当前位置:文档之家› 广一KTB制冷空调泵_空调冷却水循环泵选型样本手册

广一KTB制冷空调泵_空调冷却水循环泵选型样本手册

广一KTB制冷空调泵_空调冷却水循环泵选型样本手册
广一KTB制冷空调泵_空调冷却水循环泵选型样本手册

制冷空调泵AIR-CONDITION PUMP TYPE KTB

广州市第一水泵厂GUANGZHOU NO.1 PUMP WORKS 广州广一泵业有限公司GUANGZHOU GUANG YI PUMPING CO.,LTD.

用途 Application

KTB型泵是我公司专为空调制冷系统设计的单级单吸清水离心泵,主要用于中央空调冷却系统,高层建筑供水、消防增压、冷热水循环,以及在工业、农业、园艺等行业中的给排水用途。

Type KTB pump is a single stae ingle suction pump, It is s pec ially des igned for air-c ondition system,and also suitable for different kinds of water supply.

-Pumping hot and c old water for heatin and cooling system

-Pressure boosting system

-Firefight system

-Liquid transfer in industry,agriculture,horticulture, etc.

输送介质 Liquids Pumped

主要供吸送稀释、清洁的、不腐蚀的清水及物理化学性质类似水不含固体颗粒或纤维的液体。

Thin,c lean non-aggressiv and non-explosive liquids without solid particles or fiber.

性能范围 Performance Range

转速Speed 1450rpm(1480rpm)

流量Capacity 7.5-1470m3/h

扬程Head 9.7-88m

功率Power 1.5-250KW

工作条件 Operating Conditions

工作温度范围Temperature Range: 0-105℃

最大工作压力Max. Operating Pressure:1.6MPa

泵说明 Pump

综合了IS、IT、XA等型号目前国家推荐使用的节能产品的特点,并在结构材质选用和轴承、轴封、润滑等方面作了改进。该型泵具有结构合理、体积小、重量轻、可靠性高、检修维护方便的特点。

Pump KTB have the features of some power-consumption products recommended by nation such a type IS,IT,XA,etc.and there is much improvement in material,bearing,seal and lubricate.For ist reasonable stucture,type KTB pump is reliable in performance,small in size,light in weight and easy in maintenance.

该型泵机件为了达到通用必,72种规格的水泵只有4种规格的轴、轴承、联轴器盖,减少了备品备件,便于检修管理。

Type KTB pump has a wonderful interchanging ability;totally there are 72 models,but only 4 types size of the shaft. Forthe sam shaft size,relative ball bearing,seal,shaft sleeve,impeller and fastning are interchangeable.

采用开门式结构使泵体和轴承体部分从叶轮背面处分体,检修时无需拆卸泵体和进出管路,只需脱开联轴器,移动电机,即可取出叶轮等部件进行检修(见图1)。

The pump is back-pull-out design,which allows diasembling the castin cover and rotary components

whithout removing the pipework(see fig.1).

图 1fig.1

采用水力和动力平衡的叶轮,叶轮前后均有密封环,的盖板设有平衡孔,能有效平衡泵的轴向力。叶轮材质采用耐磨合金铸铁或铸铜精密铸造,用户可根据使用情况选用(订货时说明)。

The us e of hydraulic and dynamic balanc ed impeller with double-end sal ring and balance hole can depress axial force effectively.The material of impellr I cast iron or bronze.

采用特殊设计的耐磨机械密封装置,正常使用寿命超过一万小时,保证在较高水位下不漏水,运行稳定可靠。

The use of durable mechanical seal ensures no leakage in high pressure an running well.

本公司独特的悬架结构使机组运行更稳定,采用高强度不锈钢轴以及配套进口优质轴承。轴承润滑结构采用7019#高级轴承脂润滑。

The bearing house I designed spcially for typ KTB and mak it running f irmly. U e good stainless steel shaft and excellent bearing,which is lubricated with 7019# grease.

材料Material(见图2 see flg.2)

结构图Constructions

图 2 fig.2

型号意义说明 Pump Key

KTB 125 - 100 - 250 A / B

制冷空调泵

Air-condition pump

泵吸入口径125mm

Inlet diameter 125mm

泵排出口径100mm

Outlet diameter 100mm

叶轮名义直径250mm

The nominal diameter of impeller 250mm

同型号叶轮直径第一次切割

Dia.of impeller cut first time

同型号叶轮直径第二次切割

Dia.of impeller cut second time

底板 Bedplate

提供尺寸齐全的铸铁底板,方便现场安装

Cast iron bedplate covering all series is applied.电机 Motor

配用电动机的噪声等级低于普通Y型电机,在轴承压盖处设注油孔,可随时向轴承加油,维护保养方便。

The noise class of motor mounted is lower than that of normal motors.There is a hole applied on bearing cover and it is convenience to pour oil to the bearing at any moment.Direction Of Rotation.

旋转方向 Direction Of Rotation

由电机方向看,水泵为员时针旋转。

Direction of rotation is clockwise as viewed from the driver towards the pump.

性能表Performance Date

性能表Performance Date

性能表Performance Date

性能表Performance Date

性能表Performance Date

安装尺寸图 Installation Diagram

图 3 fig.3

KTB型制冷空调泵 Air-condition Pumps Type KTB

10

进出口法兰尺寸 Dimensions Of Flange(图 4 see fig.4)

图 4 fig.4

图 5 fig.5

锥管尺寸 Dimensions Of Conic Pipe

为减少管路阻力损失,一般应控制管路中的水流速度大约2-2.5m/s,所以水泵出水口应装扩散锥管。

To release resistance loss in pipes,generally,the flow s peed should be controlled a t 2-2.5m/s approximately.

So conic pipe should be used in outlet.

