当前位置:文档之家› 信号和线性系统分析(吴大正第四版)第四章习题答案解析

信号和线性系统分析(吴大正第四版)第四章习题答案解析

信号和线性系统分析(吴大正第四版)第四章习题答案解析
信号和线性系统分析(吴大正第四版)第四章习题答案解析

第四章习题

4.6 求下列周期信号的基波角频率Ω和周期T 。

(1)t j e 100 (2))]3(2cos[-t π (3))4sin()2cos(t t + (4))5cos()3cos()2cos(t t t πππ++

(5))4sin()2cos(t t ππ+ (6))5

cos()3cos()2cos(t t t πππ++

4.7 用直接计算傅里叶系数的方法,求图4-15所示周期函数的傅里叶系数(三角形式或指数形式)。

图4-15

4.10 利用奇偶性判断图4-18示各周期信号的傅里叶系数中所含有的频率分量。

图4-18

4-11 某1Ω电阻两端的电压)(t u 如图4-19所示,

(1)求)(t u 的三角形式傅里叶系数。

(2)利用(1)的结果和1)2

1(=u ,求下列无穷级数之和 (7)

151311+-+-=S (3)求1Ω电阻上的平均功率和电压有效值。

(4)利用(3)的结果求下列无穷级数之和

(71513112)

22++++=S

图4-19

4.17 根据傅里叶变换对称性求下列函数的傅里叶变换

(1)∞<<-∞--=t t t t f ,)

2()]2(2sin[)(ππ (2)

∞<<-∞+=t t t f ,2)(22αα (3)∞<<-∞??

????=t t t t f ,2)2sin()(2ππ

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算221 1231223131 5 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ?

3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A 4.设矩阵210120001A ?? ??=?? ????,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+

行列式经典例题

大学-----行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

信号与系统期末考试试题(有答案的)

信号与系统期末考试试题 一、选择题(共10题,每题3分 ,共30分,每题给出四个答案,其中只有一个正确的) 1、 卷积f 1(k+5)*f 2(k-3) 等于 。 (A )f 1(k)*f 2(k) (B )f 1(k)*f 2(k-8)(C )f 1(k)*f 2(k+8)(D )f 1(k+3)*f 2(k-3) 2、 积分 dt t t ? ∞ ∞ --+)21()2(δ等于 。 (A )1.25(B )2.5(C )3(D )5 3、 序列f(k)=-u(-k)的z 变换等于 。 (A ) 1-z z (B )-1-z z (C )11-z (D )1 1--z 4、 若y(t)=f(t)*h(t),则f(2t)*h(2t)等于 。 (A ) )2(41t y (B ))2(21t y (C ))4(41t y (D ))4(2 1 t y 5、 已知一个线性时不变系统的阶跃相应g(t)=2e -2t u(t)+)(t δ,当输入f(t)=3e —t u(t)时,系 统的零状态响应y f (t)等于 (A )(-9e -t +12e -2t )u(t) (B )(3-9e -t +12e -2t )u(t) (C ))(t δ+(-6e -t +8e -2t )u(t) (D )3)(t δ +(-9e -t +12e -2t )u(t) 6、 连续周期信号的频谱具有 (A ) 连续性、周期性 (B )连续性、收敛性 (C )离散性、周期性 (D )离散性、收敛性 7、 周期序列2)455.1(0 +k COS π的 周期N 等于 (A ) 1(B )2(C )3(D )4 8、序列和 ()∑∞ -∞ =-k k 1δ等于 (A )1 (B) ∞ (C) ()1-k u (D) ()1-k ku 9、单边拉普拉斯变换()s e s s s F 22 12-+= 的愿函数等于 ()()t tu A ()()2-t tu B ()()()t u t C 2- ()()()22--t u t D 10、信号()()23-=-t u te t f t 的单边拉氏变换()s F 等于 ()A ()()()232372+++-s e s s ()() 2 23+-s e B s

