当前位置:文档之家› 空白微乳液的制备

空白微乳液的制备

空白微乳液的制备

空白微乳液的制备

前言:微乳(microemulsion.ME)是由乳化剂,助乳化剂,油相,水相组成的一种外观澄明的热力学及动力学均稳定的系统,其在一定温度下长时间放置或离心后都很稳定,微乳粒径一般在10nm~100nm,粘度小,可过滤灭菌。ME可分为油包水型(W/O),和水包油型(O/W)

辛葵酸甘油酯(labrasol)为中等长度脂肪酸,HLB值为14,作为表面活性剂

聚甘油酸酯(Plurol oleique CC497)为非离子型乳化剂,HLB值为6,作为助表面活性剂

油酸聚乙二酸甘油酯(labrafil M1944)为长链脂肪酸,HLB值为4,为油相

1. 实验仪器与药品:

辛葵酸甘油酯,聚甘油酸酯,油酸聚乙二酸甘油酯,水

2. 试验方法:a将labrasol与Plurol oleique CC497按5:1的比列混合得混合表面活性剂

(MSA)

b.将MSA与labrafil M1944按配方(药品说明书参考处方)混合后,搅拌均匀

c.在向混合溶液中加水至全量,得澄清透明的液体

3. 空白微乳的性质评价:a.微乳的类型采用电导率法鉴定:在25C状态下,用多功能PH、电导率、例子综合测定微乳的电导率(us/cm),如果电导率在1~10us/cm数量级,则可以判断为W/O型微乳液。

b.初步稳定性:将微乳样品于15000r/min离心10min,体系保持澄清透明,为分层,说明样品初步稳定性较好。

c.在25C温度下,用表面张力分析仪测定测定其表面张力,用流变仪测定微乳的粘度,用激光纳米粒度仪测量微乳的粒径和zeta电位。

d.染色法:取相容体积的溶液两份,同时分别加入苏丹红染料和亚甲基蓝染料溶液各两滴,静置观察,如蓝色的扩散速度大于红色,则为W/O型微乳,反之则形成O/W型微乳,如二者速度相同则为双连续型微乳

Pickering乳液的制备及应用研究

西安科技大学 硕士学位论文Pickering乳液的制备及应用研究 姓名:刘登卫 申请学位级别:硕士 专业:化学工艺 指导教师:贺拥军 2011

论文题目:Pickering乳液的制备及应用研究 专 业:化学工艺 硕 士 生:刘登卫(签名) 指导教师:贺拥军(签名) 摘 要 Pickering乳液是以固体粒子替代传统化学乳化剂制得的热力学和动力学均稳定的分散体系。Pickering乳液由于其成本低、无毒和环保等特性,在食品、医药和化妆品等领域具有重要的应用价值。本文以固体粒子为乳化剂制备了稳定的Pickering乳液,考察了影响Pickering乳液形成和稳定性的因素,并研究了Pickering乳液作为分离介质的应用性能。 采用St?ber法制备了SiO2粒子,用直接沉淀法制备了ZnO粒子和MgO粒子,利用晶相生长逐层包覆的方法制备了SiO2/ZnO复合粒子,讨论了反应物浓度、滴加方式和滴加速度等因素对固体粒子形貌和分散性的影响。SEM测试表明,SiO2粒子分散性良好,平均粒径约为300 nm;ZnO粒子呈针状结构,平均直径为20 nm;ZnO在SiO2表面分布不均,改变锌盐溶液的浓度和滴加速度,可以得到ZnO组分含量不同的SiO2/ZnO复合粒子;MgO粒子有球形和立方晶形结构,平均粒径约为100 nm。FTIR检测表明,SiO2、ZnO、SiO2/ZnO和MgO粒子表面均有大量的羟基。XRD分析证明,MgO结晶度较高。 以SiO2、ZnO、SiO2/ZnO和MgO粒子为乳化剂,制备了O/W型Pickering乳液,考察了固体粒子种类、复合粒子组分含量、油水体积比、连续相中电解质和表面活性剂等因素对乳液稳定性的影响。以三氯甲烷为油相时,基于SiO2和ZnO制备的乳液很不稳定,而SiO2/ZnO和MgO均能得到稳定的乳液,且SiO2/ZnO中ZnO组分含量越高,乳液滴越小。在MgO稳定的三氯甲烷/水乳液中,增加油水体积比,乳液稳定性下降,但没有发生相转变。当连续相中电解质浓度增加时,乳液稳定性下降,且Na2CO3比NaCl 的作用强。给MgO稳定的三氯甲烷/水乳液中加入表面活性剂,乳液滴变小且更稳定;给表面活性剂稳定的三氯甲烷/水乳液中加入固体粒子,乳液滴平均直径增大而稳定性也增加。 以SiO2/ZnO稳定的三氯甲烷-苯乙烯/水乳液为介质,进行了静态和动态分离甲基紫的研究。在静态分离下,Pickering乳液在30 min内就趋于分离饱和,温度对分离效果的影响不大,而增加乳液量和增大甲基紫水溶液浓度可以提高乳液分离能力,分离前后乳液滴的形貌变化不大。在动态分离下,增加Pickering乳液量、降低甲基紫溶液进水