本厂提供下列尺寸的锥管We supply conic as

2

KTB型制冷空调泵 Air-condition Pumps Type KTB

KTB201102-⑤

说明书内容如有改动,恕不另行通知

All specifications subject to change without notice

空调循环泵的选择

空调循环泵的选择 1、循环水泵容量过大的原因如下: 1.1 设计冷负荷偏大 设计冷负荷是选择设备的主要依据,所以正确地计算建筑冷负荷对整个空调系统的设计十分重要。目前,教科书及设计手册中提供的空调负荷计算方法不论是计算围护结构的墙壁负荷,还是门窗负荷,其计算结果都是针对某一具体房间而言。然而,空调系统设备容量是依据整个建筑的冷负荷确定。由于建筑内各房间的朝向、位置、使用功能及其发热源等因素的不同,往往造成各房间最大冷负荷出现的时间并不相同。因此,建筑冷负荷的最大值应为每个房间逐时负荷叠加的最大值。据调查在我国有部分设计人员在计算建筑冷负荷时只是简单地将每个房间的最大冷负荷进行叠加,导致计算结果远大于实际需求负荷。所以我们必须对此给予足够的重视,使设计负荷的确定更加合理正确。 1.2 系统循环阻力偏大 在计算系统循环阻力时,由于设计人员经验不足,使得一些计算参数取值过于保守,造成循环阻力计算值偏大,更有甚者,在施工图设计阶段采用估算方法确定循环阻力,致使计算循环阻力比实际值大一倍以上。 1.3 系统静压问题

空调系统充满水才能运行,水泵的进、出口承受相同的静水压力。因此,所选水泵的扬程只克服管道系统阻力即可。然而,有的设计者却把静水压力也计入该循环阻力之内,这当然会使循环水泵的容量增大很多。 1.4 系统水力平衡问题 由于设计时不认真进行系统的水力平衡计算,工程竣工后又未按要求进行全面调试,往往造成系统水力失调,系统出现冷热不均的现象。有些技术人员错误地认为造成此现象的原因是循环水泵的容量太小,结果只简单地采用加大水泵的方法解决了之,自然也就使水泵容量增大。 2、水泵特性曲线及最佳工作点 2.1 水泵的流量——扬程特性曲线 水泵的流量——扬程特性曲线一般有三种类型:平坦型、陡降型、驼峰型。用于空调水循环系统的水泵应具有平坦特性,其零流量与最大流量之间的扬程变化范围不应大于10%-15%;陡降特性的水泵由于其最大流量与最小流量间的扬程变化太大,故不宜选用;驼峰特性的水泵也不可采用,因为在两台水泵并联运行时可能引起负荷和扬程的周期变化,而当这一变化的频率等于系统的自振频率时便产生危险的“振荡现象”,而此现象将对系统的正常运行造成一定影响。

《水泵选型的分类》word版

(本文由三昌泵业网络部整理、仅供参考) 水泵基础知识 1.供水设备:单位时间内输出一定流量、扬程的自动启停的给水装置。 2.消防供水设备:用于消防用途的供水设备。2002年前生产该设备必须有省级消防部门颁发的生产 许可证书或备案登记证书。凡越省际范围销售,必须到拟销售的省份进行审查备案,办理登记入境(省)销售手续。自我国加入WTO后,公安部取消了入境(省)备案手续,不再发放消防产品登记备案证书。消防供水设备企业只要出具国家消防检测单位的检测合格报告,用户在中国消防产品网站http://211.101.148.74/上查阅即可。 3.生活供水设备:用于生活用途的供水设备。 4.生产供水设备:用于生产用途的供水设备。 5.囊式落地膨胀水箱:囊式供水设备在锅炉(换热站)膨胀系统的应用。主要取代高位膨胀水箱, 解决采暖(制冷)系统中的热胀冷缩问题与自动补水问题。 6.农田灌溉系统:供水设备在农田灌溉系统的应用。 7.人工造浪系统:囊式供水设备应用人工造浪系统。 (二)供水设备的种类 根据供水设备的用途可分生活供水设备、生产供水设备、消防供水设备三种。 根据供水设备的原理与构成分成三类。补气式供水设备、囊式供水设备、变频供水设备。 1.补气式供水设备:利用密封罐内空气的可压缩性,调节输水的给水装置,其作用相当于高位水箱 或水塔,由气压罐内压力变化自动控制水泵的工作,当罐内空气压力不足时,能够自动补气增压。 2.囊式供水设备:囊内为水室,罐囊之间为气室,一次充气常年使用,其运行工况是当气压罐内压 力降至用户要求的低限时,压力传感信号通过电控柜开启水泵,自动输水至罐内。当系统压力不

水泵选型计算公式

水泵选型计算公式 一、水泵选型计算 1、水泵必须的排水能力 Q B = 20 24max Q m 3/h 2、水泵扬程估算 H=K (H P +H X ) m H P :排水高度;H X :吸水高度;K :管路损失系数,竖井K=1.1—1.5;斜井?<20°时K=1.3~1.35;?=20°~30°时K=1.25~1.3;?>30°时K=1.2~1.25 二、管路选择计算 1、管径: ' 900'V Q d n π= m Qn :水泵额定流量;'V 经济流速m/s ; 'Vp =1.5~2.2m/s ;='Vx 0.8~1.5m/s ;'dx ='dp +0.025 m 2、管壁厚计算 ?? ? ???+----+ = C P d P P P p )65.0(230*)65.0(230211σσδ mm d P :标准管内径mm ;P :水管内部工作阻力P=0.11Hsy (测地高度m ) Kg/cm 2; σ:许用应力,无缝管σ=8Kg/mm 2,焊管σ=6 Kg/mm 2,C=1mm ; 3、流速计算 2 900d Q V n π= m/s 三、管路阻力损失计算 ∑+=g V g d LV h 22*22ξ λ m ; 总阻力损失计算 h w =(h p +h x +g Vp 22 )*1.7 1.7:附加阻力系数 四、水泵工作点的确定 H=Hsy+RQ 2 m ; 22Q H Q H H R W SY =-= Hsy :测地高度 m 五、校验计算 ①吸水高度:Hx=Hs-h wx -g V x 22 m ;②η2=85%~90%ηmax ;③稳定性:Hsy ≤0.9H 0 六、电机容量计算 c m m m H Q K N ηηγ102*3600= Kw ;c η:传动效率,直联时c η=1,联轴节时 c η=0.95~0.98; K 备用系数Q m <20m 3/h ,K=1.5;Q m=20—80 m 3/h ,K=1.3—1.2;Q m=80—300 m 3/h ,K=1.2—1.1;Q m >300 m 3/h ,K=1.1;

