当前位置:文档之家› 工程热力学知识点

工程热力学知识点

工程热力学知识点
工程热力学知识点

工程热力学复习知识点

一、知识点

基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。

1.基本概念

掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。

掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。

理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。

2.热力学第一定律

掌握和理解:热力学第一定律的实质。

理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。

理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。

3.热力学第二定律

掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。

掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文表述等)。卡诺循环和卡诺定理。

掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。

理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。

理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。

4.理想气体的热力性质

熟悉和了解:理想气体模型。

理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。

理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。

5.实际气体及蒸气的热力性质及流动问题

理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。

理解并掌握:绝热节流的现象及特点

6.蒸汽动力循环

理解计算:蒸气动力装置流程、朗肯循环热力计算及其效率分析。能够在T-S图上表示出过程,提高蒸汽动力装置循环热效率的各种途径(包括改变初蒸汽参数和降低背压、再热和回热循环)。

7、制冷与热泵循环

理解、掌握并会计算:空气压缩制冷循环,蒸汽压缩制冷循环的热力计算及制冷系数分析。能够在T-S图上表示出过程,提高制冷系数和热泵系数的

途径,分析热泵循环和制冷循环的区别和联系。

二、典型题解

概念题:

1、过热蒸汽的温度是否一定很高?未饱和水的温度是否一定很低?

答:过热蒸汽、未饱和水是这样定义的,当蒸汽的温度高于其压力对应的饱和温度时称作过热蒸汽,其压力下t>ts;当温度低于其压力对应的饱和温度t

2、在h-s图上,能否标出下列水和蒸汽的状态点?(1)焓为h1的未饱和水;(2)焓为h2的饱和水;(3)参数为p1、t1的湿蒸汽;(4)压力为p的干蒸汽;(5)水、汽性质相同的状态。

3、填空

4、判断下列过程中那些是可逆的;不可逆的;可以是可逆的。并扼要说明不可逆原因。

(1)对刚性容器内的水加热,使其在恒温下蒸发。

(2)对刚性容器内的水作功,使其在恒温下蒸发。

(3)对刚性容器中的空气缓慢加热,使其从50℃升温到100℃

解:(1)可以是可逆过程,也可以是不可逆过程,取决于热源温度与温是否相等。水若两者不等,则存在外部的传热不可逆因素,便是不可逆过程。(2)对刚性容器的水作功,只可能是搅拌功,伴有摩擦扰动,因而有内不可逆因素,是不可逆过程。

(3)可以是可逆的,也可以是不可逆的,取决于热源温度与空气温度是否随

时相等或保持无限小的温差。 5、绝热容器内有一定气体,外界通过容器内的叶轮向气体加入wkJ 的功。若

气体视为理想气体,试分析气体内能的内能,焓,温度,熵如何变化?

答:根据热力学第一定律,外界所做的功全部转化成为内能的增量,因而内能,焓,温度均增加;该过程不可逆,熵也增加。

6、对与有活塞的封闭系统,下列说法是否正确

1)气体吸热后一定膨胀,内能一定增加。

答:根据热力学第一定律,气体吸热可能使内能增加,也可能对外做功,或者两者同时进行;关键是吸热量能否完全转变为功,由于气体的定温膨胀过程可使得吸收的热量完全转化为功,内能不增加,所以说法错误。

2)气体膨胀时一定对外做功。

答:一般情况下,气体膨胀时候要对外做功,但当气体向真空中膨胀时候,由于外力为零,所以功也为零。

3)气体对外做功,内能一定减少。

答:根据热力学第一定律,在定温条件下,气体可以吸收热量并全部转化为功,从而保持内能不变。

7、焓的物理意义是什么?

答:焓的定义式:焓=内能+流动功H=U+pV

焓的物理意义:

1.对流动工质(开口系统)工质流动时与外界传递与其热力状态有关的总能量。

2.对不流动工质(闭口系统)仍然存在但仅是一个复合的状态参数。

8、熵的物理含义?

答:定义:熵可逆过程 )

(T Q

dS δ=

物理意义:熵的变化反应可逆过程热交换的方向和大小。系统可逆的从外界吸热,系统熵增加;系统可逆的向外界放热,系统熵减少;可逆绝热过程,系统熵不变。

9、判断下列说法对吗?系统吸热,其熵一定增大;系统放热,其熵一定减小。 答:熵变=熵流+熵产,所以,前半句对,后半句错误。

10、孤立系熵增原理是什么?怎么应用?

答:孤立系统熵增原理:孤立系统内所进行的一切实际过程(不可逆过程)都朝着使系统熵增加的方向进行;在极限情况下(可逆过程),系统的熵维持不变;任何使系统熵减小的过程是不肯能。即过程进行到某一阶段,再不能使熵增大了,也就是系统的熵值达到了最大值,就是过程进行的限度。 等号适用于可逆过程,大于号适用于不可逆过程。表明孤立系统的熵变化只取决于系统内各过程的不可逆程度。

注意:如果涉及环境温度,由于环境是一个很大的热源,无论它吸收或者放出多少热量,都认为环境温度是不变的。 11、讨论使热由低温热源传向高温热源的过程能否实现?

12、下列说法正确的在括号内划“√”,不正确划“×”。

(×)定质量系统一定是闭口系统。

(×)闭口系统不作膨胀功的过程必是等容过程。

(√)理想气体任何过程的内能变量总以Δu=∫12c v dT 进行计算。

(√)dh=c p dT 只适用于理想气体、任何过程。

(×)闭口系统发生放热过程,系统的熵必减少。

(×)知道了温度和压力两个参数值,就可以确定水蒸气的状态。 (×)一切可逆机的热效率均相等。

≥=+=g g f iso dS dS dS dS

(×)熵增可用来度量过程的不可逆性,所以熵增加的过程必是不可逆过程,(√)某理想气体经历了一个内能不变的热力过程,则该过程中工质的焓变也为零。

(×)容器中气体的压力没有变化,则安装在容器上的压力表读数也不变。(×)水蒸气的定温过程中,能满足q=w的关系式。

(√)在临界点上,饱和液体的焓一定等于干饱和蒸汽的焓。

(×)只要存在不可逆性就有熵产,故工质完成一个不可逆热力循环,其熵变必大于零。

(√)理想气体在Ts图上,其定温线就是定焓线。

(×)绝热过程必为定熵过程。

(×)公式q=Δu+w仅适用于闭口热力系统。

(√)闭口绝热系统的熵不可能减少。

(×)一切不可逆热机的热效率总比可逆热机的小。

(√)在一刚性容器中,理想气体绝热自由膨胀后,其温度不变。

(×)在简单朗肯循环的基础上采用再热的方法一定能提高循环热效率。(×)制冷系数永远大于1,而制热系数可以大于1也可以小于1。

(×)供热量一定,用电炉取暖与用热泵式空调取暖耗电量一样多。

(×)从饱和液体状态汽化成饱和蒸汽状态,因为汽化过程温度未变,所以焓的变化量。

(×)若容器中气体的绝对压力保持不变,压力表上的读数就不会改变。(×)湿饱和蒸汽的焓等于饱和水的焓加上干度乘以汽化过程中饱和水变成干饱蒸汽所吸收的热量。

(×)理想气体经历一可逆定温过程,由于温度不变,则工质不可能与外界

交换热量。

13、在绝热良好的房间内,有一台设备完好的冰箱在工作,在炎热的夏天打开冰箱,人会感到凉爽,问室内温度是否会越来越低?请用热力学原理加以解释。

答:一开始,人会感到凉爽,这是由于房间内空气中的内能传递到冰箱内,而此时冰箱输入功率转化的热小于空气进入冰箱的内热能,故空气温度降低,人感到凉爽。

随着时间的进行,冰箱输入功率转化的热越来越多地进入房间空气中,空气的温度逐步回升。这样,房间内的温度不会越来越低。

14、选择题

(1)、一热力学过程,其w= ,

Pdv时则此过程是(A)

A.不可逆过程.