自考信号与线性系统分析内部题库含答案

自考信号与线性系统分析内部题库含答案

单项选择题。 1. 已知序列3()cos( )5 f k k π=为周期序列,其周期为 () A . 2 B. 5 C. 10 D. 12 2. 题2图所示 () f t 的数学表示式为 ( ) 图题2 A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)] f t t t t πεε=-- D. ()10sin()[()(2)] f t t t t πεε=+- 3.已知sin() ()()t f t t dt t πδ∞ -∞=? ,其值是 () A .π B. 2π C. 3π D. 4π 4.冲激函数()t δ的拉普拉斯变换为 ( ) A . 1 B. 2 C. 3 D. 4 5.为了使信号无失真传输,系统的频率响应函数应为 ( ) A . ()d jwt H jw e = B. ()d jwt H jw e -= C. ()d jwt H jw Ke = D. ()d jwt H jw Ke -= 1 f( t 0 10 正弦函数

6.已知序列1()()()3 k f k k ε=,其z 变换为 () A . 1 3 z z + B. 1 3 z z - C. 1 4 z z + D. 1 4 z z - 7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. ,0)(<>k k h 8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( ) A .()jw F jw e B. 2()j w F jw e C. 3()j w F jw e D. 4()j w F jw e 9.已知)()(k k f k εα=,)2()(-=k k h δ,则()()f k h k *的值为( ) A .) 1(1 --k k εα B. ) 2(2--k k εα C. ) 3(3--k k εα D. ) 4(4--k k εα 10.连续时间系统的零输入响应的“零”是指( A ) A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列k j e k f 3 )(π=为周期序列,其周期为 ( ) A . 2 B. 4 C. 6 D. 8 12. 题2 图所示 () f t 的数学表示式为 ( )

《信号与线性系统》试题与答案5

综合测试(三) 一、选择题(本题共6小题,每小题3分,共18分) 1、若想使连续时间信号在通过线性非时变系统传输时,波形不会产生失真,而仅仅是延时一段时间输出,则要求系统的单位冲激响应必须满足() A. B. C. D. 2、序列和等于() A. 1 B. C. D. 3、连续时间信号的单边拉普拉斯变换为() A. B. C. D. 4、下列各式中正确的是() A. B. C.D. 5、单边Z变换对应的原时间序列为() A.B. C.D. 6.请指出是下面哪一种运算的结果?()

A . 左移6 B. 右移6 C . 左移2 D. 右移2 三、描述某系统的微分方程为 y ”(t) + 4y ’(t) + 3y(t) = f(t) 求当f(t) = 2e -2t ,t ≥0;y(0)=2,y ’(0)= -1时的解;( 15分) 解: (1) 特征方程为λ2 + 4λ+ 3 = 0 其特征根λ1= –1,λ2= –2。齐次解为 y h (t) = C 1e -t + C 2e -3t 当f(t) = 2e –2 t 时,其特解可设为 y p (t) = Pe -2t 将其代入微分方程得 P*4*e -2t + 4(–2 Pe -2t ) + 3Pe -t = 2e -2t 解得 P=2 于是特解为 y p (t) =2e -t 全解为: y(t) = y h (t) + y p (t) = C 1e -t + C 2e -3t + 2e -2t 其中 待定常数C 1,C 2由初始条件确定。 y(0) = C 1+C 2+ 2 = 2, y ’(0) = –2C 1 –3C 2 –1= –1 解得 C 1 = 1.5 ,C 2 = –1.5 最后得全解 y(t) = 1.5e – t – 1.5e – 3t +2 e –2 t , t ≥0 三、描述某系统的微分方程为 y ”(t) + 5y ’(t) + 6y(t) = f(t) 求当f(t) = 2e -t ,t ≥0;y(0)=2,y ’(0)= -1时的解;( 15分) 解: (1) 特征方程为λ2 + 5λ+ 6 = 0 其特征根λ1= –2,λ2= –3。齐次解为 y h (t) = C 1e -2t + C 2e -3t 当f(t) = 2e – t 时,其特解可设为 y p (t) = Pe -t 将其代入微分方程得 Pe -t + 5(– Pe -t ) + 6Pe -t = 2e -t 解得 P=1 于是特解为 y p (t) = e -t 全解为: y(t) = y h (t) + y p (t) = C 1e -2t + C 2e -3t + e -t 其中 待定常数C 1,C 2由初始条件确定。 y(0) = C 1+C 2+ 1 = 2, y ’(0) = –2C 1 –3C 2 –1= –1 解得 C 1 = 3 ,C 2 = – 2 最后得全解 y(t) = 3e – 2t – 2e – 3t + e – t , t ≥0 四、如图信号f(t)的拉氏变换F(s) = ,试观 )e e 1(e 2s s s s s -----)e e 1(e 2 s s s s s -----