空调循环水泵的选择

空调循环水泵的选择 1 循环水泵容量过大的问题 循环水泵容量过大在我国是普遍存在的问题,其容量常常达到实际需要的2-4倍,造成工程投资和运行费用的严重浪费。其主要原因如下:1.1 设计冷负荷偏大 设计冷负荷是选择设备的主要依据,所以正确地计算建筑冷负荷对整个空调系统的设计十分重要。目前,教科书及设计手册中提供的空调负荷计算方法不论是计算围护结构的墙壁负荷,还是门窗负荷,其计算结果都是针对某一具体房间而言。然而,空调系统设备容量是依据整个建筑的冷负荷确定。由于建筑内各房间的朝向、位置、使用功能及其发热源等因素的不同,往往造成各房间最大冷负荷出现的时间并不相同。因此,建筑冷负荷的最大值应为每个房间逐时负荷叠加的最大值。据调查在我国有部分设计人员在计算建筑冷负荷时只是简单地将每个房间的最大冷负荷进行叠加,导致计算结果远大于实际需求负荷。所以我们必须对此给予足够的重视,使设计负荷的确定更加合理正确。 1.2 系统循环阻力偏大 在计算系统循环阻力时,由于设计人员经验不足,使得一些计算参数取值过于保守,造成循环阻力计算值偏大,更有甚者,在施工图设计阶段采用估算方法确定循环阻力,致使计算循环阻力比实际值大一倍以上。

1.3 系统静压问题 空调系统充满水才能运行,水泵的进、出口承受相同的静水压力。因此,所选水泵的扬程只克服管道系统阻力即可。然而,有的设计者却把静水压力也计入该循环阻力之内,这当然会使循环水泵的容量增大很多。 1.4 系统水力平衡问题 由于设计时不认真进行系统的水力平衡计算,工程竣工后又未按要求进行全面调试,往往造成系统水力失调,系统出现冷热不均的现象。有些技术人员错误地认为造成此现象的原因是循环水泵的容量太小,结果只简单地采用加大水泵的方法解决了之,自然也就使水泵容量增大。 2 水泵特性曲线及最佳工作点 2.1 水泵的流量——扬程特性曲线 水泵的流量——扬程特性曲线一般有三种类型:平坦型、陡降型、驼峰型(如图2.1所示)。用于空调水循环系统的水泵应具有平坦特性,其零流量与最大流量之间的扬程变化范围不应大于10%-15%;陡降特性的水泵由于其最大流量与最小流量间的扬程变化太大,故不宜选用;驼峰特性的水泵也不可采用,因为在两台水泵并联运行时可能引起负荷和扬程的周期变化,而当这一变化的频率等于系统的自振频率时便产生危险的“振荡现象”,而此现象将对系统的正常运行造成一定影响。 2.2 最佳工作点

水泵选型手册.doc

IS 、ISR、ISY系列单级离心泵 叶轮扬程转速效率必需汽蚀余 轴功率配用电机量 流量 型号型式H(m) n E(%) (NPSH)r(m) N(KW) 型号/KW (M3/h) (L/S) (r/min) O 12.5 3.47 20 60 2 1.13 90L-2/2.2 A 11.9 3.31 18.2 58 2 1.02 50-32-125 2900 B 11.2 3.1 15.9 56 2 0.86 90S-2/1.1 C 10.4 2.88 13.8 54 2 0.72 802-2/1.1 O 6.3 1.74 5 54 2 0.16 50-32- A 6 1.67 4.6 52 2 0.14 1450 801-4/0.55 125(J) B 5.6 1.56 4 50 2 0.12 C 5.2 1.45 3.5 48 2 0.1 O 12.5 3.47 32 54 2 2.02 100L-2/3 A 11.4 3.16 26.6 52 2 1.59 50-32-160 2900 B 10.1 2.81 21 50 2 1.16 90L-2/2.2 C 9 2.51 16.7 45 2 0.91 90S-2/1.5 O 6.3 1.75 8 48 2 0.29 50-32- A 5.7 1.59 6.7 45.5 2 0.23 1450 801-4/0.55 160(J) B 5.1 1.42 5.3 42 2 0.17 C 4.6 1.26 4.2 38 2 0.14 O 12.5 3.47 50 48 2 3.54 132S1— A 12.1 3.37 47 47 2 3.3 2/5.5 50-32-200 2900 B 11.7 3.23 43.2 46.2 2 2.96 112M-2/4 C 10.9 3.02 37.7 45.2 2 2.47 O 6.3 1.74 12.5 42 2 0.51 50-32- A 6.1 1.7 11.8 41.5 2 0.47 802-4/0.75 1450 200(J) B 5.9 1.63 10.8 40.7 2 0.42 C 5.5 1.52 9.4 39.5 2 0.36 801-4/0.55 O 12.5 3.47 80 38 2 7.16 A 11.6 3.22 68.9 37.5 2 5.8 160M1-2/11 50-32-250 2900 B 10.8 3 59.7 36.3 2 4.84 C 10 2.78 51.2 35 2 3.98 132S2-2/7.5