微电子技术在医学中的应用

微电子技术在医学中的应用 随着科技的迅速发展,和医疗水平息息相关的电子技术应用也越来越广泛。微电子技术的发展大大方便了人们的生活,随着微电子技术的发展,生物医学也在快速的发展,微电子技术过去在医学中的主要是应用于各类医疗器械的集成电路,在未来主要是生物芯片。生物芯片技术在医学、生命科学、药业、农业、环境科学等凡与生命活动有关的领域中均具有重大的应用前景。微电子技术与生物医学之间有着非常紧密的联系。 生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。 以下将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 一、生物医学传感器 生物医学传感器是连接生物医学和电子学的桥梁。它的作用是把人体中和生物体包含的生命现象、性质、状态、成分和变量等生理信息转化为与之有确定函数关系的电子信息。生物医学传感器技术是生物医学电子学中一项关键的技术,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。因为生物传感器专一、灵敏、响应快等特点,为基础医学研究及临床诊断提供了一种快速简便的新型方法,在临床医学中发挥着越来越大的作用,意义极为重大。 常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。 医学领域的生物传感器发挥着越来越大的作用。在临床医学中,酶电极是最早研制且应用最多的一种传感器。利用具有不同生物特性的微生物代替酶,可制成微生物传感器,广泛应用于:药物分析、肿瘤监测、血糖分析等。 生物医学传感器相较于传统医疗方式具有以下特点: 1、生物传感器采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。因此,这一技成本低,在连续使用时,每例测定仅需要几分钱人民币,术在很大程度上减轻病患医疗费用上的负担。

微乳液法制备纳米材料

微乳液法制备纳米材料 仇乐乐 摘要:本文介绍了使用微乳液法制备纳米材料的一些基本理论和应用。从微乳液的定义、形成和稳定性理论方面简单的介绍了微乳液。又从微乳液制备纳米材料的原理和制备出的纳米粒子的特点方面介绍了微乳液法的一些基本知识。接着又着重讲述了从微乳液法制备纳米材料的影响因素和应用。最后对微乳液法制备纳米材料做了总结和展望。 关键词:微乳液,纳米材料,影响因素,应用 一、引言 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等方面得到了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。实验装置简单,操作容易,已引起人们的重视。 二、微乳液内超细颗粒的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合,由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 三、微乳液的形成和稳定性理论 描述微乳液形成的一个简单形式是把分散相部分考虑成很小的液滴构型熵发生变化,ΔS conf 可近似的表示为: 其中n 为分散相的液滴数,k B 为Boltzmann 常数,φ是分散相的体积分数。缔合自由能的改 变可表示为增加的新界面面积所需的自由能ΔA γ12,和构型熵之和: 其中,ΔA 是界面面积A 的改变量 (半径为r 的液滴面积为4πr 2 ),γ12 是在温度T (Kelvin)的1 相和2相(如油相和水相)之间界面张力。 分散时小液滴数增加且ΔS conf 是正值,如果表面活性

微乳液法制备纳米材料的研究进展

微乳液法制备纳米材料的研究进展 201200110038 李吉相 摘要:综述了微乳液法制备纳米材料的基本原理和影响因索,回顾了微乳液在金属、金属卤化物、金属硫化物、金属碳酸盐、金属和非金属氧化物等纳米微粒制备中的应用,展望了这一领域的发展方向。 关键词:微乳液;纳米微粒;制备 纳米材料是指由极细晶粒组成,特征纬度尺寸在纳米数量级(~100nm)的固体材料【1】。其制备方法多种多样【2】,一般来说,制备较大量的纳米晶固体的方法有三种,这些方法简单而又经济,且都保证了粒子的小尺寸和窄的分布。它们是:1) 用脉冲电子沉积法制备金属或合金的纳米晶: 2) 在微乳液中运用沉淀法制备氟化物的纳米晶,如在反相(w /O)微乳液中合成NH.M nF。; 3) 在微乳液中运用溶胶一凝胶水解法制得金属氧化物的纳米晶,其中后两种方法都使用了微乳液制备法。这也说明微乳液法在纳米材料制备科学中占有极为重要的地位。在合成时使用微乳液法,在纳米微粒的表面有一层表面活性剂膜,故在制作电镜样品的抽真空、蒸发溶剂的过程中,纳米微粒保持分散状态而不发生凝聚。微乳液通常是由表面活性剂、助表面活性剂(通常为醇类)、油(通常为碳氢化合物)和水(或电解质水溶液)组成的透明的、各相同性的热力学稳定体系【3】。微乳液中,微小的“水池”被表面活性剂和助表面活性剂所组成的单分子层界面所包围而形成微乳颗粒,其大小可控制在几十至几百个之间。微小的“水池,尺度小且彼此分离,因而构不成水相【4】,通常称之为“准相”。微乳液是热力学稳定体系,其水核是一个“微型反应器”,这个“微型反应器”拥有很大的界面,在其中可以增溶各种不同的化合物,是非常好的化学反应介质。微乳液的水核尺寸是由增溶水的量决定的,随增溶水量的增加而增大。因此,在水核内进行化学反应制备超细颗粒时,由于反应物被限制在水核内,最终得到的颗粒粒径将受到水核大小的控制。 微乳液用来作为合成纳米微粒的介质,是因为它能提供一个特定的水核,水溶性反应物在水核中发生化学反应可以得到所要制备的纳米微粒。影响纳米微粒制备的因素主要有以下三方面: (1)微乳液组成的影响 纳米微粒的粒径与微乳液的水核半径有关,水核半径是由W一[HzO]/E表面活性剂]决定的。微乳液组成的变化将导致水核的增大或减小,水核的大小直接决定超细颗粒的尺寸。一般说来,超细颗粒的直径要比水核直径稍大,这可能是由于胶团间快速的物质交换而导致不同水核内沉淀物的聚集所致。 (2)反应物浓度的影响 适当调节反应物的浓度,可使制取粒子的大小受到控制。Pileni等在AOT/异辛烷/H O 反胶团体系中制备CdS粒子时,发现超细颗粒的直径受X 一[cd ]/[s 一]的影响,当反应物之一过量时,生成较小的CdS粒子。这是由于当反应物之一过剩时,结晶过程比等量反应要快,生成的超细颗粒粒径也就偏小。 (3)微乳液界面膜的影响 选择合适的表面活性剂是进行超细颗粒合成的第一步。为了保证形成的微乳液颗粒在反应过程中不发生进一步聚集,选择的表面活性剂成膜性能要合适,否则在微乳液颗粒碰撞时表面活性剂所形成的界面膜易被打开,导致不同水核内的固体核或超细颗粒之间的物质交换,这样就难