B.任意过程.

C.可逆过程.D.定压过程.

(2)、对于某理想气体,当温度变化时(C p-C v)是(B)的.

A.变化B.不变化

C.不能确定

(3)、在两个恒温热源间工作的热机A、B均进行可逆循环,A机的工质为理想气体,B机是水蒸汽,则热效率ηA和ηB(A)

A.相等

B.ηA>ηB

C.ηA<ηB

D.不能确定.

(4)、在闭口绝热系中进行的一切过程,必定使系统的熵(D)

A增大.B减少.

C.不变

D.不能确定

(5)、在房间内温度与环境温度一定的条件下,冬天用热泵取暖和用电炉取暖相比,从热力学观点看(A)

A.热泵取暖合理.

B.电炉取暖合理.

C.二者效果一样.

D.不能确定.

(6)、闭口系能量方程为(D)

A.Q+△U+W=0

B.Q+△U-W=0

C.Q-△U+W=0

D.Q-△U-W=0

(7)、理想气体的是两个相互独立的状态参数。(C)

A.温度与热力学能

B.温度与焓

C.温度与熵

D.热力学能与焓

(8)、已知一理想气体可逆过程中,w t=w,此过程的特性为(B)

A.定压

B.定温

C.定容

D.绝热

(9)、可逆绝热稳定流动过程中,气流焓的变化与压力变化的关系为(B)

A.dh=-vdp

B.dh=vdp

C.dh=-pdv

D.dh=pdv

(10)、水蒸汽动力循环的下列设备中,作功损失最大的设备是(A)

A.锅炉

B.汽轮机

C.凝汽器

D.水泵

(11)外界(或)环境的定义是指(D)。

A 系统边界之外的一切物体

B 与系统发生热交换的热源

C 与系统发生功交换的功源

D 系统边界之外与系统发生联系的一切物体

(12)系统平衡时的广延性参数(广延量)的特点是(D )。

A 其值的大小与质量多少无关

B 不具有可加性

C 整个系统的广延量与局部的广延量一样

D 与质量多少有关,具有可加性

(13)理想气体多变指数n<0的多变膨胀过程,其过程特性具有__A__的结果

A Q>0

,ΔU>0,W>0 B Q<0 ,ΔU<0,W>0 C Q>0 ,ΔU<0,W>0DQ<0 ,ΔU>0,W>0

(14)卡诺定理表明:所有工作于两个不同恒温热源之间的一切热机的热效率

(B )。

A 都相等,可以采用任何循环

B 不相等,以可逆热机的热效率为最高

C 均相等,仅仅取决于热源和冷源的温度

D 不相等,与所采用的工质有关系。

(15)压力为4bar 的气体流入1bar 的环境中,为使其在喷管中充分膨胀,宜采用(D )。

A 渐缩喷管

B 渐扩喷管

C 直管

D 缩放喷管

(16)一个橡皮气球在太阳下被照晒,气球在吸热过程中膨胀,气球内的压力正比于气球的容积。则气球内的气体进行的是(B)

A 定压过程

B 多变过程C

定温过程D 定容过程 (17)熵变计算式12

12ln ln V V R T T C S v +=?只适用于(D )。

A 一切工质的可逆过程

B 一切工质的不可逆过程

C 理想气体的可逆过程

D 理想气体的一切过程

(18)析一个有工质流入与流出的研究对象,将热力系统选为(D )。

A 闭口系统;

B 开口系统;

C 孤立系统;

D A ,B ,C 都可以。

(19)热力系的储存能包括(A )。

A 内部储存能与外部储存能

B 热力学能与动能

C 内动能与内位能

D 热力学能与宏观势能

(20)工质熵的增加,意味着工质的(D )。

(A )Q >0(B )Q <0(C )Q=0(D )不一定

(21)贮有空气的绝热刚性密闭容器中,按装有电加热丝通电后,如取空气为系统,则过程中的能量关系有(C)

A Q >0

,ΔU>0,W>0 B Q=0 ,ΔU>0,W<0 C Q >0 ,ΔU>0,W=0

D Q=0 ,ΔU=0,W=0

(22)循环热效率12

1211T T q q t -=-=η适用于(D )。

A 适用于任意循环;

B 只适用于理想气体可逆循环;

C 适用于热源温度为T1,冷源温度为T2的不可逆循环;

D 只适用于热源温度为T1,冷源温度为T2的可逆循环。

(23)气流在充分膨胀的渐缩渐扩喷管的渐扩段(dA >0)中,流速(D )。 A 等于喉部临界流速;B 等于当地音速;

C 小于当地音速;

D 大于当地音速。

(24)孤立系统可以理解为(C )。

A 闭口的绝热系统所组成;

B 开口的绝热系统所组成;

C 系统连同相互作用的外界所组成;

D A ,B ,C ,均是

(25)采用蒸汽再热循环的目的在于(C )。

(A )降低乏汽干度,提高汽轮机稳定性;(B )提高平均放热温度,提高循环热效率

(C )提高乏汽干度,提高循环热效率;(D )提高乏汽干度,降低循环不可逆性

15、请解释何谓孤立系统熵增原理,该原理在热力学分析中有什么用途? 答:对于孤立系熵方程g sys so i dS dS dS ==而熵产dS g 总是非负的即dS g ≥0或so i dS ≥0,称为孤立系的熵增原理。孤立系统内部进行的一切实际过程都是朝着熵增加的方向进行,极限情况维持不变。任何使孤立系统熵减小的过程都是不可能实现的。判断过程进行的方向与条件.

16、请分别回答热力学中所谓的第一类永动机与第二类永动机的物理意义。 答:不消耗任何能量而源源不断做功的机器为第一永动机;从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发动机为第二永动机。

17、理想气体熵变的计算式是由可逆过程导出的,它是否可用于计算不可逆过程初、终态的熵变?为什么?

答:可以,只和初末状态有关系,熵为状态参数.

18、刚性绝热容器中间用隔板分为两部分,A 中存有高压氮气,B 中保持真空。若将隔板抽去,分析容器中空气的热力学能如何变化?

答:抽取隔板,以容器中的氮气为热力系,在刚性绝热容器中,氮气和外界既无物质的交换也无能量的交换,有热力学第一定律知:w u q +?=,q=0,w=0,

因此,隔板抽取前后u?=0.

19、气体吸热后温度一定升高吗?液体吸热后温度一定升高吗?并给出理由。

答:气体吸热后,温度不一定升高,由q=u?+w,若吸热的同时对外界做功,而且|w|>|q|,此时,则热力学能降低即u?<0,此时的气体温度反而会降低。液体吸热后,温度也不一定升高,比如水在饱和状态下,吸热时可保持温度不变。

20、热力系的总熵是否可以减小?为什么?

答:可以减小。因为热力系总熵的增量为熵流和熵产之和,当热力系向外界放热时,熵流为负值(即使热力学的总熵减小),当熵流的绝对值大于熵产,热力系总熵的增量为负值,则热力系的总熵将是减小的。

21、决定朗肯循环热效率的参数有哪些?它们如何影响热效率?

答:

1)在相同初压和背压下,提高新蒸汽的初温可使朗肯循环热效率增大;

增加了循环高温段温度,使循环温差增大,所以提高了热效率。

2)在相同的初温和背压下,提高初压也可使朗肯循环热效率增大;循环

的平均温差加的缘故

3)在相同的初温、初压下,降低背压可使朗肯循环热效率增大,这是由

于增大了循环温差的缘故。

22、分析卡诺循环热效率公式,可得到哪些重要结论?