中央空调循环水泵选择方法介绍

中央空调循环水泵选择方法介绍 一问题的提出 在中央空调系统中,循环水泵夏季输送冷冻水,冬季输送热水至空调末端装置。工程设计应按照空调系统水流量和系统阻力选择性能良好的水泵。有关暖通空调设计手册都有详细设计计算方法。问题在于实际工程设计时,某些工程师未按照计算方法进行设计计算,而是凭经验想当然,对系统以及某些空调设备、配件等新产品缺乏认真研究,结果导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作,这不得不引起空调设计者的高度重视。 二理论分析 空调系统水流量的大小由负荷及供回水温差确定,系统阻力通过水力计算求得。按流量和阻力选择的水泵,运行时应处于高效区,其工作点为水泵性能曲线和管路特性曲线的交点,如图1中A点。而工程中选择的水泵常常出现两种不正常情况。 1)设计时比较保守,水系统实际流速取值较低,估算系统阻力较大,导致选水泵时扬程加 大,使所选择的循环水泵扬程比设计流量下的系统阻力大得多。如图2: 流量QA是系统设计流量,在此流量下水泵扬程为HB即可。实际选择的水泵扬程为HS。为了保证QA,则要改变管路特性,即通过关小水泵进出口的阀门,使管路特性曲线由Ⅰ变为Ⅱ。显然,ΔP=HB-HA完全通过阀门节流,这是非常不经济的,也是工程中需避免出现的情况,如果冬季运行采用同一套泵工作,由于流量变小,节流更严重,就更不经济,甚至造成水泵工作点不稳定。

2)设计过于自信,对空调系统阻力估算偏小,所选泵扬程小于设计流量下系统阻 力。如图3所示: 设计工作点为A,水泵流量为QA,扬程为HA。水泵实际运行时管路特性曲线不是Ⅰ,而是Ⅱ,运行工作点为B,流量QBA,且B点不在水泵高效区。显然这比第一种情况更为不利。解决的唯一办法只能更换水泵。 三工程实例 例1 甲工程为一单体高层建筑,建筑高度29m,泵房设在主楼地下室。设计选用进口开利离心式冷冻机一台,制冷量为1163 kW,配用2台循环水泵,1用1备,水泵参数见表1。 刚开始调试运动时,发现水泵电机电流过大,水泵出水管振动厉害,且有异常声音。水泵扬程仅为0.28MPa,电机电流I=115A。分析原因,为分集水器压差仅为0.13MPa,所选水泵扬程偏大。此时水泵工作点为低扬程大流量,电机严重超载;水泵气蚀严重,管路抖动厉害,声音异常;关小水泵和冷冻机蒸发器进、出口阀门,保证蒸发器进出口要求的压差Δp=(92±5)kPa,使水泵恢复正常工作。此时测试数据如表2(原泵)。 设计工作点为A,水泵流量为QA,扬程为HA。水泵实际运行时管路特性曲线不是Ⅰ,而是Ⅱ,运行工作点为B,流量QBA,且B点不在水泵高效区。显然这比第一种情况更为不利。解决的唯一办法只能更换水泵。三工程实例 例1 甲工程为一单体高层建筑,建筑高度29m,泵房设在主楼地下室。设计选用进口开利离心式冷冻机一台,制冷量为1163 kW,配用2台循环水泵,1用1备,水泵参数见表1。 刚开始调试运动时,发现水泵电机电流过大,水泵出水管振动厉害,且有异常声音。水泵扬程仅为0.28MPa,电机电流I=115A。分析原因,为分集水器压差仅为0.13MPa,所选水泵扬程偏大。此时水泵工作点为低扬程大流量,电机严重超载;水泵气蚀严重,管路抖动厉害,声音异常;关小水泵和冷冻机蒸发器进、出口阀门,保证蒸发器进出口要求的压差Δp=(92±5)kPa,使水泵恢复正常工作。此时测试数据如表2(原泵)。

冷冻水泵选型方法详解

冷冻水泵选型方法详解(附计算步骤) 冷冻水泵选型最重要的步骤是对其扬程和流量的确定,一般来说,冷冻水泵选型大多是清水离心泵。下面,世界泵阀网为大家列举冷冻水泵选型时所要参考的参数及具体的计算方法。 冷冻水泵选型过程中最具参考意义的参数是扬程,冷冻水泵扬程实用估算方法常见的由闭式空调冷水系统的阻力组成,因为这种系统是最常用的系统。 1、冷水机组阻力:由机组制造厂提供,一般为60~100kPa。 2、管路阻力:包括磨擦阻力、局部阻力,目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。 3、空调未端装置阻力:根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。 4、调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。 根据以上所述,可以粗略估计出一幢约100m高的高层建筑空调水系统的压力损失,也即循环水泵所需的扬程: 冷水机组阻力:取80kPa(8m水柱); 管路阻力:取冷冻机房内的除污器、集水器、分水器及管路等的阻力为50kPa;取输配侧管路长度300m与比摩阻200Pa/m,则磨擦阻力为300*200=60000Pa=60kPa;如考虑输配侧的局部阻力为磨擦阻力的50%,则局部阻力为60kPa*0.5=30kPa;系统管路的总阻力为50kPa+60kPa+30kPa=140kPa(14m水柱);