微电子技术及其应用

微电子技术及其应用 041050107陈立 一、微电子技术简介 如今,世界已经进入信息时代,飞速发展的信息产业是这个时代的特征。而微电子技术制造的芯片则是大量信息的载体,它不仅可以储存信息,还能处理和加工信息。因此,微电子技术在如今已是不可或缺的生活和生产要素。 微电子学是研究在固体(主要是半导体)材料上构成的微小型化电路、电路及系统的电子学分支。 作为电子学的分支学科,它主要研究电子或粒子在固体材料中的运动规律及其应用,并利用它实现信号处理功能的科学,以实现电路的系统和集成为目的,实用性强。微电子学又是信息领域的重要基础学科,在这一领域上,微电子学是研究并实现信息获取、传输、存储、处理和输出的科学,是研究信息获取的科学,构成了信息科学的基石,其发展水平直接影响着整个信息技术的发展。微电子科学技术的发展水平和产业规模是一个国家经济实力的重要标志。 微电子学是一门综合性很强的边缘学科,其中包括了半导体器件物理、集成电路工艺和集成电路及系统的设计、测试等多方面的内容;涉及了固体物理学、量子力学、热力学与统计物理学、材料科学、电子线路、信号处理、计算机辅助设计、测试和加工、图论、化学等多个领域。 微电子学是一门发展极为迅速的学科,高集成度、低功耗、高性能、高可靠性是微电子学发展的方向。信息技术发展的方向是多媒体(智能化)、网络化和个体化。要求系统获取和存储海量的多媒体信息、以极高速度精确可靠的处理和传输这些信息并及时地把有用信息显示出来或用于控制。所有这些都只能依赖于微电子技术的支撑才能成为现实。超高容量、超小型、超高速、超高频、超低功耗是信息技术无止境追求的目标,是微电子技术迅速发展的动力。 微电子学渗透性强,其他学科结合产生出了一系列新的交叉学科。微机电系统、生物芯片就是这方面的代表,是近年来发展起来的具有广阔应用前景的新技术。 二、微电子技术核心—-集成电路技术 集成电路(integrated circuit)是一种微型电子器件或部件。采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,这样,整个电路的体积大大缩小,且引出线和焊接点的数目也大为减少,从而使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。它在电路中用字母“IC”。 集成电路的分类 1.按功能结构分类 集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路 模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成

硅丙乳液的合成及应用

硅-丙乳液的合成及应用 摘要 随着社会的不断发展,建筑行业对乳液的性能要求不断提高,合成一种高性能的外墙乳液已成为研究热点。丙烯酸乳液原料来源丰富、成膜性好、粘结性强、强度高,用有机硅改性的丙烯酸乳液,不仅可以解决丙烯酸乳液成膜时热粘冷脆的不足,并且形成的Si-0-Si为大分子的主链,具有无机化合物和有机聚合物优良性能,如耐候性、疏水性、透气性、抗沾污性和耐磨性等。通过有机硅改性丙烯酸乳液,可得到兼有有机硅和丙烯酸的高性能乳液,硅-丙高性能乳胶漆具有优异的耐候性、耐水性、耐碱性、耐沾污性和耐擦洗性等性能。本文综述了乳液合成的进展、特点、机理,并阐述了硅-丙乳液合成方法及应用。 关键词:改性;硅-丙乳液;合成;应用

The Synthesis and Application of Silicone - Acrylic Emulsion Abstract With the development of society, the requirement of emulsion properties was boosting, it has been the focus to compound high-performance exterior emulsion. Acrylic emulsion possesses advantages of much material, good film-forming, strong bonding and high strength. Acrylic emulsion modified by organic silicone can not only solve the shortages of thermo-viscoelasticity and cold brittleness, but also form the Si-O-Si as macromolecular main chain, which has the excellent properties of inorganic compounds and organic polymer, such as weather resistance, hydrophobic, permeability, contamination resistance and wearability. Acrylic emulsion modified by organic silicone has high performance both silicone and acrylic emulsion. Silicone-acrylic emulsion paint has excellent property of weatherability, water resistance, alkali resistance, stain resistance and scrub resistance etc. The mechanism, advantage and study progress of preparing emulsions were reviewed and synthesis method and application of silicone - acrylic emulsion were expounded.