答:三点结论:

a只决定于T1,T2,提高T1,降低T2可提高ηc

bηc≯1

c当T1=T2时ηc=0

23、如何用热力学知识描述水的饱和状态

答:在一定的温度下,容器内的水蒸气压力总会自动稳定在一个数值上,此时进入水界面和脱离水界面的分子数相等,水蒸气和液态水处于动态平衡状态,即饱和状态。饱和状态下的液态水称为饱和水;饱和状态下的水蒸气称为饱和水蒸气;饱和蒸汽的压力称为饱和压力;与此相对应的温度称为饱和温度。

24、卡诺循环是理想循环,为什么蒸汽动力循环利用了水蒸汽在两相区等压等温的特点,而不采用卡诺循环?

答:采用卡诺循环必须要求工质实现定温加热和放热,但是难以实现。而水蒸气两相区却可满足定温加热和放热。而此时也是定压过程。所以实际蒸汽循环不采用卡诺循环。

计算分析题

1.某蒸汽压缩制冷过程,制冷剂在250K吸收热量Q L,在300K放出热量-Q H,压缩和膨胀过程是绝热的,向制冷机输入的功为Ws,判断下列问题的性质。(A可逆的B不可逆的C不可能的)

(1).QL=2000kJWs=400kJ

(A)

250

5

300250

η==

-

可逆

2000

5

400

L

s

Q

W

η===

ηη

=

可逆该制冷过程是可逆的(2).QL=1000kJQH=-1500kJ

(B)

250

5

300250

η==

-

可逆

1000

2

15001000

L L

s H L

Q Q

W Q Q

η====

---

ηη

<

可逆该制冷过程是不可逆的

T

(3).Ws=100kJQH=-700kJ

(C)2505300250η==-可逆7001006100H s L s s Q W Q W W η---====

ηη>可逆该制冷过程是不可能的 2.某蒸汽动力循环操作条件如下:冷凝器出来的饱和水,由泵从0.035Mpa 加压至1.5Mpa 进入锅炉,蒸汽离开锅炉时被过热器加热至280℃ 求:(1)上述循环的最高效率。 (2)在锅炉和冷凝器的压力的饱和温度之间运行的卡诺循环的效率,以及离开锅炉的过热蒸汽温度和冷凝器饱和温度之间运行的卡诺循环的效率。

(3)若透平机是不可逆绝热操作,其焓是可逆过程的80%。

求此时的循环效率。

解:(1)各状态点的热力学性质,可由附录水蒸汽表查得

115.146.303-?+=kg kJ H (由于液体压力增加其焓增加很少,可以近似16H H =) 该循环透平机进行绝热可逆操作,增压泵也进行绝热可逆操作时效率最高。 54 6.8381S S ==,由0.035Mpa ,查得

气相,

117153.7--??=K kg kJ S g (查饱和蒸汽性质表) 液相,119852.0--??=K kg kJ S l (查饱和水性质表内插)

气相含量为x

冷凝器压力0.035Mpa ,饱和温度为72.69℃;锅炉压力1.5Mpa ,饱和温度为198.32℃。卡诺循环运行在此两温度之间,卡诺循环效率

若卡诺循环运行在实际的二个温度之间,其效率为

(3)不可逆过程的焓差为0.80(H 2-H 3),而吸收的热仍为12H H -,因此效率

P

1.0MPa

-25℃45410.80()0.800.2470.198H H H H η-==?=-

3.某压缩制冷装置,用氨作为制冷剂,氨在蒸发器中的温度为-25℃,冷却器中的压力为1.0MPa ,假定氨进入压缩机时为饱和蒸汽,而离开冷凝器时为饱和液体,每小时制冷量Q 0为1.67×105kJ·h -1。

求:(1)所需的氨流率;

(2)制冷系数。

解:通过NH 3的P-H 图可查到各状态点焓值。

按照题意,氨进入压缩机为饱和状态1,离开冷凝器为饱和状态3。 氨在蒸发器中的过程即4→1H 1=1430KJ·kg -1

H 2=1710KJ·kg -1

氨在冷凝器中的过程即2→3,H 3=H 4=320KJ·kg -1 氨流率1

5

410005.15032014301067.1-?=-?=-==h kg H H Q q Q G 制冷系数0142114303201110 3.9617101430280s q H H W H H ξ--=

====--

注:求解此类题目:关键在于首先确定各过程状态点的位置,然后在P-H 图或T —S 图上查到相应的焓(或温度、压力)值,进行计算。

4.某压缩制冷装置,用氨作为制冷剂,氨在蒸发器中的温度为-25℃,冷凝器内的压力为1180kPa ,假定氨进入压气机时为饱和蒸气,而离开冷凝器时是饱

和液体,如果每小时的制冷量为167000kJ,求所需的氨流率;制冷系数。

解:此氨制冷循环示于右图所示T-S图上。

查的T-S图,得H1=1648kJ/kg,H2=1958kJ/kg,H3=H4=565kJ/kg

则单位质量制冷剂的制冷量为

q0=H1-H4=1648-565=1083(kJ/kg)

所需的氨流率为

G=

167000

1083

Q

q

=

=154.2(kg/h)

(2)制冷系数为

ε=

00

21

1083

19581648

q q

W H H

==

--=3.49

5、容器被分隔成AB两室,如图1-4所示,已知当地大气压p b=0.1013MPa,气压表2读为p e2=0.04MPa,气压表1的读数p e1=0.294MPa,求气压表3的读数(用MPa表示)。

解:p A=p b+p e1=0.1013MPa+0.294MPa=0.3953MPa

p A=p B+p e2

p B=p A p e2=0.39153MPa0.04MPa=0.3553MPa

p e3=p B p b=0.3553MPa0.1013MPa=0.254MPa

6、如图所示的气缸,其内充以空气。气缸截面积A=100cm2,活塞距底面高度H=10cm。活塞及其上重物的总重量G1=195kg。当地的大气压力p0=771mmHg,环境温度t0=27℃。若当气缸内气体与外界处于热力平衡时,把活塞重物取去100kg,活塞将突然上升,最后重新达到热力平衡。假定活塞

H

和气缸壁之间无摩擦,气体可以通过气缸壁和外界充分换热,试求活塞上升的距离和空气对外作的功及与环境的换热量。

7、一容积为0.15m3的储气罐,内装氧气,其初态压力p1=0.55MPa ,温度t1=38℃。若对氧气加热,其温度、压力都升高。储气罐上装有压力控制阀,当压力超过0.7MPa 时,阀门便自动打开,放走部分氧气,即储气罐中维持的最大压力为0.7MPa 。问当罐中温度为285℃,对罐内氧气共加入了多少热量?设氧气的比热容为定值,cv=0.657kJ/(kg·K)、cp =0.917kJ/(kg·K)。

8、有一蒸汽动力厂按依次再热以及抽气回热理想循环工作,如图。新蒸汽参数为p 1=14MPa ,t 1=550℃,再热压力p A =3.5MPa ,再热温度t R =t 1=550℃,回热抽气压力p B =0.5MPa ,回热器为混合式,背压p 2=0.004MPa 。水泵功可忽略。试:(1)定性画出循环的T-s 图;(2)求抽气系数αB ;(3)求循环输出净功w net ,吸热量q 1,放热量q 2;(4)求循环热效率ηt 。

9、一个装有2kg 工质的闭口系经历了如下过程:过程中系统散热25kJ ,外界对系统作功100kJ ,比热力学能减小15kJ/kg ,并且整个系统被举高1000m 。试确定过程中系统动能的变化。

10、一活塞气缸装置中的气体经历了2个过程。从状态1到状态2,气体吸热500kJ ,活塞对外作功800kJ 。从状态2到状态3是一个定压的压缩过程,压力为p=400kPa,气体向外散热450kJ 。并且已知U 1=2000KJ,U 3=3500KJ ,试算2-3过程气体体积变化。