炉水循环泵冷却水系统

3、炉水循环泵冷却水系统 为了满足炉水循环泵电机腔口的冷却水温度不超过60℃,就必须有一套可靠的冷却水系统,以消除由于电机在运转时绕组的铜损和铁损发热、转动件的磨擦生热,以及从高温的泵壳侧传来的热量而造成电机温升的不安全影响。 电动机冷却水循环回路是:高压一次冷却水从电机底部进入,经由电机下端的推力盘带动辅助叶轮,以推进循环的流动,冷却水继而流经电机的转子和静子绕组及轴承间隙,从电机上端的出水口流出,温度升高了的高压一次水经外置的高压冷却器的高压侧将热量传给低压侧的低压二次冷却水,然后被冷却后的高压一次水再进入电机,形成高压一次水的闭路循环系统。 炉水循环泵冷却水系统由高压管路及低压管路两部分组成。高压管路与电机相连接,其流通的水按其不同的工作阶段有不同的作用目的,分别称为充水、清洗水和高压冷却水。低压管路中流通的则为低压冷却水。 3.1 充水管路清洗 炉水循环泵电机轴承需冷却水润滑,电机是靠水来冷却,所以在泵投入前必须电机进行充水。水润滑轴承的润滑膜非常薄,容不得任何细小杂质混入,因此在进行电机充水前应进行充水管路的开放冲洗,待冲洗合格后才能与电机接通。充水水源取自凝结水泵出口的低压凝结水,其水质浊度小于20ppm,铁含量<3.00ppb,对电机充水后也需进一步对电机冲洗,并将贮留在电机腔内的空气排净为止。因为电机腔内水中含有空气,轴承与空气接触而得不到水的润滑与冷却,使轴承损坏,所以泵启动前充水排气是非常重要,而且其操作要自下而上缓慢进行,直至把电机内空气排净为止。 对电机的充水和清洗分为两个步骤进行:第一步充水阶段,在锅炉尚未进水前,电机必须首先进行充水,电机充水排气,直至泵体排水门(疏水门)排出不含空气的稳定水流。第二步为清洗阶段,在锅炉上水过程中必须将清洗水连续不断地注入电机,以保证清洗水连续地从电机溢出,而决不能让锅炉的炉水倒灌入电机。以上称为静态清洗,静态清洗合格后再进行动态清洗,首先将炉水循环泵的出口门保持开启,将锅炉进水至正常水位,然后对炉水循环泵先后进行三次点动,第一次点转5s,间隔15min后再点转,其目的是提高清洗效果和进一步驱赶电动机中残留空气。 在锅炉启动阶段,必须连续地投入清洗水,清洗水的投用一直要延续到确保电机冷却水系统不含有污染杂质,直至锅炉的炉水浊度小于10ppm时才可停止电机充水。 3.2 高压冷却水 一次冷却水有分别取自凝泵出口的低压水源和给水母管来的高压水源。低压一次冷却水(凝结水)供管路冲洗、电机充水、清洗以及炉水循环泵电机注水用。炉水泵在正常运行时

空调设计设备选型指南

内容: 1 水冷冷水机空调系统 ☆主要设备 (1)制冷主机(2)冷冻水泵(3)冷却水泵(4)冷却塔 (5)电子水处理仪(6)水过滤器(7)膨胀水箱 (8)末端装置(组合式空调机组、柜式空调机组、风机盘管等) 2 冷、热源的选择 1. 冷、热源系统设计选型注意的几个方面 1.1 各种冷、热源系统的能效特性 1.2 冷、热源系统的部分负荷性能 1.3 冷、热源系统的投资费用 1.4 冷、热源系统的运行费用 1.5 冷、热源系统的环境行为 2. 冷源设备选择 2.1 冷水机组的总装机容量 冷水机组的总装机容量应以正确的空调负荷计算为准,可不作任何附加,避免所选冷水机组的总装机容量偏大,造成大马拉小车或机组闲置的情况。 2.2 冷水机组台数选择 制冷机组一般以选用2~4台为宜,中小型规模宜选用2台,较大型可选用3台,特大型可选用4台。机组之间要考虑其互为备用和切换使用的可能性。 同一机房内可采用不同 类型、不同容量的机组搭配的组合式方案,以节约能耗。并联运行的机组中至少应选择一台自动化程度较高、调节性能较好、能保证部分负荷下能高效运行的机组。 为保证运转的安全可靠性,当小型工程仅设1台时,应选用调节性能优良、运行可靠的机型,如选择多台压缩机分路联控的机组,即多机头联控型机组。 2.3 冷水机组机型选择 2.3.1水冷电动压缩式冷水机组的机型宜按制冷量范围,并经过性能价格比 进行选择。 2.3.2冷水机组机型选择

电机驱动压缩机的蒸气压缩循环冷水机组,在额定制冷工况和规定条件下,性能系数(COP)不应低于以下规 定。 2.3.3冷水机组的制冷量和耗功率 冷水机组铭牌上的制冷量和耗功率,或样本技术性能表中的制冷量和耗功率是机组名义工况下的制冷量和耗功率,只能作冷水机组初选时参考。冷水机组在设计工况或使用工况下的制冷量和耗功率应根据设计工况或使用工况(主要指冷水出水温度、冷却水进水温度)按机组变工况性能表、变工况性能曲线或变工况性能修正系数来确定。 2.4热源设备 2.4.1热源设备类型 提供空调热水的锅炉按其使用能源的不同,主要分为两大类:(1)电热水锅炉(2)燃气、燃油热水锅炉 电热水锅炉 电热水锅炉的优点是使用方便,清洁卫生,无排放物,安全,无燃烧爆炸危险,自动控制水温,可无人值守。 《公共建筑节能设计标准》(GB50189-2005)规定:除了符合下列情况之一外,不得采用电热锅炉、电热水器作为直接采暖和空气调节系统的热源:电力充足、供电政策支持和电价优惠地区的建筑; 以供冷为主,采暖负荷较小且无法利用热泵提供热源的建筑; 无集中供热与燃气源,用煤、油等燃料受到环保或消防严格限制的建筑; 夜间可利用低谷电进行蓄热、且蓄热电锅炉不在日间用电高峰和平段时间启用的建筑; 利用可再生能源发电地区的建筑; 内、外区合一的变风量系统中需要对局部外区进行加热的建筑.