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

信号与系统期末考试试题

重庆大学信号与线性系统期末考试试题 一、填空题:(30分,每小题3分) 1. =-? ∞ ∞ -dt t t )()5cos 2(δ 。 2. ()dt t e t 12-?+∞ ∞ --δ= 。 3. 已知 f (t )的傅里叶变换为F (j ω), 则f (2t -3)的傅里叶变换为 。 4. 已知 6 51 )(2 +++= s s s s F ,则=+)0(f ; =∞)(f 。 5. 已知 ω ωπδεj t FT 1 )()]([+=,则=)]([t t FT ε 。 6. 已知周期信号 )4sin()2cos()(t t t f +=,其基波频率为 rad/s ; 周期为 s 。 7. 已知 )5(2)2(3)(-+-=n n k f δδ,其Z 变换 =)(Z F ;收敛域为 。 8. 已知连续系统函数1342 3)(2 3+--+= s s s s s H ,试判断系统的稳定性: 。 9.已知离散系统函数1.07.02 )(2+-+=z z z z H ,试判断系统的稳定性: 。 10.如图所示是离散系统的Z 域框图,该系统的系统函数H(z)= 。 二.(15分)如下方程和非零起始条件表示的连续时间因果LTI 系统,

?????==+=++-- 5 )0(',2)0() (52)(4522y y t f dt df t y dt dy dt y d 已知输入 )()(2t e t f t ε-=时,试用拉普拉斯变换的方法求系统的零状态响应 )(t y zs 和零输入响应)(t y zi ,0≥t 以及系统的全响应),(t y 0≥t 。 三.(14分) ① 已知2 36 62)(22++++=s s s s s F ,2]Re[->s ,试求其拉氏逆变换f (t ); ② 已知) 2(2 35)(2>+-=z z z z z X ,试求其逆Z 变换)(n x 。 四 (10分)计算下列卷积: 1. }1,0,6,4,3{}4,1,2,1{)()(21--*=*k f k f ; 2. )(3)(23t e t e t t εε--* 。

《经济数学》线性代数学习辅导与典型例题解析

《经济数学》线性代数学习辅导及典型例题解析 第1-2章行列式和矩阵 ⒈了解矩阵的概念,熟练掌握矩阵的运算。 矩阵的运算满足以下性质 ⒉了解矩阵行列式的递归定义,掌握计算行列式(三、四阶)的方法;掌握方阵乘积行列式定理。 是同阶方阵,则有: 若是阶行列式,为常数,则有: ⒊了解零矩阵,单位矩阵,数量矩阵,对角矩阵,上(下)三角矩阵,对称矩阵,初等矩阵的定义及性质。

⒋理解可逆矩阵和逆矩阵的概念及性质,掌握矩阵可逆的充分必要条件。 若为阶方阵,则下列结论等价 可逆满秩存在阶方阵使得 ⒌熟练掌握求逆矩阵的初等行变换法,会用伴随矩阵法求逆矩阵,会解简单的矩阵方程。 用初等行变换法求逆矩阵: 用伴随矩阵法求逆矩阵:(其中是的伴随矩阵) 可逆矩阵具有以下性质: ⒍了解矩阵秩的概念,会求矩阵的秩。 将矩阵用初等行变换化为阶梯形后,所含有的非零行的个数称为矩阵的秩。 典型例题解析 例1 设均为3阶矩阵,且,则。 解:答案:72 因为,且