11、气缸中封有空气,初态为MPa p 2.01=、314.0m V =,缓慢膨胀到328.0m V =。(1)过程中pV 维持不变;(2)过程中气体先循3

}{5.04.0}{m MPa V p -=膨胀到36.0m V m =,再维持压力不变,膨胀到328.0m V =。试分别求两过程中气体作出的膨胀功。

12、空气在压气机中被压缩。压缩前空气的参数为MPa p 2.01=,kg m v /845.031=;

压缩后的参数为MPa p 8.02=,kg m v /175.032=。设在压缩过程中每千克空气的热力学能增加kJ 5.146,同时向外放出热量kJ 50。压气机每分钟产生压缩空气kg 10。求:

(1)压缩过程中对每千克空气作的功;(2)每生产kg 1压缩空气所需的功(技术功);(3)带动此压气机所用电动机的功率。

13、朗肯循环中,冷凝压力为3kPa ,水由水泵增压至6MPa 后送入锅炉。锅炉出口蒸汽温度为600℃,33658.4h =/kJ kg ,汽轮机排汽比焓为42126h =/kJ kg ,凝结水比焓1101h =/kJ kg 。在忽略泵耗功的情况下,试求:

(1)求朗肯循环的热效率。

(2)如果在上述朗肯循环的基础上采用回热,在系统中使用开式(混合式)给水加热器,用于加热给水的蒸汽比焓为52859h =/kJ kg ,状态点6的焓值为604kJ/kg ,试求回热循环的热效率,并与无回热时的热效率进行比较;

(3)在上述回热循环的基础上,还有哪些提高循环效率的措施?

解:

(1) 锅炉吸热量为

4.35571014.365813=-=-=h h q B kJ/kg

汽轮机输出功为

4.153221264.365843=-=-=h h w T kJ/kg

循环热效率为

431.04

.35574.1532===B T q w η或43.1% (2)

开式给水加热器热平衡方程为

182.0101

28591016041516=--=--=h h h h αkg

循环净功

()()()()()()139921262859182.0128594.365814553=-?-+-=--+-=h h h h w net αkJ/kg 吸热量为

4.30546044.365863=-=-=h h q B kJ/kg

循环热效率

458.04

.30541399===B net q w η或45.8% 采用回热循环的热效率大于无回热循环的热效率。

(3)主要措施有:①提高主蒸汽温度和压力;(由于主蒸汽温度已有600℃,

提高压力的效果比较明显)

②降低排汽压力

14、在恒温热源T 1=700K 和T 2=400K 之间进行循环。当W 0=1000KJ ,Q 2=4000KJ

时,试用计算说明:(1)循环的方向性;(2)循环是可逆的,还是不可逆的?

解:

15、若5kg 水起始与295K 的大气环境处于热平衡状态,用热泵在水与大气之间工作使水定压冷却到280K ,求所需最小功是多少?(已知水的Cp=4.186kJ/(kg ·K))。

解:根据题意画出示意图所示,由大气、水、

制冷机、功源组成了孤立系,则熵变

iso H L R S S S S ?=?+?+?+

其中R W 0,0S S ?=?= 于是iso 313500J ||10970.7J/K++295K 295K W S ?=- 解得

因可逆时所需的功最小,所以令iso 0S ?=,可

方法2

制冷机为一可逆机时需功最小,由卡诺定理得 即02022222

()d T T T T W Q mc T T T δδ--== 16、图所示为理想朗肯循环,锅炉出口蒸汽压力6MPa 、温度为500℃、比焓13422/h kJ kg =;汽轮机排汽比焓22180/h kJ kg =,凝结水比焓3192/h kJ kg =;汽轮机的轴功率为20MW 。

试求:(1)在T -s 图中表示出该循环;

(2)计算出锅炉出口的蒸汽质量流量和循环热效率(忽略给水泵耗功);

(3)提出提高该循环热效率的措施,并用T -s 图加以分析。(8分) 解:(1)T -s 图见下图。

(2)12342221801242t w h h =-=-=/kJ kg 工质流量为122000016.1/1242

T T T W W m kg s w h h ====- 忽略泵的耗功,则43h h ?,锅炉吸热量为1434221923230B q h h =-=-=()/kJ kg 循环热效率为200000.38516.13230

T T B B W W Q mq η====?或38.5%。 (3)主要措施有:①提高主蒸汽温度和压力;②降低排汽压力(10kPa 排汽压力偏高);③采用再热;④采用回热。

工程热力学知识点总结

工程热力学大总结 '

… 第一章基本概念 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 ) 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 } 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。

工程热力学与传热学课程总结与体会

工程热力学与传热学课 程总结与体会 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

工程热力学与传热学 题目:工程热力学与传热学课程总结与体 会 院系:水利建筑工程学院给排水科学与工 程 班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望 传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物

医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国

工程热力学习题集答案

工程热力学习题集答案一、填空题 1.常规新 2.能量物质 3.强度量 4.54KPa 5.准平衡耗散 6.干饱和蒸汽过热蒸汽 7.高多 8.等于零 9.与外界热交换 10.7 2g R 11.一次二次12.热量 13.两 14.173KPa 15.系统和外界16.定温绝热可逆17.小大 18.小于零 19.不可逆因素 20.7 2g R 21、(压力)、(温度)、(体积)。 22、(单值)。 23、(系统内部及系统与外界之间各种不平衡的热力势差为零)。 24、(熵产)。 25、(两个可逆定温和两个可逆绝热) 26、(方向)、(限度)、(条件)。

31.孤立系; 32.开尔文(K); 33.-w s =h 2-h 1 或 -w t =h 2-h 1 34.小于 35. 2 2 1 t 0 t t C C > 36. ∑=ω ωn 1 i i i i i M /M / 37.热量 38.65.29% 39.环境 40.增压比 41.孤立 42热力学能、宏观动能、重力位能 43.650 44.c v (T 2-T 1) 45.c n ln 1 2T T 46.22.12 47.当地音速 48.环境温度 49.多级压缩、中间冷却 50.0与1 51.(物质) 52.(绝对压力)。 53.(q=(h 2-h 1)+(C 22 -C 12 )/2+g(Z 2-Z 1)+w S )。 54.(温度) 55. (0.657)kJ/kgK 。 56. (定熵线)

57.(逆向循环)。 58.(两个可逆定温过程和两个可逆绝热过程) 59.(预热阶段、汽化阶段、过热阶段)。 60.(增大) 二、单项选择题 1.C 2.D 3.D 4.A 5.C 6.B 7.A 8.A 9.C 10.B 11.A 12.B 13.B 14.B 15.D 16.B 17.A 18.B 19.B 20.C 21.C 22.C 23.A 三、判断题 1.√2.√3.?4.√5.?6.?7.?8.?9.?10.? 11.?12.?13.?14.√15.?16.?17.?18.√19.√20.√ 21.(×)22.(√)23.(×)24.(×)25.(√)26.(×)27.(√)28.(√) 29.(×)30.(√) 四、简答题 1.它们共同处都是在无限小势差作用下,非常缓慢地进行,由无限接近平衡 状态的状态组成的过程。 它们的区别在于准平衡过程不排斥摩擦能量损耗现象的存在,可逆过程不会产生任何能量的损耗。 一个可逆过程一定是一个准平衡过程,没有摩擦的准平衡过程就是可逆过程。 2.1kg气体:pv=R r T mkg气体:pV=mR r T 1kmol气体:pV m=RT nkmol气体:pV=nRT R r是气体常数与物性有关,R是摩尔气体常数与物性无关。 3.干饱和蒸汽:x=1,p=p s t=t s v=v″,h=h″s=s″

