ②、③、④相加得证.

九年级数学上垂径定理练习题

B F E O D C A O D C B A A B C D O 垂径定理综合训练习题 一、垂径定理在证明上的应用 1、如图,AB 、CD 都是⊙O 的弦,且AB ∥CD ,求证: 弧AC = 弧BD 。 2.如图,CD 为⊙O 的弦,在CD 上截取CE=DF ,连结OE 、OF ,并且它们的延长⊙O 于点A 、 B 。 (1)试判断△OEF 的形状,并说明理由;(2)求证:? AC =? BD 。 3、如图,在⊙O 中,AB 为⊙O 的弦,C 、D 是直线AB 上两点,且AC =BD 求证:△OCD 为等腰三角形。 4、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC 于D ,求证:AD=2 1 BF. 二、垂径定理在计算上的应用(一)求半径,弦长,弦心距 1、 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深 度为16cm ,那么油面宽度AB 是________cm. 变式2.在直径为52cm 的圆柱形油槽内装入一些油后,,如果油面宽度是48cm ,那么油的最大深度为________cm 2:如图为一圆弧形拱桥,半径OA = 10m ,拱高为4m ,求拱桥跨度AB 的长。 3、如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥于F . (1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离. 4、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。 (二)、度数问题 1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求: AOB ∠的度数和圆的半径。. 已知:⊙O 的半径1=OA ,弦AB 、AC 的长分别是2、2、 3. 求BAC ∠的度数。 (三)、相交问题 如 图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°, 求CD 的长. (四)平行问题 (南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E , GB =8cm ,AG =1cm ,DE =2cm ,则EF = cm . 变式一:圆内两条互相平行的弦AB 、CD ,其中AB =16cm ,CD =12cm ,圆的半径为10,求AB 、CD 间的距离。 2、 如图,圆柱形水管内原有积水的水平面宽 CD=20cm ,水深GF=2cm .若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少? (五)同心圆问题 O A B C D E A C B D O A B C D O C A D E

九年级数学尖子生培优竞赛专题辅导第三讲韦达定理及其应用(含答案)

第三讲韦达定理及其应用 趣题引路】 韦达,1540年出生于法国的波亚图,早年学习法律,但他对数学有浓厚的兴趣:常利用业余时间钻研数学.韦达是第一个有意识地、系统地使用字母的人,他把符号系统引入代数学对数学的发展发挥了巨大的作用,使人类的认识产生了飞跃。人们为了纪念他在代数学上的功绩,称他为“代生之父”历史上流传着一个有关韦达的趣事:有一次,荷兰派到法国的一位使者告诉法国国王,比利时的数学家罗门提岀了一个45次的方程向各国数学家挑战.国王于是把这个问题交给韦达,韦达当即得岀一正数解,回去后很快又得出了另外的22个正数解(他舍弃了另外的22个负数解)?消息传开,数学界为之震惊.同时,韦达也回敬了罗门一个问题,罗门一时不得其解,冥思苦想了好多天才把它解出来。 韦达研究了方程根与系数的关系,在一元二次方程中就有一个根与系数之间关系的韦达左理,你能利用韦达泄理解决下而的问题吗?已知:①0+2“一1=0,②夕一2沪一1=0日1 一c/HO.求(严a 的值。 解析由①知1 + 2丄一丄=0? a cr 即(丄尸+2丄一1 = 0,③a a 由②知(护)2一2沪一1=0,④ 由韦达泄理,得丄+ Z/=2丄,=一1 , a a ...严=[(* +町+ 乡「(2-1 严 62为一元二次方程2 -21-1 =0的两根。 点评本题的关键是构造一元二次方程X2-2A-1=0,利用韦达立理求解,难点是将①变形成③,易错点是忽视条件1 一ab2 #0,而把“,一夕看作方程/+加一1 =0的两根来求解. 知识延伸】 例1已知关于x的二次方程2x2+av-2z/+l= 0的两个实根的平方和为7丄,求“的值. 4 解析设方程的两实根为小,也,根据韦达泄理,有 一2“ +1 于是,Xj24-A22=(X14-X2)2-2.¥I%2

相关主题
文本预览
相关文档 最新文档