所以 例2设为矩阵,为矩阵,则矩阵运算()有意义。 解:答案:A 因为,所以A可进行。 关于B,因为矩阵的列数不等于矩阵的行数,所以错误。 关于C,因为矩阵与矩阵不是同形矩阵,所以错误。 关于D,因为矩阵与矩阵不是同形矩阵,所以错误。 例3 已知 求。 分析:利用矩阵相乘和矩阵相等求解。 解:因为 得。

例4 设矩阵 求。 解:方法一:伴随矩阵法 可逆。 且由 得伴随矩阵 则=

方法二:初等行变换法 注意:矩阵的逆矩阵是唯一的,若两种结果不相同,则必有一个结果是错误的或两个都是错误的。 例4 设矩阵 求的秩。 分析:利用矩阵初等行变换求矩阵的秩。 解: 。

《信号与线性系统》期末试卷

2006-2007学年第二学期《信号与线性系统》(课内)试卷A 卷 一、计算题(共45分) 1.(5分)计算积分dt t t t )6 ()sin (π δ- +?+∞ ∞-的值。 2.(5分)绘出函数)1()]1()([-+--t u t u t u t 的波形图。 3.(6分)已知)2()()(),1()()(21--=--=t u t u t f t u t u t f ,求卷积)()(21t f t f *。 4.(6分)若)(t f 的傅里叶变换已知,记为)(ωF ,求)1()1(t f t --对应的傅里叶变换。

5.(6分)如下图所示信号,已知其傅里叶变换,记为)(ωF , 求: (1))0(F ; (2)?+∞ ∞ -ωωd F )(。 6.(5分)已知)(t f 对应的拉氏变换为)(s F ,求)/(/a t f e a t -(0>a )对应的拉氏变换。 7.(6分) 已知)(t f 对应的拉氏变换2 3)(2 +-=-s s e s F s ,求)(t f

8.(6分)线性时不变系统的单位样值响应为)(n h ,输入为)(n x ,且有 )4()()()(--==n u n u n x n h ,求输出)(n y ,并绘图示出)(n y 。 二、综合题(共计55分) 1、(10分)系统如图所示,已知t t x 2000cos )(=,t t t f 2000cos 100cos )(=,理想低通滤波器)300()300()(--+=ωωωu u H ,求滤波器的响应信号)(t y 。 x(t) y(t) f(t)

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

考研线性代数重点内容和典型题型

考研线性代数重点内容和典型题型 线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数的行列式的计算.关于每个重要题型的具体方法以及例题见《xx 年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、

伴随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx 年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、

信号与线性系统分析习题答案

1 / 257 信号与线性系统课后答案 第一章 信号与系统(一) 1-1画出下列各信号的波形【式中)() (t t t r ε=】为斜升函数。 (2)∞<<-∞=- t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)( (3)) ()sin()(t t t f επ=

2 / 257 (4))(sin )(t t f ε= (5)) (sin )(t r t f =

3 / 257 (7))(2)(k t f k ε= (10)) (])1(1[)(k k f k ε-+=

4 / 257 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5) )2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6 sin()(--=k k k k f εεπ (12) )]()3([2)(k k k f k ---=εε 解:各信号波形为 (1) ) 2()1(3)1(2)(-+--+=t t t t f εεε