水泵选型手册

水泵选型: 水泵是一种面大量广的通用型机械设备,它广泛地应用于石油、化工、电力冶金、矿山、选船、轻工、农业、民用和国防各部门。水泵的选型主要涉及工作介质、工作介质特性、扬程、流量、环境温度等数据,合适的水泵不但工作平稳,寿命长,且能为用户最大程度的节省成本。 引言: 水泵是一种面大量广的通用型机械设备,它广泛地应用于石油、化工、电力冶金、矿山、造船、轻工、农业、民用和国防各部门,在国民经济中占有重要的地位。据统计,我国泵产量达525.6万台。泵的电能消耗占全国电能消耗的21%以上。因此大力降低泵的能源消耗,对节约能源具用十分重大的意义。近年来,我们泵行业设计研制了许多高效节能产品,如IHF、CQB、FSB、UHB等型号的泵类产品,对降低泵的能源消耗起了积极作用。 必要性: 但是在国民经济各个领域中,由于选型不合理,许多的泵处于不合理运行状况,运行效率低,浪费了大量能源。还有的泵由于选型不合理,根本不能使用,或者使用维修成本增加,经济效益低。由此可见,合理选泵对节约能源同样具有重要意义。所谓合理选泵,就是要综合考虑泵机组和泵站的投资和运行费用等综合性的技术经济指标,使之符合经济、安全、适用的原则。具体来说,有以下几个方面:必须满足使用流量和扬程的要求,即要求泵的运行工况点(装

置特性曲线与泵的性能曲线的交点)经常保持在高效区间运行,这样既省动力又不易损坏机件。所选择的水泵既要体积小、重量轻、造价便宜,又要具有良好的特性和较高的效率。具有良好的抗汽蚀性能,这样既能减小泵房的开挖深度,又不使水泵发生汽蚀,运行平稳、寿命长。按所选水泵建泵站,工程投资少,运行费用低。

闭式循环冷却水系统

第三章闭式循环冷却水系统 第一节闭式冷却水系统投运前的检查与操作 3.1.1 检修工作已结束,所有工作票终结,系统完好、现场整洁。 3.1.2 闭式冷却水泵与电机对轮连接完好,地脚螺栓坚固,联轴器防护罩完整牢固,电机接线良好,接地线连接完好。 3.1.3 热工各种表计齐全完整,并投入运行,确证热工保护投入运行。 3.1.4 闭式冷却水系统电动门送电,气动门控制气源送上,压缩空气压力不低于0.5MPa,各阀门开关正常。 3.1.5 关闭闭式冷却水系统所有放水门,开启闭式冷却水系统所有放空气门,系统各用户阀门根据具体情况投入。 3.1.6 开启膨胀水箱出口门及两台闭式冷却水泵入口门。 3.1.7 检查辅机冷却水系统已投入运行20分钟以上,投入一台闭式冷却水冷却器,另一台闭式冷却水冷却器备用。闭式冷却水冷却器投入时先投开式冷却水侧,再投闭式冷却水侧。 3.1.8 检查除盐水正常,凝结水补水系统已准备好。 3.1.9 开启除盐水向膨胀水箱补水门,闭式冷却水系统开始注水。 3.1.10 闭式冷却水系统各空气门见水后关闭。 3.1.11 膨胀水箱水位补至 1000—1600mm,投入膨胀水箱补水调门自动。 3.1.12 按规定进行闭式冷却水泵联锁试验合格。 3.1.13 闭式冷却水泵电机测绝缘合格后送电。 3.1.14 检查闭式冷却水泵出口电动门关闭。 3.1.15 检查投入部分闭式冷却水用户。 3.1.16 通知化学准备化验闭式冷却水水质。 第二节闭式冷却水系统的报警、联锁与保护 3.2.1 报警条件 1. 闭式膨胀水箱水位≤1000mm, 水位低报警, 联开补水调门; ≥1600mm, 联关补水调门; ≥1800mm,水位高报警。 2. 闭式循环水冷却器出口母管压力≤0.35MPa 报警,延时3s 联启备用泵。 3. 闭式循环水冷却器出口母管温度≥38℃报警。 4. 闭式循环泵电机线圈温度≥110℃报警。 5. 闭式循环泵电机轴承温度≥75℃报警,≥80℃延时3s 跳泵。 6. 闭式循环泵轴承温度≥75℃报警,≥80℃延时3s 跳泵。 7. 闭冷水膨胀水箱液位≤200,延时5s跳泵; 8. 闭式循环冷却水泵运行且出口电动门关,延时5S跳泵; 9. 闭式循环冷却水泵运行且入口电动门关,延时3S跳泵。 3.2.2 闭式冷却水泵允许启的条件: 1. 电机各相线圈温度低于110℃;

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

空调系统水泵的选型

空调系统水泵的选型 第一步:水泵流量的确定 1.冷却水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量 L(m3/h)= Q(kW)/(4.5~5)℃x1.163X(1.15~1.2) 2.冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。 L(m3/h)= Q(kW)/(4.5~5)℃x1.163 第二步:水系统水管管径的计算 在空调系统中所有水管管径一般按照下述公式进行计算: D(m)=√L(m3/h)/0.785x3600xV(m/s) 公式中: L----所求管段的水流量(第一步已计算出) V----所求管段允许的水流速 流速的确定:一般,当管径在DN100到DN250之间时,流速推荐值为1.5m/s左右,当管径小于DN100时,推荐流速应小于1.0m/s,管径大于DN250时,流速可再加大。进行计算是应该注意管径和推荐流速的对应。 目前管径的尺寸规格有:DN15、DN20、DN25、DN32、DN40、

DN50、DN65、DN80、DN100、DN125、DN150、DN200、DN250、DN300、DN350、DN400、DN450、DN500、DN600 注意:一般,选择水泵时,水泵的进出口管径应比水泵所在管段的管径小一个型号。例如:水泵所在管段的管径为DN125,那么所选水泵的进出口管径应为DN100。 第三步:水泵扬程的确定 以水冷螺杆机组为例: 冷冻水泵扬程的组成 1.制冷机组蒸发器水阻力:一般为5~7mH2O;(具体值可参看产品样本) 2.末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力:一般为5~7mH2O;(据体值可参看产品样本) 3.回水过滤器阻力,一般为3~5mH2O; 4.分水器、集水器水阻力:一般一个为3mH2O; 5.制冷系统水管路沿程阻力和局部阻力损失:一般为7~10mH2O; 综上所述,冷冻水泵扬程为26~35mH2O,一般为32~36mH2O。 注意:扬程的计算要根据制冷系统的具体情况而定,不可照搬经验值! 冷却水泵扬程的组成 1.制冷机组冷凝器水阻力:一般为5~7mH2O;(具体值可参看产品样本) 2.冷却塔喷头喷水压力:一般为2~3mH2O