微乳液法制备纳米微粒

纳米材料 ——微乳液法制备纳米微粒 微乳液法的概述: 微乳液法是利用两种互不相溶的溶剂在表面活性剂的作用下形成均匀的乳液,从乳液中析出固相从而制备出一定粒径的纳米粉体。但相对于细乳液和普通乳液而言的,微乳液颗粒直径约为l0~lOOnm,细乳液颗粒直径约为lO0~400nm,普通乳液颗粒直径一般在几百纳米到上千纳米。一般情况下,将两种互补相溶的液体在表面活性剂作用下所形成的热力学稳定、各项同性、外观透明或半透明、粒径l~lOOnm 的分散体系称为微乳液。相应的把制备微乳液的技术称为微乳化技术(MET)。1982年Boutonmt首先报道了应用微乳液制备出了纳米颗粒:用水合肼或者氢气还原在w/0型微乳液水合中的贵金属盐,得到了分散的Pt、Pd、Ru、Ir 金属颗粒(3~40nm)。从此以后,微乳液理论的研究获得了飞速发展,尤其是2O世纪9O年代以来,微乳液应用研究更快,在许多领域如3次采油、污水治理、萃取分离、催化、食品、生物医药、化妆品、材料制备、化学反应介质,涂料等领域均具有潜在的应用前景。微乳液法是一种简单易行而又具有智能化特点的新方法,是目前研究的热点。运用微乳液法制备纳米粉体是一个非常重要的领域。运用微乳液法制备的纳米颗粒主要有以下几类。:(1)金属,如Pt、Pd、Rh、Ir、Au、Ag、Cu等;(2)硫化物CdS、PbS、CuS等;(3)Ni、Co、Fe等与B的化合物;(4)氯化物AgC1、AuC1 等;(5)碱土金属碳酸盐,如CaCO3、BaCO3、Sr—CO3;(6)氧化物Eu2O 、Fe2O。、Bi2O 及氢氧化物如Al(0H)3 等。 1 微乳反应器原理 在微乳体系中,用来制备纳米粒子的一般都是W/O型体系,该体系一般由有机溶剂、水溶液、活性剂,助表面活性剂4个组分组成。常用的有机溶剂多为C6~C8直链烃或环烷烃;表面活性剂一般为A0T(2一乙基己基磺基琥珀酸钠)、SDS(十二烷基硫酸钠)阴离子表面活性剂、SDBS(十六烷基磺酸钠)阴离子表面活性剂、CTAB(十六烷基三甲基溴化铵)阳离子表面活性剂、TritonX(聚氧乙烯醚类)非离子表面活性剂等;助表面活性剂一般为中等碳链C5~C8的脂肪酸。微乳液中,微小的“水池”为由表面活性剂和助表面活性剂所构成的单分子层包围成的微乳颗粒,其大小在几至几十个纳米间,这些微小的“水池”彼此分离,就是“微反应器”,它拥有很大的界面,有利于化学反应。与其它化学法相比,微乳液法制备的离子不易聚结,大小可控,分散性好。 W/O型微乳液中的水核可以看作微型反应器(Microreactir)或称为纳米反应器,反应器的水核半径与体系中水和表面活性剂的浓度及种类有直接的关系,若令W=[H2O/表面活性剂],则由微乳液制备的纳米粒子的尺寸将会受到w 的影响。 一般地,将两种反应物分别溶于组成完全相同的两份微乳液中,然后在一定条件下混合。两种反应物通过物质交换而发生反应,当微乳液界面强度较大时,反应物的生长受到限制。如微乳液颗粒大小控制在几个纳米,则反应物以纳米颗粒的形式分散在不同的微乳液中。研究表明:纳米颗粒可在微乳液中稳定存在,通过超速离心或将水和丙酮的混合物加入反应后生成的微乳液中使纳米颗粒与微乳液分离,用有机溶剂清洗以去除附着在微粒表面的油和表面活性剂,最后在一定温度下进行干燥,即可得到纳米颗粒。 2 微乳液的形成和结构 与普通乳液相比,尽管在分散类型方面微乳液和普通乳液有相似之处,即有o/w 和w/o型,其中w/O可以作为纳米粒子制备的反应器,但是微乳液是一种热力学稳定的体系,它的形成是自发的,不需要外界提供能量。正是由于微乳液的形成技术要求不高,并且液滴颗粒可控,实验装