5 / 257 (2) )2()1(2)()(-+--=t r t r t r t f (5) ) 2()2()(t t r t f -=ε

信号与系统期末试题与答案

课程名称 信号与线性系统A 考试学期 08-07 得分 适用专业 微电、物理、 考试形式 闭卷 考试时间 120分钟 姓名 班级 学号 一、选择题(每小题可能有一个或几个正确答案,将正确的题号填入[ ]内) 1.f (5-2t )是如下运算的结果————————( C ) (A )f (-2t )右移5 (B )f (-2t )左移5 (C )f (-2t )右移 2 5 (D )f (-2t )左移25 2.已知)()(),()(21t u e t f t u t f at -==,可以求得=)(*)(21t f t f —————( C ) (A )1-at e - (B )at e - (C ))1(1at e a -- (D )at e a -1 3.线性系统响应满足以下规律————————————(AD ) (A )若起始状态为零,则零输入响应为零。 (B )若起始状态为零,则零状态响应为零。 (C )若系统的零状态响应为零,则强迫响应也为零。 (D )若激励信号为零,零输入响应就是自由响应。 4.若对f (t )进行理想取样,其奈奎斯特取样频率为f s ,则对)23 1 (-t f 进行取 样,其奈奎斯特取样频率为————————(B ) (A )3f s (B ) s f 31 (C )3(f s -2) (D ))2(3 1 -s f 5.理想不失真传输系统的传输函数H (jω)是 ————————(B ) (A )0j t Ke ω- (B )0 t j Ke ω- (C )0 t j Ke ω-[]()()c c u u ωωωω+-- (D )00 j t Ke ω- (00,,,c t k ωω为常数) 6.已知Z 变换Z 1 311 )]([--= z n x ,收敛域3z >,则逆变换x (n )为——( A ) (A ))(3n u n (C )3(1)n u n - (B ))(3n u n -- (D ))1(3----n u n

信号与线性系统分析习题答案-(吴大正-第四版--高等教育出版社)

第一章 信号与系统(二) 1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。 (2)∞<<-∞=-t e t f t ,)( (3))()sin()(t t t f επ= (4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f k ε= (10))(])1(1[)(k k f k ε-+= 解:各信号波形为 (2)∞<<-∞=-t e t f t ,)(

(3)) ()sin()(t t t f επ= ( 4))(sin )(t t f ε=

(5)) t f= r ) (sin (t (7)) f kε = t ) ( 2 (k

(10))(])1(1[)(k k f k ε-+= 1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2) )2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

(11))]7()()[6 sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k ---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f

(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε

《信号与线性系统》期末试卷要点

2012-2013学年第二学期《信号与线性系统》(课内)试卷A 卷 一、计算题(共45分) 1.(5分)计算积分dt t t t )6 ()sin (π δ- +? +∞ ∞ -的值。 2.(5分)绘出函数)1()]1()([-+--t u t u t u t 的波形图。 3.(6分)已知)2()()(),1()()(21--=--=t u t u t f t u t u t f ,求卷积)()(21t f t f *。 4.(6分)若)(t f 的傅里叶变换已知,记为)(ωF ,求)1()1(t f t --对应的傅里叶变换。

5.(6分)如下图所示信号,已知其傅里叶变换,记为)(ωF , 求: (1))0(F ; (2)? +∞ ∞ -ωωd F )(。 6.(5分)已知)(t f 对应的拉氏变换为)(s F ,求)/(/a t f e a t -(0>a )对应的拉氏变换。 7.(6分) 已知)(t f 对应的拉氏变换2 3)(2+-=-s s e s F s ,求)(t f

8.(6分)线性时不变系统的单位样值响应为)(n h ,输入为)(n x ,且有 )4()()()(--==n u n u n x n h ,求输出)(n y ,并绘图示出)(n y 。 二、综合题(共计55分) 1、(10分)系统如图所示,已知t t x 2000 cos )(=,t t t f 2000cos 100cos )(=,理想低通滤波器)300()300()(--+=ωωωu u H ,求滤波器的响应信号)(t y 。 y(t) f(t)

《信号与线性系统》试题与答案

1.下列信号的分类方法不正确的是( A ): A 、数字信号和离散信号 B 、确定信号和随机信号 C 、周期信号和非周期信号 D 、因果信号与反因果信号 2.下列说法正确的是( D ): A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。 B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。 C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。 D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。 3.下列说法不正确的是( D )。 A 、一般周期信号为功率信号。 B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。 C 、ε(t )是功率信号; D 、e t 为能量信号; 4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。 A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t ) 5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。 A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t ) 6.下列关于冲激函数性质的表达式不正确的是( B )。 A 、)()0()()(t f t t f δδ= B 、()t a at δδ1 )(= C 、 )(d )(t t εττδ=? ∞ - D 、)()-(t t δδ= 7.下列关于冲激函数性质的表达式不正确的是( D )。 A 、?∞ ∞ -='0d )(t t δ B 、)0(d )()(f t t t f =? +∞ ∞ -δ C 、 )(d )(t t εττδ=? ∞ - D 、?∞∞ -=')(d )(t t t δδ 8.下列关于冲激函数性质的表达式不正确的是( B )。 A 、)()1()()1(t f t t f δδ=+ B 、)0(d )()(f t t t f '='? ∞ ∞-δ C 、 )(d )(t t εττδ=? ∞ - D 、)0(d )()(f t t t f =?+∞ ∞ -δ 9.下列基本单元属于数乘器的是( A ) 。