循环冷却水系统调试方案

印尼南加海螺水泥2×18MW燃煤自备电厂项目#1汽轮机循环水系统调试方案编制: 审核: 批准: 中电 2014年8月18日

目录

1 目的 (4) 2 依据 (4) 3 系统说明及设备规: (4) 4 .循环泵启动前应具备的条件 (5) 5 组织分工 (6) 6 使用仪器设备 (6) 7 .循环水泵启动 (6) 8 联锁保护试验 (7) 9 安全注意事项 (7) 10. 停泵操作 (7) 11. 空冷器、冷油器的冲洗 (8) 12. 冷水塔风机试转: (8)

循环冷却水系统调试方案 1 目的 1.1 检验循环水系统设备运行可靠性,保证系统试运顺利进行; 1.2 为凝汽器和辅机设备正常运行提供符合要求的冷却水。 2 依据 2.1 《火电机组达标投产考核标准》 2.2 《火力发电厂基本建设工程启动及竣工验收规程》 2.3 《火电工程调整试运质量检验及评定标准》 2.4 《电力建设施工及验收技术规》 2.5 《火电工程启动调试工作规定》。 2.6 《电力基本建设工程质量监督规定》。 2.7 《电力建设安全健康与环境管理工作规定》 2.8 《电业建设安全工作规程》(热力机械部分) 2.9 设备厂家、设计单位提供的有关图纸资料。 3 系统说明及设备规: 循环水系统的作用是冷却汽轮机的排汽,维持凝结器的真空,并向闭式循环冷却系统提供水源。 3.1 系统说明 循环水系统基本流程:

3.2 设备规 3.2.1循环水泵 型号:HS600-500-550-A 转速:980r/min 流量:3000m3/h 扬程:23m 3.2.2泵电机 型号:YKK450-6TH 转速:990r/min 功率:250KW 额定电压:10000V 标称电流:19.5A 4 .循环泵启动前应具备的条件 4.1 循环水系统的所有设备均已安装完毕; 4.2 系统的阀门挂牌、标注名称正确,阀门动作灵活、无卡涩、开关指示正确; 4.3 热工仪表安装校验完毕,具备投入条件; 4.4 有关热工、电气回路的调试工作已结束; 4.5 现场已清扫,道路通畅,试运区照明充足,通讯施工完善可靠;

暖通空调系统水泵的使用与选型

暖通空调系统水泵的使用与选型 1、冷水泵: 在冷水环路中,驱动水进行循环流动的装置。我们知道,空调房间内的末端(如风机盘管,空气处理机组等)需要冷水机组提供的冷水,但是冷水由于阻力的限制不会自然流动,这就需要水泵驱动冷水进行循环以达到换热的目的。 2、冷却水泵: 在冷却水环路中驱动水进行循环流动的装置。我们知道,冷却水在进入冷水机组后带走制冷剂一部分热量,而后流向冷却塔将这部分热量释放掉。而冷却水泵就是负责驱动冷却水在机组与冷却塔这个闭合环路中进行循环。外形同冷冻水泵。 3、补水泵: 空调补水所用装置,负责将处理后的软化水打入系统中。外形同上水泵。 常用的水泵有卧式离心泵和立式离心泵,它们都可以用在冷水系统,冷却水系统和补水系统中。对于机房面积大的地方可以用卧式离心泵,对于机房面积较小的地方可以考虑使用立式离心泵。 水泵并联运行情况

水泵并联运行时,流量有所衰减;当并联台数超过3台时,衰减尤为厉害。故建议: 1)选用多台水泵时,要考虑流量的衰减,一般附加5%~10%的余量。 2)水泵并联不宜超过3台,即进行制冷主机选择时也不宜超过3台。 3)大中型工程应分别设置冷、热水循环泵。 一般,冷水泵和冷却水泵的台数应和制冷主机一一对应,并考虑一台备用。补水泵一般按照一用一备的原则选取,以保证系统可靠的补水。 4、水泵流量的计算: 1)冷水泵/冷却水泵流量计算公式:L=Q×(1.15~1.2)/(5℃×1.163)式中:Q为制冷主机的制冷量,kW;L为冷水/冷却水泵的流量,m3/h。 2)补给水泵的流量:正常补给水量为系统循环水量的1%~2%,但是选择补给水泵时,补给水泵的流量除应满足上述水系统的正常补水量外,还应考虑发生事故时所增加的补给水量,因此,补给水泵的流量通常不小于正常补水量的4倍。补给水箱的有效容积可按1~1.5h的正常补水量考虑。 5、水泵扬程的确定: 1)冷水泵扬程的组成: 制冷机组蒸发器水阻力: 一般为5~7m H2O; 末端设备(空气处理机组、风机盘管等)表冷器或蒸发器水阻力: 一般为5~7m H2O(具体值可参看产品样本); 回水过滤器,二通调节阀等的阻力: 一般为3~5m H2O;

水泵选型)表

字体大小:大- 中- 小tangchunhu发表于10-10-01 09:32 阅读(322) 评论(0)分类:一、泵选型原则 1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。 闸阀,截止阀,球阀,蝶阀,止回阀,安全阀,减压阀,疏水阀,电动蝶阀,气动蝶阀,电动球阀,气动球阀,电动截止阀,电动闸阀,电动调节阀,气动调节阀,水利控制阀,水泵,管道离心泵,消防泵,磁力泵,不锈钢化工泵,化工泵,衬氟离心泵,潜水排污泵,管道排污泵,液下泵,液下排污泵,螺杆泵,自吸无堵塞排污泵,氟塑料离心泵,气动隔膜泵,电动隔膜泵,多级管道泵,多级离心泵,耐腐蚀泵,单级单吸化工离心泵,隔膜气压罐,控制柜,自动搅匀潜水排污泵,变频无负压供水设备.变频全自动消防稳压供水设备 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。