工程热力学期末试题及答案

工程热力学期末试卷 建筑环境与设备工程专业适用 (闭卷,150分钟) 班级 姓名 学号 成绩 一、简答题(每小题5分,共40分) 1. 什么是热力过程?可逆过程的主要特征是什么? 答:热力系统从一个平衡态到另一个平衡态,称为热力过程。可逆过程的主要特征是驱动过程进行的势差无限小,即准静过程,且无耗散。 2. 温度为500°C 的热源向热机工质放出500 kJ 的热量,设环境温度为30°C,试问这部分热量的火用(yong )值(最大可用能)为多少? 答: = ??? ? ? ++-?=15.27350015.273301500,q x E 303.95kJ 3. 两个不同温度(T 1,T 2)的恒温热源间工作的可逆热机,从高温热源T 1吸收热量Q 1向低温热源T 2放出热量Q 2,证明:由高温热源、低温热源、热机和功源四个子系统构成的孤立系统熵增 。假设功源的熵变△S W =0。 证明:四个子系统构成的孤立系统熵增为 (1分) 对热机循环子系统: 1分 1分 根据卡诺定理及推论: 1 4. 刚性绝热容器中间用隔板分为两部分,A 中存有高压空气,B 中保持真空,如右图所示。若将隔板抽去,试分析容器中空气的状态参数(T 、P 、u 、s 、v )如何变化,并简述为什么。 答:u 、T 不变,P 减小,v 增大,s 增大。 自由膨胀 12iso T T R S S S S S ?=?+?+?+?W 1212 00ISO Q Q S T T -?= +++R 0S ?=iso 0 S ?=

5. 试由开口系能量方程一般表达式出发,证明绝热节流过程中,节流前后工质的焓值不变。(绝热节流过程可看作稳态稳流过程,宏观动能和重力位能的变化可忽略不计) 答:开口系一般能量方程表达式为 绝热节流过程是稳态稳流过程,因此有如下简化条件 , 则上式可以简化为: 根据质量守恒,有 代入能量方程,有 6. 什么是理想混合气体中某组元的分压力?试按分压力给出第i 组元的状态方程。 答:在混合气体的温度之下,当i 组元单独占有整个混合气体的容积(中容积)时对容器壁面所形成的压力,称为该组元的分压力;若表为P i ,则该组元的状态方程可写成:P i V = m i R i T 。 7. 高、低温热源的温差愈大,卡诺制冷机的制冷系数是否就愈大,愈有利?试证明你的结论。 答:否,温差愈大,卡诺制冷机的制冷系数愈小,耗功越大。(2分) 证明:T T w q T T T R ?==-= 2 2212ε,当 2q 不变,T ?↑时,↑w 、↓R ε。即在同样2q 下(说明 得到的收益相同),温差愈大,需耗费更多的外界有用功量,制冷系数下降。(3分) 8. 一个控制质量由初始状态A 分别经可逆与不可逆等温吸热过程到达状态B ,若两过程中热源温度均为 r T 。试证明系统在可逆过程中吸收的热量多,对外做出的膨胀功也大。

《工程热力学与传热学》——期末复习题

中国石油大学(北京)远程教育学院期末复习题 《工程热力学与传热学》 一. 选择题 1. 孤立系统的热力状态不能发生变化;(×) 2. 孤立系统就是绝热闭口系统;(×) 3. 气体吸热后热力学能一定升高;(×) 4. 只有加热,才能使气体的温度升高;(×) 5. 气体被压缩时一定消耗外功;(√ ) 6. 封闭热力系内发生可逆定容过程,系统一定不对外作容积变化功;(√ ) 7. 流动功的改变量仅取决于系统进出口状态,而与工质经历的过程无关;(√ ) 8. 在闭口热力系中,焓h是由热力学能u和推动功pv两部分组成。(×) 9. 理想气体绝热自由膨胀过程是等热力学能的过程。(×) 10. 对于确定的理想气体,其定压比热容与定容比热容之比cp/cv的大小与气体的温度无关。(×) 11. 一切可逆热机的热效率均相同;(×) 12. 不可逆热机的热效率一定小于可逆热机的热效率;(×) 13. 如果从同一状态到同一终态有两条途径:一为可逆过程,一为不可逆过程,则不可逆 过程的熵变等于可逆过程的熵变;(√ ) 14. 如果从同一状态到同一终态有两条途径:一为可逆过程,一为不可逆过程,则不可逆 过程的熵变大于可逆过程的熵变;(×) 15. 不可逆过程的熵变无法计算;(×) 16. 工质被加热熵一定增大,工质放热熵一定减小;(×) 17. 封闭热力系统发生放热过程,系统的熵必然减少。(×) 18. 由理想气体组成的封闭系统吸热后其温度必然增加;(×) 19. 知道了温度和压力,就可确定水蒸气的状态;(×) 20. 水蒸气的定温膨胀过程满足Q=W;(×) 21. 对未饱和湿空气,露点温度即是水蒸气分压力所对应的水的饱和温度。(√) 二. 问答题

工程热力学简答题

1.何谓状态何谓平衡状态何为稳定状态 状态:热力学系统所处的宏观状况 平衡状态:在不受外界影响的条件下,系统的状态不随时间而变化 稳定状态:系统内各点参数不随时间而变化 2.说明状态参数的性质。 (1)状态参数是状态的函数。对应一定的状态。状态参数都有唯一确定的数位。 (2)状态参数的变化仅与初、终状态有关,而与状态变化的途径无关。当系统经历一系列状态变化而恢复到初态时。其状态参数的变化为零,即它的循环积分为零 (3)状态参数的数学特征为点函数,它的微分是全微分。 3.何谓热力过程 热力学状态变化的历程 4.何谓准静态过程实现准静态过程的条件是什么 准静态过程:热力学系统经历一系列平衡状态,每次状态变化时都无限小的偏离平衡状态。 条件:状态变化无限小,过程进行无限慢。 5.非准静态过程中,系统的容积变化功可否表示为 ?=-21 2 1 d v p w 为什么 不可以。在非准静态过程中pv的关系不确定,没有函数上的联系。 6.何谓可逆过程 经历一个热力学过程后,热力学系统逆向沿原过程逆向进行,系统和有关的外界都返回到原来的初始状态,而不引起其他的变化。 7.何谓热力循环 系统由初始状态出发,经过一系列中间状态后重新回到初始状态所完成的一个封闭式的热力过程称为热力循环。 8.何谓正循环,说明其循环特征。 在状态参数坐标图上,过程按照顺时针循环的为正循环,其目的是利用热产生机械功,动力循环,顺时针,循环净功为正。 9.何谓逆循环,说明其循环特征。 在状态参数坐标图上,过程按照逆时针循环的为逆循环,其目的是付出一定代价使热量从低温区传向高温区,制冷循环,逆时针,循环净功为负。 10.何谓热量何谓功量 热量:仅仅由于温度不同,热力学系统与外界之间通过边界所传递的能量 功量:热力学系统和外界间通过边界而传递的能量,且其全部效果可表现为举起重物。 11.热量和功量有什么相同的特征两者的区别是什么 相同特征:都是系统与外界间通过边界传递的能量,都是过程量,瞬时量。

工程热力学与传热学详解

工程热力学与传热学实验指导书 热工实验 2013年3月

实验一 非稳态(准稳态)法测材料的导热性能 实验 一、实验目的 1. 快速测量绝热材料(不良导体)的导热系数和比热。掌握其测试原理和方法。 2. 掌握使用热电偶测量温差的方法。 二、实验原理 图1 第二类边界条件无限大平板导热的物理模型 本实验是根据第二类边界条件,无限大平板的导热问题来设计的。设平板厚度为2δ,初始温度为t 0,平板两面受恒定的热流密度q c 均匀加热(见图1)。求任何瞬间沿平板厚度方向的温度分布t (x ,τ)。导热微分方程式、初始条件和第二类边界条件如下: 0) ,0( 0),( )0,( ) ,( ),( 0 22=??=+??=??=??x t q x t t x t x x t a x t c τλτδτττ 方程的解为:

???+--=-δδδτλτ63),( 220x a q t x t c ?? ?-??? ??-∑∞ =+102 2 1)( exp cos 2)1(n n n n n F x μδμμδ (1-1) 式中:τ — 时间;λ — 平板的导热系数; a — 平板的导温系数;n μ— πn ,n = 1,2,3,………; F 0 — 2δτa 傅里叶准则;0t — 初始温度; c q — 沿x 方向从端面向平面加热的恒定热流密度。 随着时间τ的延长,F 0数变大,式(1-1)中级数和项愈小,当F 0> 0.5时,级数和项变得很小,可以忽略,式(1-1)变成 ??? ? ??-+=-612),( 2220δδτλδτx a q t x t c (1-2) 由此可见,当F 0> 0.5后,平板各处温度和时间成线性关系,温度随时间变化的速率是常数,并且到处相同。这种状态称为准稳态。 在准稳态时,平板中心面x =0处的温度为: ?? ? ??-= -61),0( 20δτλδτa q t t 平板加热面x =δ处为: ??? ??+= -31),( 20δτλδτδa q t t c 此两面的温差为: λ δ ττδc q t t t ?= -=?21),0( ),( (1-3) 如已知c q 和δ,再测出t ?,就可以由式(1-3)求出导热系数: t q c ?= 2δ λ (1-4) 实际上,无限大平板是无法实现的,实验总是用有限尺寸的试件,一般可认为,试件的横向尺寸为厚度的6倍以上时,两侧散热对试件中心的温度影响可以忽略不计。试件两端面中心处的温度差就等于无限大平板时两端面的温度差。 根据热平衡原理,在准稳态时,有下列关系:

工程热力学简答题汇总汇编

工程热力学简答题汇 总

1热力系统:被人为分割出来作为热力学分析对象的有限物质系统。 开口系统:热力系统和外界不仅有能量交换而且有物质交换。 闭口系统:热力系统和外界只有能量交换而无物质交换。 孤立系统:热力系统和外界即无能量交换又无物质交换。 2平衡状态:一个热力系统如果在受外界影响的条件下系统的状态能够始终保持不变,则系统的这种状态叫平衡状态。 准平衡过程:若过程进行的相对缓慢,工质在被平衡破坏后自动回复平衡的时间,即所谓弛豫时间又很短,工质有足够的时间来恢复平衡,随时都不致显著偏离平衡状态,那么这样的过程就叫做准平衡过程。 可逆过程:当完成了某一过程之后,如果有可能使工质沿相同的路径逆行而回复到原来状态,并且相互作用中所涉及到的外界亦回复到原来状态而不留下任何改变。 3汽化潜热:即温度不变时,单位质量的某种液体物质在汽化过程中所吸收的热量。 4比热的定义和单位:1kg物质温度升高1k所需热量称为质量热容,又称比热容,单位为 J/(kg·K),用c表示,其定义式为c=δq/dT或c=δq/dt。 5湿空气的露点:露点是在一定的pv下(指不与水或湿物料相接触的情况),未饱和湿空气冷却达到饱和湿空气,即将结出露珠时的温度,可用湿度计或露点仪 测量,测的td相当于测定了 pv。 6平衡状态与稳定状态有何区 别和联系,平衡状态与均匀状 态有何区别和联系? 答:“平衡状态”与“稳定状态” 的概念均指系统的状态不随时 间而变化,这是它们的共同 点;但平衡状态要求的是在没 有外界作用下保持不变;而平 衡状态则一般指在外界作用下 保持不变,这是它们的区别所 在。 7卡诺定理:定理一:在相同 温度的高温热源和相同温度的 低温热源之间工作的一切可逆 循环,其热效率都相等,与可 逆循环的种类无关,与采用哪 一种工质也无关。 定理二:在温度同为T1的热 源和同为T2的冷源间工作的 一切不可逆循环,其热效率必 小于可逆循环。 推论一:在两个热源间工作的 一切可逆循环,他们的热效率 都相同,与工质的性质无关, 只决定于热源和冷源的温度, 热效率都可以表示为ηc=1— T2/T1 推论二:温度界限相同,但具 有两个以上热源的可逆循环, 其热效率低于卡诺循环 推论三:不可逆循环的热效率 必定小于同样条件下的可逆循 环 8气体在喷管中流动,欲加速 处于超音速区域的气流,应采 取什么形式的喷管,为什么: 因为Ma>1超声速流动,加速 dA>0气流截面扩张,喷管截面 形状与气流截面形状相符合, 才能保证气流在喷管中充分膨 胀,达到理想加速度过程,采 用渐扩喷管。 9压气机,实际过程与理想过 程的关系,在压气机采取多级 压缩和级间冷却有什么好处: 每级压气机所需功相等,这样 有利于压气机曲轴平衡。每个 汽缸气体压缩后达到的最高温 度相同,这样每个汽缸的温度 条件相同。每级向外排出的热 量相等,而且每级的中间冷却 器向外排除的热量也相等。 (避免压缩因比压太高而影响 容积效率,有利于气体压缩以 等温压缩进行,对容积效率的 提高也有利) 10逆向循环:把热量从低温热 源传给高温热源。 11绝热节流:在节流过程中, 流体与外界没有热量交换就称 绝热节流。 14简述功和热量的区别与联 系:都是过程量,作功有宏观 移动,传热无宏观移动,作功 有能量转化,传热无能量转 化,功变热无条件,热变功有 条件。 12喷管的形状选择与哪些因素 有关?背压对喷管性能有何 影响?温度有何变化规律和 影响?进口截面参数(滞止 压力P0)和背压(P b);Pb ≥Pcr选渐缩喷管,Pb<Pcr 选缩放喷管。 13蒸汽压缩式制冷和空气压缩式制 冷的联系与区别。蒸汽压缩式制冷 的优点,装置上的区别及原因。 答:都是利用压缩气体来制冷,制 冷装置不用,使用的气体不同,前 者使用的是低沸点的水蒸气,后者 使用的是空气。蒸汽压缩式制冷的 优点:1,更接近于同温限的逆向卡 诺循环,提高了经济性;2,单位质 量工质制冷量较大。为了简化设 备,提高装置运行的可靠性,实际 应用的蒸汽压缩制冷循环常采用节 流阀代替膨胀机。 14湿空气温度与吸湿能力的关系 湿含量一定时,温度升高,空气中 水蒸气密度变大,吸湿能力下降 15朗肯循环在T-S图上表示 1-2,绝热膨胀做功 2-3,冷却放热,冷凝的饱和水 3-4,在水泵里绝热压缩 4-1,加热,汽化 循环吸热量q1=h1-h4;循环放热量 q2=h2-h3 对外做功w1=h1-h2;消耗功w2=h4- h3 热效率ηt=Wnet/q1=(h1-h2)-(h4- h3)/h1-h4 16R和Rg的意义及关系:Rg是气体 常数,仅与气体种类有关而与气体 的状态无关;R是摩尔气体常数,不 仅与气体状态无关,也与气体的种 类无关,R=8.3145J(mol·K)。若气 体的摩尔质量为M,则R=MRg 17热量(可用能)的概念:在温 度为T0的环境条件下,系统(T> T0)所提供的热量中可转化为有用 功的最大值是热量,用EX,Q表 示。 18热力学第二定律的表述 仅供学习与交流,如有侵权请联系网站删除谢谢2