线性代数典型例题

线性代数 第一章 行列式 典型例题 一、利用行列式性质计算行列式 二、按行(列)展开公式求代数余子式 已知行列式412343 344 615671 12 2 D = =-,试求4142A A +与4344A A +. 三、利用多项式分解因式计算行列式 1.计算22 1 12312231315 1319x D x -= -. 2.设()x b c d b x c d f x b c x d b c d x = ,则方程()0f x =有根_______.x = 四、抽象行列式的计算或证明 1.设四阶矩阵234234[2,3,4,],[,2,3,4]A B αγγγβγγγ==,其中234,,,,αβγγγ均为四维列向量,且已知行列式||2,||3A B ==-,试计算行列式||.A B + 2.设A 为三阶方阵,*A 为A 的伴随矩阵,且1 ||2 A = ,试计算行列式1*(3)22.A A O O A -??-??? ? 3.设A 是n 阶(2)n ≥非零实矩阵,元素ij a 与其代数余子式ij A 相等,求行列式||.A

4.设矩阵210120001A ?? ??=?? ???? ,矩阵B 满足**2ABA BA E =+,则||_____.B = 5.设123,,ααα均为3维列向量,记矩阵 123123123123(,,),(,24,39)A B αααααααααααα==+++++ 如果||1A =,那么||_____.B = 五、n 阶行列式的计算 六、利用特征值计算行列式 1.若四阶矩阵A 与B 相似,矩阵A 的特征值为 1111 ,,,2345 ,则行列式1||________.B E --= 2.设A 为四阶矩阵,且满足|2|0E A +=,又已知A 的三个特征值分别为1,1,2-,试计算行列式*|23|.A E + 第二章 矩阵 典型例题 一、求逆矩阵 1.设,,A B A B +都是可逆矩阵,求:111().A B ---+ 2.设00021000531 23004580034600A ?? ??? ? ??=?? ?????? ,求1.A - 二、讨论抽象矩阵的可逆性 1.设n 阶矩阵A 满足关系式320A A A E +--=,证明A 可逆,并求1.A -

信号与线性系统题解第四章

第四章习题答案 收集自网络 4.1 由于复指数函数是LTI 系统的特征函数,因此傅里叶分析法在连续时间LTI 系统分析 中具有重要价值。在正文已经指出:尽管某些LTI 系统可能有另外的特征函数,但复指数函数是唯一..能够成为一切..LTI 系统特征函数的信号。 在本题中,我们将验证这一结论。 (a) 对单位冲激响应()()h t t δ=的LTI 系统,指出其特征函数,并确定相应的特征值。 (b) 如果一个LTI 系统的单位冲激响应为()()h t t T δ=-,找出一个信号,该信号不具有st e 的形式,但却是该系统的特征函数,且特征值为1。再找出另外两个特征函数,它们的特征值分别为1/2和2,但不是复指数函数。 提示:可以找出满足这些要求的冲激串。 (c) 如果一个稳定的LTI 系统的冲激响应()h t 是实、偶函数,证明cos t Ω和sin t Ω实该系统的特征函数。 (d) 对冲激响应为()()h t u t =的LTI 系统,假如()t φ是它的特征函数,其特征值为λ,确定()t φ应满足的微分方程,并解出()t φ。 此题各部分的结果就验证了正文中指出的结论。 解:(a) ()()h t t δ=的LTI 系统是恒等系统,所以任何函数都是它的特征函数,其特征值 为1。 (b) ()()h t t T δ=-,∴()()x t x t T →-。如果()x t 是系统的特征函数,且特征值为 1,则应有()()x t x t T =-。满足这一要求的冲激序列为()()k x t t kT δ∞ =-∞ = -∑。 若要找出特征值为1/2或2的这种特征函数,则可得: 1 ()()()2 k k x t t kT δ∞ =-∞=-∑, 特征值为1/2。 ()2()k k x t t kT δ∞ =-∞ = -∑, 特征值为2。 (c) 1cos ()2 j t j t t e e ΩΩ-Ω= +