聚酰亚胺在微电子领域的应用及研究进展 王正芳

聚酰亚胺在微电子领域的应用及研究进展王正芳 发表时间:2019-10-23T14:56:28.063Z 来源:《电力设备》2019年第10期作者:王正芳张馨予 [导读] 摘要:随着科技的深入发展,半导体和微电子工业已经成为国民经济的支柱性产业。 (天津环鑫科技发展有限公司天津市 30000) 摘要:随着科技的深入发展,半导体和微电子工业已经成为国民经济的支柱性产业。微电子工业的发展,除了设计、加工等本身技术的不断更新外,各种与之配套的材料的发展也有着十分重要的支撑作用。电子产品的轻量化、高性能化和多功能化使得其对高分子材料的要求也越来越高。聚酰亚胺(PI)可以说是目前电子化学品中最有发展前途的有机高分子材料之一。其优异的综合性能可满足微电子工业对材料的苛刻要求,因此得到了广泛的重视。 关键词:聚酰亚胺;PI薄膜;应用 信息产业的迅速发展除了技术的不断更新外,各种配套材料的发展同样占据着十分重要的地位。为微电子工业配套的专用化学材料通常称为“电子化学品”,其主要包括集成电路和分立器件用化学品、印刷电路板配套化学品、表面组装用化学品和显示器件用化学品等。电子化学品具有质量要求高、用量少、对生产及使用环境洁净度要求高和产品更新换代快等特点。同时PI具有比无机介电材料二氧化硅、氮化硅更好的成膜性能和力学性能,对常用的硅片、金属和介电材料有很好的粘结性能,聚酰亚胺(PI)薄膜具有良好的耐高低温性能、环境稳定性、力学性能以及优良的介电性能,在众多基础工业与高技术领域中均得到广泛应用。 一、PI发展及在微电子领域的应用 截至目前,PI已经成为耐热芳杂环高分子中应用最为广泛的材料之一,其大类品种就有20多种,较为著名的生产厂家包括通用电气公司GE、美国石油公司等,由于具有很好的热力学稳定性、机械性能及电性能,PI被广泛应用于半导体及微电子行业。可以说,微电子产业的发展水平,离不开PI材料的贡献。PI主要的应用包括下面方面。 1、α粒子的屏蔽层航空航天、军用集成电路在辐射环境中,遭受射线辐射后会发生性能劣化或失效,进而导致仪器设备的失控,因此其抗辐射的性能非常重要。高纯度(低杂质)的PI涂层是一种重要的耐辐射遮挡材料。在元器件外壳涂覆PI遮挡层,可有效防止由微量放射性物质释放的射线而造成的存储器错误。 2、元器件的金属层间介质以及先进封装的再布线技术材料。PI在微电子领域的很多应用,都是出于其优良的综合性能而不是单一特性,某些类似的应用可以发生在不同的领域中,一些应用情况也可以有多重的目的以及名称,因此在介绍文章的描述中,容易产生混乱。由于PI较低的介电常数减少电路时延和串扰,与其他材料的较好的粘附性防止脱离,常用金属材料在其中较低的扩散可靠性,挥发放气极低,以及良好的成膜和填平性,因此可作为多层金属互联结构的层间介质材料(ILD),缓和应力,提高集成电路的速度、集成度和可靠性。类似的考虑也导致其作为先进封装的再布线RDL技术的首选介质材料,用于一般晶圆级的封装WLP中的扇入(Fan-in)和扇出(Fan-out)技术,以及多芯片组件(MCM)等技术中的再布线工艺。 3、微电子器件的钝化层\缓冲\填充\保护层。PI涂层作为钝化层,可有效地改善界面状况,阻滞电子迁移、降低漏电流,防止后序工艺和使用过程中的机械刮擦和表面污染,也可有效地增加元器件的抗潮湿能力。作为缓冲层(Stress Buffer)可有效地降低由于热应力和机械应力引起的电路崩裂断路。单层PI膜,往往同时起到化学钝化、机械保护、空间填充/平坦化的多重功能。此外,PI在微电子产业中的重要潜在应用还有:生物微电极(良好的生物相容性),以及光电材料(波导、开关器件),微电机(MEMS)工艺材料等。这些都是目前发展十分迅速的新兴技术领域,预示着这种介质材料的光明市场前景。尽管PI材料在微电子领域的市场前景十分广阔,且该领域与其他传统材料领域的也有很大不同,体现在初期体量小成本高,对材料的性能质量要求苛刻,而且呈现多样性特点,比如希望进一步降低介电常数,提高/降低玻璃化转变温度,降低吸水率等。在技术方面,它还面临着其他类似材料比如苯并环丁烯(BCB)聚合物,聚苯并唑(PBO)等的激烈竞争。 4、含氟PI在光波导材料中的应用。近年来,关于聚合物光波导材料的开发研究日益受到人们的重视。与传统的无机光波导材料相比,有机聚合物光波导材料具有如下特点:(1)较高的电光耦合系数;较低的介电常数;较短的响应时间和较小的热损耗;(2)加工工艺简单经济,无须高温加热处理,只要通过匀胶、光刻等工艺即可制得复杂的光电集成器件,而且器件具有轻巧、机械性能好的特点,适用于制作大型光学器件和挠性器件。目前研究较多的聚合物光波导材料包括氟代、氘代的聚甲基丙烯酸甲酯、含氟聚酰亚胺、含氟聚芳醚以及聚硅氧烷等[1]。含氟聚酰亚胺不仅具有传统聚酰亚胺材料所具有的耐高温、耐腐蚀、机械性能优良等性质,而且还具有溶解性能优异、低介电常数、低吸水率、低热膨胀系数等特性,因此非常适于制造光波导材料。 5、含氟PI在非线性光学材料中的应用。常用的非线性光学材料包括无机材料,如铌酸锂(LiNbO3)和有机聚合物材料,如聚酰亚胺等。聚合物作为非线性光学材料具有比无机材料更为明显的非线性光学效应、更快的响应速度以及低得多的介电常数。同时聚合物材料还具有结构多样、加工性能优越、与微电子技术和光纤技术具有良好适应性等特点,因此应用越来越广泛。与无机材料相比,PI材料具有非线性系数大、响应时间短、介电常数低、频带宽、易合成等特性,同时还具有优良的热性能、电性能、机械性能以及环境稳定性能等,而且可以与现有的微电子工艺良好地兼容,可在各种基材上制备器件,特别是可以制作多层材料,达到垂直集成,这是现有的铌酸锂等无机材料做不到的。含氟PI在保持PI固有的优良特性的同时,极大地改善了PI的溶解性,这就避免了聚酰胺酸在热亚胺化过程中,由于脱除小分子水留下“空穴”而引起光散射。 二、PI超薄膜未来发展趋势 PI超薄膜是近年才发展起来的一类高性能高分子薄膜材料,优异的综合性能很快确立了其在有机薄膜材料家族中的顶端地位。目前,PI超薄膜的发展方向主要体现在两个方面:一是标准型Kapton薄膜的超薄化;另一个是功能性PI超薄膜的研制与开发。对于前者而言,Kapton薄膜本身优良的热学与力学性能保证了其在超薄化过程中性能的稳定,其主要技术瓶颈更多地在于制备设备与制膜工艺参数的优化与调整。而对于功能性PI超薄膜而言,其性能不仅与设备和工艺有着密切的关系,而且树脂结构的分子设计以及新合成方法的研究也起着至关重要的作用。如何在保证特种功能的前提下,尽可能地保持PI薄膜固有的力学性能、热性能等是一项极具挑战性的研究课题,也是未来一项主要研究课题。 超薄型PI薄膜在现代工业领域中具有广泛的应用前景。国外十分重视这类材料的研制与开发,已经有批量化产品问世。由于PI超薄膜的应用领域较为特殊,国外对该材料的出口限制十分严格,某些品种甚至是对我国禁售的,这就需要国内尽早开展相关研究与产业化工