工程热力学复习重点及简答题202

工程热力学复习重点2012. 3 绪论 [1]理解和掌握工程热力学的研究对象、主要研究内容和研究方法 [2]理解热能利用的两种主要方式及其特点 [3]了解常用的热能动力转换装置的工作过程 1.什么是工程热力学 从工程技术观点出发,研究物质的热力学性质,热能转换为机械能的规律和方法,以及有效、合理地利用热能的途径。 2.能源的地位与作用及我国能源面临的主要问题 3. 热能及其利用 [1]热能:能量的一种形式 [2]来源:一次能源:以自然形式存在,可利用的能源。 如风能,水力能,太阳能、地热能、化学能和核能等。 二次能源:由一次能源转换而来的能源,如机械能、机械能等。 [3]利用形式: 直接利用:将热能利用来直接加热物体。如烘干、采暖、熔炼(能源消耗比例大) 间接利用:各种热能动力装置,将热能转换成机械能或者再转换成电能, 4..热能动力转换装置的工作过程 5.热能利用的方向性及能量的两种属性 [1]过程的方向性:如:由高温传向低温 [2]能量属性:数量属性、,质量属性(即做功能力) [3]数量守衡、质量不守衡 [4]提高热能利用率:能源消耗量与国民生产总值成正比。 第1章基本概念及定义 1. 1 热力系统 一、热力系统 系统:用界面从周围的环境中分割出来的研究对象,或空间内物体的总和。 外界:与系统相互作用的环境。 界面:假想的、实际的、固定的、运动的、变形的。

依据:系统与外界的关系 系统与外界的作用:热交换、功交换、质交换。 二、闭口系统和开口系统 闭口系统:系统内外无物质交换,称控制质量。 开口系统:系统内外有物质交换,称控制体积。 三、绝热系统与孤立系统 绝热系统:系统内外无热量交换(系统传递的热量可忽略不计时,可认为绝热) 孤立系统:系统与外界既无能量传递也无物质交换 =系统+相关外界=各相互作用的子系统之和= 一切热力系统连同相互作用的外界 四、根据系统内部状况划分 可压缩系统:由可压缩流体组成的系统。 简单可压缩系统:与外界只有热量及准静态容积变化 均匀系统:内部各部分化学成分和物理'性质都均匀一致的系统,是由单相组成的。 非均匀系统:由两个或两个以上的相所组成的系统。 单元系统:一种均匀的和化学成分不变的物质组成的系统。 多元系统:由两种或两种以上物质组成的系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。思考题: 孤立系统一定是闭口系统吗?反之怎样? 孤立系统一定不是开口的吗、

《工程热力学与传热学》在机械领域中的运用

《工程热力学与传热学》在机械领域中的运用 (华南农业大学,工程学院,广州510642) 摘要:自18世纪30年代发明近代动力机械以来,人类的生产力出现了质的飞跃,生产水平跨上了一个个新的台阶。随后的蒸汽轮机、内燃机乃至燃气轮机的陆续应用则更使能源的转换和利用技术达到了前所未有的崭新阶段。这个进程至今仍在继续当中。传热学科的建立与发展、不断完善和提高是与上述过程相伴而行的。热传递现象更是无时无处不在,它的影响几乎遍及所有的工业部门,也渗透到农业、林业等许多技术部门中。航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域都在不同程度上应用传热研究的最新成果。 关键词:热传递传热学机械领域发展趋势 The application of engineering thermodynamics and heat transfer in mechanical field Qian Jianping (College of Engineering, South China Agricultural University, Guangzhou 510642, China) Abstract: Since the 1730 s, since the invention of the modern machinery, the productivity of human appeared a qualitative leap, the production level up a new step. Then steam turbines, internal combustion engines and gas turbine application in succession, more make the conversion and utilization of energy technology has reached the unprecedented new stage. The process is still continuing. The establishment and development of heat transfer science, and constantly improve and improve and is accompanied by the process. Heat transfer phenomenon is everywhere at all times, and its influence in almost all industrial sectors, also infiltrated in agriculture, forestry and many other technical department. the latest research results of application of heat transfer in different degree was use in Aerospace, nuclear energy, microelectronics, materials, biomedical engineering, environmental engineering, new energy and agricultural engineering, and many other high-tech fields. Key words: heat transfer heat transmission science Mechanical field development tendency 热传递现象无时无处不在,它的影响几乎遍及现代所有的工业部门,也渗透到农业、林业等许多技术部门中。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识,而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 热科学的工程领域包括热力学和传热学。传热学的作用是利用可以预测能量传递速率的一些定律去补充热力学分析,因后裔只讨论在平衡状态下的系统。这些附加的定律是以三种基本的传热方式为基础的,即导热、对流和辐射。传热学是研究不同温度的物体,或同一物体的不同部分之间热量传递规律的学科。传热不仅是常见的自然现象,而且广泛存在于工程技术领域。例如,提高锅炉的蒸汽产量,防止燃气轮机燃烧室过热、减小内燃机气缸和曲轴的热应力、确定换热器的传热面积和控制热加工时零件的变形等,都是典型的传热问题。 传热学的应用非常广泛,几乎渗透到生活的各个领域,如:传热学在传统机械工业领域和农业机械领域中的应用,传热学在高新技术机械领域中的应用等。 以下将《工程热力学与传热学》在机械领域中的运用分为两个方面进行介绍。 1、传热学在传统工业机械领域和农业机械领域中的应用

工程热力学期末复习题

江苏科技大学 《工程热力学》练习题参考答案 第一单元 一、判断正误并说明理由: 1.给理想气体加热,其热力学能总是增加的。 错。理想气体的热力学能是温度的单值函数,如果理想气体是定温吸热,那么其热力学能不变。 1.测量容器中气体压力的压力表读数发生变化一定是气体热力状态发生了变 化。 错。压力表读数等于容器中气体的压力加上大气压力。所以压力表读数发生变化可以是气体的发生了变化,也可以是大气压力发生了变化。 2.在开口系统中,当进、出口截面状态参数不变时,而单位时间内流入与流出 的质量相等,单位时间内交换的热量与功量不变,则该系统处在平衡状态。 错。系统处在稳定状态,而平衡状态要求在没有外界影响的前提下,系统在长时间内不发生任何变化。 3.热力系统经过任意可逆过程后,终态B的比容为v B大于初态A的比容v A,外 界一定获得了技术功。 错。外界获得的技术功可以是正,、零或负。 4.在朗肯循环基础上实行再热,可以提高循环热效率。 错。在郎肯循环基础上实行再热的主要好处是可以提高乏汽的干度,如果中间压力选的过低,会使热效率降低。 6.水蒸汽的定温过程中,加入的热量等于膨胀功。 错。因为水蒸汽的热力学能不是温度的单值函数,所以水蒸汽的定温过程中,加入的热量并不是全部用与膨胀做功,还使水蒸汽的热力学能增加。 7.余隙容积是必需的但又是有害的,设计压气机的时候应尽可能降低余隙比。 对。余隙容积的存在降低了容积效率,避免了活塞和气门缸头的碰撞,保证了设备正常运转,设计压气机的时候应尽可能降低余容比。 8.内燃机定容加热理想循环热效率比混合加热理想循环热效率高。 错。在循环增压比相同吸热量相同的情况下,定容加热理想循环热效率比混合加热理想循环热效率高;但是在循环最高压力和最高温度相同时,定容加热理想循环热效率比混合加热理想循环热效率低。 9.不可逆过程工质的熵总是增加的,而可逆过程工质的熵总是不变的。 错。熵是状态参数,工质熵的变化量仅与初始和终了状态相关,而与过程可逆不可逆无关。 10.已知湿空气的压力和温度,就可以确定其状态。 错。湿空气是干空气与水蒸汽的混合物,据状态公理,确定湿空气的状态需要三

工程热力学知识点

工程热力学复习知识点 一、知识点 基本概念的理解和应用(约占40%),基本原理的应用和热力学分析能力的考核(约占60%)。 1. 基本概念 掌握和理解:热力学系统(包括热力系,边界,工质的概念。热力系的分类:开口系,闭口系,孤立系统)。 掌握和理解:状态及平衡状态,实现平衡状态的充要条件。状态参数及其特性。制冷循环和热泵循环的概念区别。 理解并会简单计算:系统的能量,热量和功(与热力学两个定律结合)。 2. 热力学第一定律 掌握和理解:热力学第一定律的实质。 理解并会应用基本公式计算:热力学第一定律的基本表达式。闭口系能量方程。热力学第一定律应用于开口热力系的一般表达式。稳态稳流的能量方程。 理解并掌握:焓、技术功及几种功的关系(包括体积变化功、流动功、轴功、技术功)。 3. 热力学第二定律 掌握和理解:可逆过程与不可逆过程(包括可逆过程的热量和功的计算)。 掌握和理解:热力学第二定律及其表述(克劳修斯表述,开尔文