3、机械方面可靠性高、噪声低、振动小。 4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。 5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: 有计量要求时,选用计量泵 扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵. 扬程很低,流量很大时,可选用轴流泵和混流泵。 介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵) 介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。 对启动频繁或灌泵不便的场合,应选用具有自吸性能的泵,如自吸式离心泵、自吸式旋涡泵、气动(电动)隔膜泵。 二、泵的选型依据

炉水循环泵电机冷却水系统优化措施

炉水循环泵电机冷却水系统优化措施 本文主要介绍电厂锅炉炉水循环泵驱动电机冷却水的清洁度对炉水循环泵的危害,并针对炉水循环泵驱动电机冷却水系统清洁度的要求,炉水循环泵各系统安装过程中的控制措施、调试过程中的工艺控制及炉水循环泵增加外置循环滤网的优点等几个方面进行阐述;通过这些措施,达到提高炉水循环泵驱动电机冷却水系統清洁度的目标,极大提高了炉水循环泵的安全运行保障。 标签:炉水循环泵;清洁度;滤网改进措施 1、目的 炉水循环泵可以比作控制循环锅炉的起搏心脏,离开了炉水循环泵锅炉就影响运行。应充分认识该泵的性能和特点,尤其要注意冷却水系统对炉水循环泵安全运行的重要性。为有效控制发电厂锅炉炉水循环泵驱动电机冷却水清洁度的状况,降低炉水循环泵在运行过程发生设备损坏、冷却水管道堵塞、冷却水清洁度差的概率,特在锅炉炉水循环泵驱动电机冷却水系统内部清洁度常规控制、检查措施的基础上,通过现场进行革新增加外置滤网,改良安装过程等方法来提高炉水循环泵驱动电机冷却水内部清洁度目标。 2、影响炉水循环泵驱动电机冷却水清洁度原因分析 造成电厂炉水循环泵驱动电机冷却水清洁度差的过程主要有两个因素,一个因素是材料在生产、存放和运输过程中形成的;一个因素是在管道系统施工过程中形成的;经过对以上两个因素的细化分析,造成循环泵驱动电机冷却水清洁度差的主要原因有一下几点: (1)锅炉启动冲洗运行过程炉水中的杂质; (2)冷却水管道管子内部的杂质等; (3)炉水循环泵运行过程中产生的铁离子等杂质。 3、电机冷却水清洁度差对炉水循环泵造成的危害 炉水循环泵冷却水系统是用来消除由于电机在运行时绕组的发热、转动件的摩擦生热,以及从高温的泵壳侧传过来的热量而造成电机升温的不安全影响。高压冷却水从炉水泵电机的底部进入,经电机下端的推力轴承带动辅助叶轮,以建立循环的流动。温度升高的电机冷却水再经电机热交换器将热量传给低压冷却水,然后,被冷却过的高压冷却水再返回进入电机,形成闭路循环流动。锅炉炉水循环泵在运行过程中,锅炉水中的杂物会随着锅炉循环泵驱动电机冷却循环水的流动进入驱动电机中,加之循环泵本身采用内置于电机内过滤器,过流面积小,极易堵塞循环水路,造成冷却循环水流量减小,另外在这些杂物中含有铁质颗粒,

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

泵的选型手册

泵的选型手册 一、泵选型原则 1、使所选泵的型式和性能符合装置流量、扬程、压力、温度、汽蚀流量、吸程等工艺参数的要求。 2、必须满足介质特性的要求。 对输送易燃、易爆有毒或贵重介质的泵,要求轴封可靠或采用无泄漏泵,如磁力驱动泵、隔膜泵、屏蔽泵 对输送腐蚀性介质的泵,要求对流部件采用耐腐蚀性材料,如AFB不锈钢耐腐蚀泵,CQF工程塑料磁力驱动泵。 闸阀,截止阀,球阀,蝶阀,止回阀,安全阀,减压阀,疏水阀,电动蝶阀,气动蝶阀,电动球阀,气动球阀,电动截止阀,电动闸阀,电动调节阀,气动调节阀,水利控制阀,水泵,管道离心泵,消防泵,磁力泵,不锈钢化工泵,化工泵,衬氟离心泵,潜水排污泵,管道排污泵,液下泵,液下排污泵,螺杆泵,自吸无堵塞排污泵,氟塑料离心泵,气动隔膜泵,电动隔膜泵,多级管道泵,多级离心泵,耐腐蚀泵,单级单吸化工离心泵,隔膜气压罐,控制柜,自动搅匀潜水排污泵,变频无负压供水设备.变频全自动消防稳压供水设备 对输送含固体颗粒介质的泵,要求对流部件采用耐磨材料,必要时轴封用采用清洁液体冲洗。 3、机械方面可靠性高、噪声低、振动小。

4、经济上要综合考虑到设备费、运转费、维修费和管理费的总成本最低。 5、离心泵具有转速高、体积小、重量轻、效率高、流量大、结构简单、输液无脉动、性能平稳、容易操作和维修方便等特点。 因此除以下情况外,应尽可能选用离心泵: 有计量要求时,选用计量泵 扬程要求很高,流量很小且无合适小流量高扬程离心泵可选用时,可选用往复泵,如汽蚀要求不高时也可选用旋涡泵. 扬程很低,流量很大时,可选用轴流泵和混流泵。 介质粘度较大(大于650~1000mm2/s)时,可考虑选用转子泵或往复泵(齿轮泵、螺杆泵) 介质含气量75%,流量较小且粘度小于37.4mm2/s时,可选用旋涡泵。

相关主题
文本预览
相关文档 最新文档