实验方案微乳液法制备 MYb3+,Er3+

微乳液法制备 M:Yb3+,Er3+ (M= BaF2,LaF3,YF3) (BaF2为立方相,其折射率为 1.47) 实验试剂 十六烷基三甲基溴化铵(A.R)中国医药上海化学试剂公司;氟化铵(A.R)中国医药上海化学试剂公司;硝酸钡(A.R)北京红星化工厂生产; 正丁醇(A.R)天津市科密欧化学试剂开发中心;正辛烷(A.R)天津市科密欧化学试剂开发中心;二氯甲烷(A.R)天津市科密欧化学试剂开发中心;甲醇(A.R)长春市试剂厂; La(NO3)3自制,浓度为 0.5mol/L; Yb(NO3)3自制,浓度为 0.5mol/L; Er(NO3)3自制,浓度为 0.5mol/L;

实验方法 1、按质量比为ω(CTAB)=19.04%, ω(正丁醇)=15.24%, ω(正辛烷)=51.40%的比例各取等量有机物两份,将三种有机化合物混合,得到Ⅰ、Ⅱ两体系 2、室温下,进行磁力搅拌 3、按化学计量比配置 C(NH4F)=0.5mol/L、 C(Ba(NO3)2)=0.5mol/L 阴阳离子溶液各 7.8m L(其ω(盐)=14.29%) 4、向阳离子溶液中滴加物质的量之比为1:1 的Yb(NO3)3和Er(NO3)3溶液。 5、待Ⅰ、Ⅱ两体系混合均匀,在搅拌过程中向其中一份逐滴加入阴离子(NH4F),另一份中加入阳离子(Yb(NO3)3和 Er(NO3)3组成的混合液)。 6、Ⅰ、Ⅱ两体系继续搅拌 50min。 7、将ⅠⅡ两体系迅速混合,室温下快速搅拌,反应 70min,反应所得产物以 15000rpm 离心 15min 8、产物再以甲醇和二氯甲烷混合液(体积比 1:1)清洗、离心 5 次,以去除纳米粒子表面残余的有机相和表面活性剂 9、在红外灯下干燥,然后用玛瑙研钵研磨, 10、于 450℃下氮气保护灼烧 30min 以去除残余的水分和其他有机杂质,最后得到白色粉末状样品 11、以同样的方法,Yb3+和 Er3+比例为 3:1,制备 YF3: Yb3+,Er3+纳米粒子。

微乳液法制备纳米粒子_徐冬梅

文章编号:1004-1656(2002)05-0501-06 微乳液法制备纳米粒子 徐冬梅,张可达,王 平,朱秀林 (苏州大学化学化工系,江苏苏州 215006) 摘要:介绍了W /O 型微乳液内超细颗粒的形成机理、制备的技术关键,综述了近年来国内外微乳法制备纳米粒子的最新进展。引用文献37篇。 关键词:W /O 型微乳液;纳米粒子;形成机理;制备中图分类号:O648.23 文献标识码:A 微乳液是两种不互溶液体形成的热力学稳定的、各向同性的、外观透明或半透明的分散体系,微观上由表面活性剂界面膜所稳定的一种或两种液体的微滴所构成。它的特点是使不相混溶的油、水两相在表面活性剂(有时还要有助表面活性剂)存在下,可以形成稳定均匀的混合物。因而在医药、农药、化妆品、洗涤剂、燃料等 [1~5] 方面得到 了广泛的应用。微乳可将类型广泛的物质增溶在一相中的能力已被作为反应介质用于无机、有机各类反应。当在微乳中聚合时,可得到纳米级(20~50nm )的热力学稳定的胶乳,微乳质点的纳米级范围使得能够利用微乳技术制备所要求的大小和形状的超细粒子。微乳液制备超细颗粒的特点在于:粒子表面包有一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可对粒子表面进行修饰,并控制微粒的大小。实验装置简单,操作容易,已引起人们的重视。本文对W /O 微乳液内超细颗粒的形成机理、制备的技术关键以及近年来国内外利用微乳法制备纳米粒子的最新进展进行了综述。 1 W /O (油包水)微乳液内超细颗粒 的形成机理 用来制备纳米粒子的微乳液往往是W /O 型体系,该体系的水核是一个“微型反应器”,或叫纳米反应器,水核内超细颗粒的形成机理有三种情况:(1)将两个分别增溶有反应物的微乳液混合, 由于胶团颗粒间的碰撞,发生了水核内物质相互交换或传递,引起核内的化学反应。由于水核半径是固定的,不同水核内的物质交换不能实现。于是在其中生成的粒子尺寸也就得到了控制。由此可见,水核的大小控制了超细微粒的最终粒径;(2)一种反应物在增溶的水核内,另一种以水溶液的形式与前者混合。这时候,水相内反应物穿过微乳液界面膜进入水核内,与另一反应物作用产生晶核并生长,产物粒子的最终粒径是由水核尺寸决定的。超细颗粒形成后,体系分为两相,其中微乳相含有生成的粒子,可进一步分离得到超细粒子;(3)一种反应物在增溶的水核内,另一种为气体。将气体通入液相中,充分混合使二者发生反应。反应仍然局限在胶团内。 2 实验制备的技术关键 2.1 选择一个适当的微乳体系 首先要选定用来制备超细颗粒的化学反应,然后选择一个能够增溶有关试剂的微乳体系,该体系对有关试剂的增溶能力越大越好,这样可期望获得较高收率。另外构成微乳体系的组分(油相、表面活性剂和助表面活性剂)应该不和试剂发生反应,也不应抑制所选定的化学反应。2.2 分析影响生成超细微粒的各种因素以获得 分散性好,粒度均匀的超细微粒 选定微乳体系后,就要研究影响生成超细微 第14卷第5期2002年10月 化学研究与应用Chemical Research and Application Vol .14,No .5Oct .,2002 收稿日期:2001-08-03;修回日期:2001-10-24 基金项目:江苏省苏州大学薄膜材料重点实验室开放课题(T2108057)