信号与线性系统题解第三章

第三章习题答案 da 3.1 计算下列各对信号的卷积积分()()()y t x t h t =*: (a) ()() ()()t t x t e u t h t e u t αβ==(对αβ≠和αβ=两种情况都做) 。 (b) 2()()2(2)(5)()t x t u t u t u t h t e =--+-= (c) ()3()() ()1t x t e u t h t u t -==- (d) 5, 0()()()(1),0 t t t e t x t h t u t u t e e t -??? (e) []()sin ()(2)()(2)x t t u t u t h t u t π=--=-- (f) ()x t 和()h t 如图P3.1(a)所示。 (g) ()x t 和()h t 如图P3.1(b)所示。

图P3.1 解:(a) () ()0 ()()()(0)t t t t y t x t h t e e d e e d t βτατ βαβτ ττ------=*= =>? ? 当αβ≠时,()1 ()()t t e y t e u t αβββα ----= - 当αβ=时,()()t y t te u t α-= (b) 由图PS3.1(a)知, 当1t ≤时,25 2() 2() 22(2)2(5)0 2 1 ()22t t t t t y t e d e d e e e ττττ----??= -= -+? ?? ? 当13t ≤≤时,25 2() 2() 22(2)2(5)1 2 1 ()22t t t t t y t e d e d e e e ττττ-----??= -= -+? ?? ? 当36t ≤≤时,5 2() 2(5)21 1 ()2t t t y t e d e e ττ---??=-= -? ?? 当6t >时,()0y t = (c) 由图PS3.1(b)知,当1t ≤时,()0y t = 当1t >时,133(1)0 1 ()13t t y t e d e τ τ----??== -? ?? 3 (1) 1 ()1(1) 3 t y t e u t --?? ∴= --?? (d) 由图PS3.1(d)知: 当0t ≤时,1 1 ()t t t t y t e d e e ττ--= =-? 当01t <≤时,055(1) 10 14()(2)25 5 t t t t t y t e d e e d e e e τ τ τ ττ-----=+-=+ -- ? ? 当1t >时,555(1) (1) 1 11()(2)2255t t t t t t y t e e d e e e e τ τ τ------=-=-+-? (e) 如下图所示: (f) 令()11()(2)3 h t h t t δ?? =+- -???? ,则11()()()(2)3 y t x t h t x t =*- - 由图PS3.1(h)知,11 424()()()()(21)3 3 3 t t y t x t h t a b d a t b ττ-=*= +=-+?

20XX考研数学线代典型题型分析.doc

试题中得以体现。行列式的重点内容是掌握计算行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶。但在展开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再展开。另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握。常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算。 矩阵是线性代数的核心,是后续各章的基础。矩阵的概念、运算及理论贯穿线性代数的始终。这部分考点较多,重点考点有逆矩阵、伴随矩阵及矩阵方程。涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。这几年还经常出现有关初等变换与初等矩阵的命题。常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程

组等相联系,从各个侧面加强对线性相关性的理解。常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容。本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论)。主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。重点题型有:数值矩阵的特征值和特征向量的求法、抽象矩阵特征值和特征向量的求法、判定矩阵的相似对角化、由特征值或特征向量反求A、有关实对称矩阵的问题。由于二次型与它的实对称矩阵式一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,可见正确写出二次型的矩阵式处理二次型问题的一个基础。重点内容包括:掌握二次型及其矩阵表示,了解二次型的秩和标准形等概念;了解二次型的规范形和惯性定理;掌握用正交变换并会用配方法化二次型为标准形;理解正定二次型和正定矩阵的概念及其判别方法。重点题型有:二次型表成矩阵形式、化二次型为标准形、二次型正定性的判别。

相关主题
文本预览
相关文档 最新文档