微电子科学与工程专业

微电子科学与工程专业 一、培养目标 本专业培养德、智、体等方面全面发展,具备微电子科学与工程专业扎实的自然科学基础、系统的专业知识和较强的实验技能与工程实践能力,能在微电子科学技术领域从事研究、开发、制造和管理等方面工作的专门人才。 二、专业特色 微电子科学与工程是在物理学、电子学、材料科学、计算机科学、集成电路设计制造学等多个学科和超净、超纯、超精细加工技术基础上发展起来的一门新兴学科。微电子技术是近半个世纪以来得到迅猛发展的一门高科技应用性学科,是21世纪电子科学技术与信息科学技术的先导和基础,是发展现代高新技术和国民经济现代化的重要基础,被誉为现代信息产业的心脏和高科技的原动力。本专业主要学习半导体器件物理、功能电子材料、固体电子器件,集成电路设计与制造技术、微机械电子系统以及计算机辅助设计制造技术等方面的基础知识和实践技能,培养出来的学生在微电子技术领域初步具有研究和开发的能力。 三、培养标准 本专业学生要求在物理学、电子技术、计算机技术和微电子学等方面掌握扎实的基础理论,掌握微电子器件及集成电路的原理、设计、制造、封装与应用技术,接受相关实验技术的良好训练,掌握文献资料检索基本方法,具有较强的实验技能与工程实践能力,在微电子科学与工程领域初步具有研究和开发的能力。 毕业生应获得以下几方面的知识和能力: 1. 具有较好的人文科学素养、创新精神和开阔的科学视野; 2. 树立终身学习理念,具有较强的在未来生活和工作中继续学习的能力; 3. 具有较扎实的自然科学基本理论基础; 4. 具备微电子材料、微电子器件、集成电路、集成系统、计算机辅助设计、封装技术和测试技术等方面的理论基础和实验技能; 5. 了解本专业领域的科技发展动态及产业发展状况,熟悉国家电子信息产业政策及国内外有关知识产权的法律法规; 6.掌握文献检索及运用现代信息技术获取相关信息的基本方法; 7.具有归纳、整理和分析实验结果以及撰写论文、报告和参与学术交流的能力。 77

微乳液的性质与应用

微乳液的性质与应用 应化1008 马亚强 2010016218 Abstract:I n this article , the conception , structure , properties and preparation of microemulsion have been summarized .In addition,the application of microemulsions in tertiary oil recovery,pharmaceutical, porous materials and cosmetics have been introduced. Keywords:microemulsion ; surfactant ; cosurfactant ; surface tension ; HLB value 前言: 微乳液自1943年由Hour和Schulmant 发现以来,其理论和应用研究取得了很大进展,20世纪70年代发生世界石油危机后,由于微乳体系在3次采油技术中显示出巨大潜力而迎来了发展高潮。特别是20世纪90年代以来,微乳液的应用领域迅速拓展,除了3次采油技术外,目前已渗透到日用化工、精细化工、生物技术、环境科学和分析化学等领域;而且,现代高新技术和新型功能材料,如纳米材料、气敏材料、多孔材料等的制备与应用中,都与微乳液有密切关系。微乳液已成为当今国际上热门的具有巨大潜力的研究领域。 1.微乳液的性质和组成 1.1 微乳液的性质:微乳液明确定义是由水、油、表面活性剂及助表面活性剂四组份, 在适当比例下, 自发形成的透明或半透明的热力学稳定体系。分散相粒径在0.1μm以下。而普通乳状液分散相颗粒在0.2

微电子技术在生物医学中的应用

微电子技术在生物医学中的应用 摘要:微电子技术与生物学之间有着非常紧密的联系。一方面微电子技术的发展,将大大地推动生物医学的发展,另一方面生物医学的研究成果同样也将对微电子技术的发展起着巨大的促进作用。在这里我将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 关键字:微电子技术生物医学 一、引言 生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。下面将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。 二、生物医学传感器 生物医学传感器的作用是把生物体和人体中包含的生命现象、状态、性质、变量和成分等生理信息(包括物理量、化学量、生物量等)转化为与之有确定函数关系的电信息。生物医学传感器是生物医学电子学中最关键的技术,它是连接生物医学和电子学的桥梁。主要可分为如下几类:电阻式传感器,电容式传感器,电感式传感器,压电式传感器,光电传感器,热电式传感器,光线传感器,电化学传感器以及生物传感器等。它通过各种化学、物理信号转换器捕捉目标物与敏感膜之间的反应,然后将反应程度用连续的电信号表达出来,从而得出被检测样品的浓度。生物医学传感器的微型化和集成化是其中最重要的发展方向之一,其主要原因:1)它是实现生物医学设备微型化、集成化的基础;2)将使得生物医学测量和控制更加精确——达到分子和原子水平。是生物体成分(酶、抗原、抗体、激素、DNA) 或生物体本身(细胞、细胞器、组织),它们能特异地识别各种被测物质并与之反应;后者主要有电化学电极、离子敏场效应晶体管( ISFET ) 、热敏电阻器、光电管、光纤、压电晶体(PZ) 等,其功能为将敏感元件感知的生物化学信号转变为可测量的电信号。因而它具有快速大量处理信息的能力,和诊断精确的特点。 常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。 医学领域的生物传感器发挥着越来越大的作用。在临床医学中,酶电极是最

微乳的制备

微乳的制备 低毒药用微乳的研制 摘要:由花生油、水、吐温-80组成三相(油相、水相、乳化剂),再分别加辅助剂和不加辅助剂制备O/W型微乳;通过采用改良三角相图法,比较各处方中乳化剂和辅助剂的使用量(B)。结果表明单独以乳化剂吐温-80制备微乳,消耗的乳化剂量较大;而加入辅助剂制备微乳,能明显降低B值,其中以加入平平加O为辅助剂的B值最小。该结果对寻找低毒性的药用微乳有积极的指导意义。关键词:低毒微乳改良三角相图 微乳是呈透明或半透明的油水混合溶液,是热力学及动力学稳定体系。其制法简便,粒径小且均匀,作为药物载体有缓释和靶向作用[1,2]。微乳作为一种新型药物载体,已越来越受到人们的关注[3]。微乳通常是由乳化剂、辅助乳化剂、油相及水相组成,其制备需足够的乳化剂,一般占体系的10-30%,但大量乳化剂和助乳化剂的使用增加了微乳的毒性,从而限制了微乳的应用。本实验通过建立改良三角相图[4],采用不加辅助剂和加辅助剂(分别为PEG-400、OP、平平加O)制备微乳,比较各处方的B值,寻求用最小量的乳化剂和辅助剂制备微乳,其结果对低毒药用微乳的研制有一定的指导意义。 1仪器与材料 1.1仪器TN型托盘式扭力天平(上海第二天平仪器厂);78-1型磁力加热搅拌器(上海面汇电讯器材厂);LXJ-Ⅱ型离心沉淀机(上海医用分析仪器厂)。 1.2材料吐温Tween-80(清明化工厂);聚乙二醇-400(PEG-400,上海浦东南化工厂);聚乙二醇辛基苯基醚(乳化剂OP,无锡市科技实验二厂);平平加O(进口分装);其他均为分析纯。 2方法与结果 2.1微乳的制备 2.1.1花生油、吐温-80和辅助剂制备O/W型微乳称取花生油-辅助剂(PEG-400,平平加O,乳化剂OP)按比值O/A=1:9混匀,总量为1g,再按1:1.6,1:1.5,1:1.2,1:1.1,1:1,1:0.9,1:0.8,1:0.7,1:0.6,1:0.5比例与吐温-80混合,在约45℃下,边搅拌边滴加蒸馏水,直至微乳形成,记录消耗水的体积。取固定的O/A作微乳的改良三角相图,所得结果见下图1-3。由三相图可知处方中各组分所占百分比例如表1-3所示。表1油+PEG400:吐温-80 花生油(%) PEG400(%) 吐温-80(%) 水(%) 1:1.6 1.18 10.59 18.81 69.41 1:1.5 1.54 13.85 23.08 61.54 1:1.2 1.28 11.54 15.38 71.79 1:1.1 1.69 15.20 18.58 64.53 1:1.0 1.03 9.28 10.31 79.38 1:0.9 2.27 20.41 20.41 56.92 表2油+平平加O:吐温-80 花生油(% ) 平平加O(% ) 吐温-80(% ) 水(%) 1:1.61:1.51:1.21:1.11:1.01:0.91:0.8 1.141.131.111.161.151.121.14 10.2210.1710.0010.4010.3410.0510.22 18.1816.9513.3312. 7211.4910.059.09 70.4571.7575.5675.5277.0178.7779.55 表3油+OP:吐温-80 花生油(%) OP(%) 吐温-80(%) 水(%) 1:1.61:1.51:1.21:1.11:1.01:0.9 1.201.251.391.351.301.52 10.8211.2512.5012.1611.6913.64 19.2318.7516.6714.8612.9913.64 68.7568.7569.4471.6274.0371.21 2.1.2花生油、吐温-80、制备O/W型微乳按2.1.1方法制备微乳可得到花生油/吐温-80/水的经典三角相图,结果见表4,图1-4。表4油:吐温-80 花生油(%) 吐温-80(% ) 水(%) 0.1:1.60.1:1.50.1:1.20.1:1.10.1:1.00.1:0.9 1.692.002.923.083.132.86 27.1230.0034.9833.8431.2525.71 71.1968.0062.1063.086 5.6271.43 2.2微乳及其类型的鉴别方法[3]微乳的鉴别方法采用染色法和离心法。离心法采用1500-2000r/min离心10min,观察其是否分层及是否维持澄明,如仍维持澄明可判为微乳。染色法是利用油溶性染料苏丹红和水溶性染料亚甲兰在微乳中红色或蓝色的扩散快慢来判断微乳的类型,若红色扩散快速于蓝色则为W/O型微乳;反之为O/W型。 3结论 3.1本实验中所制微乳经离心后,溶液均无分层,维持澄明,可判为微乳;经染色法观察均是蓝色扩散快于红色,固判之为O/W型。 3.2通过上述图表可知,单独使用乳化剂吐温-80制备微乳,需消耗大量的乳化剂25.71 ~34.98%,而加入辅助剂制备微乳相对消耗的量B较小,加辅助剂PEG-400、平平加O、OP,消耗乳化剂和助乳的量B分别为19.59% ~40.82%,19.31% ~28.40%,24.68% ~30.05%。4讨论 4.1 实验中,微乳的制备采用了改良三角相图法即固定水相和辅助剂的比值(W/A)或油相和辅助剂的比值(O/A),其与经典三角相图法即固定乳化剂与辅助剂的比值(Km)相比,所消耗乳化剂和辅助剂的量较少[4]。 4.2通过预实

相关主题
文本预览
相关文档 最新文档