表述等)。卡诺循环和卡诺定理。 掌握和理解:熵(熵参数的引入,克劳修斯不等式,熵的状态参数特性)。 理解并会分析:熵产原理与孤立系熵增原理,以及它们的数学表达式。热力系的熵方程(闭口系熵方程,开口系熵方程)。温-熵图的分析及应用。 理解并会计算:学会应用热力学第二定律各类数学表达式来判定热力过程的不可逆性。 4. 理想气体的热力性质 熟悉和了解:理想气体模型。 理解并掌握:理想气体状态方程及通用气体常数。理想气体的比热。 理解并会计算:理想气体的内能、焓、熵及其计算。理想气体可逆过程中,定容过程,定压过程,定温过程和定熵过程的过程特点,过程功,技术功和热量计算。 5. 实际气体及蒸气的热力性质及流动问题 理解并掌握:蒸汽的热力性质(包括有关蒸汽的各种术语及其意义。例如:汽化、凝结、饱和状态、饱和蒸汽、饱和温度、饱和压力、三相点、临界点、汽化潜热等)。蒸汽的定压发生过程(包括其在p-v和T-s图上的一点、二线、三区和五态)。 理解并掌握:绝热节流的现象及特点 6. 蒸汽动力循环

工程热力学与传热学(第十七讲)11_1、2、3

第十一章蒸汽压缩制冷循环 制冷:对物体进行冷却,使其温度低于周围环境温度,并维持这个低温,称为制冷。 制冷技术广泛应用于生产、科研、生活中。 制冷循环的目的:是将低温热源的热量转移到高温热源。 根据热力学第二定律,为了达到这个目的,必须提供机械能或热能作为代价。 根据所消耗的能量形式不同,一般可将逆循环分为两大类: ①消耗机械能的压缩式制冷循环。 包括:空气压缩制冷循环和蒸汽压缩制冷循环。 ②消耗热能的制冷循环。 包括:蒸汽喷射式制冷循环和吸收式制冷循环。 本章介绍最常用的蒸汽压缩制冷循环,并分析提高其经济性的途径。 第一节制冷剂及p-h图 制冷剂是制冷装置的工质,主要是低沸点物质。蒸汽压缩制冷装置中的制冷剂主要是氟里昂和液氨。 常用的氟利昂有:氟利昂12(CF2Cl2)、氟利昂22(CHF2Cl)、氟利昂134a (C2H2F4)、氨等。物理性质见表11-1。

制冷剂在制冷循环中存在汽-液相变,为了计算制冷循环中个过程的能量变化和状态参数,需要查找制冷剂的饱和蒸汽表和过热蒸汽表。 但是,工程上更多的是应用制冷剂的压-焓图(p-h图)进行分析。 p-h图是根据制冷剂蒸汽性质表绘制的。 p-h图是以logp为纵坐标、以h为横坐标建立的半对数坐标图。 如图11-1所示。 说明:①采用logp为坐标,可以使压力从0.001~0.01Mpa,从0.01~0.1Mpa,从0.1~1Mpa所占的坐标高度相同,使低压区图线面积增大,读数更准确。 ②因为实际蒸汽压缩制冷循环常用的工作压力围都远低于临界压力,所以工程上使用的p-h图都没有绘制较高压力部分。 p-h图分析:全图共有六条线、三个区(未饱和液体区、湿蒸汽区、过热蒸汽区)和一个点临界点C)。

武汉理工工程热力学和传热学作业

工程热力学和传热学 第二章基本概念 一.基本概念 系统: 状态参数: 热力学平衡态: 温度: 热平衡定律: 温标: 准平衡过程: 可逆过程: 循环: 可逆循环: 不可逆循环: 二、习题 1.有人说,不可逆过程是无法恢复到起始状态的过程,这种说法对吗? 2.牛顿温标,用符号°N表示其温度单位,并规定水的冰点和沸点分别为100°N和200°N,且线性分布。(1)试求牛顿温标与国际单位制中的热力学绝对温标(开尔文温标)的换算关系式;(2)绝对零度为牛顿温标上的多少度? 3.某远洋货轮的真空造水设备的真空度为0.0917MPa,而当地大气压力为0.1013MPa,

当航行至另一海域,其真空度变化为0.0874MPa,而当地大气压力变化为0.097MPa。试问该真空造水设备的绝对压力有无变化? 4.如图1-1所示,一刚性绝热容器内盛有水,电流通过容器底部的电阻丝加热 水。试述按下列三种方式取系统时,系统与外界交换的能量形式是什么。 (1)取水为系统;(2)取电阻丝、容器和水为系统;(3)取虚线内空间为系统。 图 1-1 5.判断下列过程中那些是不可逆的,并扼要说明不可逆原因。 (1)在大气压力为0.1013MPa时,将两块0℃的冰互相缓慢摩擦,使之化为0℃的水。 (2)在大气压力为0.1013MPa时,用(0+dt)℃的热源(dt→0)给0℃的冰加热使之变为0℃的水。 (3)一定质量的空气在不导热的气缸中被活塞缓慢地压缩(不计摩擦)。 (4)100℃的水和15℃的水混合。 6.如图1-2所示的一圆筒容器,表A的读数为 360kPa;表B的读数为170kPa,表示室I压力高于 室II的压力。大气压力为760mmHg。试求: (1)真空室以及I室和II室的绝对压力; (2)表C的读数; (3)圆筒顶面所受的作用力。 图1-2 第三章热力学第一定律

工程热力学部分简答题

1.均匀系统和单相系统的区别? 答:如果热力系统内部个部分化学成分和物理性质都均匀一致,则该系统成为均匀系统。如果热力系统由单相物质组成,则该系统称为单相系统。可见,均匀系统一定是单相系统,反之则不然。2.试说明稳定、平衡和均匀的区别与联系? 答:稳定状态是指状态参数不随时间变化,但这种不变可能是靠外界影响来维持的。 平衡状态是指不受外界影响时状态参数不随时间变化。 均匀状态是指不受外界影响时不但状态参数不随时间变化,而且状态参数不随空间变化。 均匀→平衡→稳定 3.实现可逆过程的充分条件。 答:(1)过程是准静态过程,即过程所涉及的有相互作用的各物体之间的不平衡势差为无限小。(2)过程中不纯在耗散效应,即不存在用于摩擦、非弹性变形、电流流经电阻等使功不可逆地转变为热的现象。 4.膨胀功、流动功、技术功、轴功有何区别与联系。 答:气体膨胀时对外界所做的功称为膨胀功。 流动功是推动工质进行宏观位移所做的功。 技术功是膨胀功与流动功的差值。 系统通过机械轴与外界所传递的机械功称为轴功。 5.焓的物理意义是什么,静止工质是否也有焓这个参数?

答:焓的物理意义为,当1kg 工质流进系统时,带进系统与热力状态有关的能量有内能u 和流动功pv ,而焓正是这两种能量的总和。因此焓可以理解为工质流动时与外界传递的与其热力状态有关的总能量。但当工质不流动时,pv 不再是流动功,但焓作为状态参数仍然存在。 6.机械能向热能的转变过程、传热过程、气体自由膨胀过程、混合过程、燃烧反应过程都是自发的、不可逆的。 热力学第二定律的克劳修斯表述:热量不可能自动地、无偿地从低温物体传至高温物体。 7.循环热效率公式12 1q q q -=η和121T T T -=η是否完全相同? 答:前者用于任何热机,后者只用于可逆热机。 8.若系统从同一始态出发,分别经历可逆过程和不可逆过程到达同一终态,两个过程的熵变相同吗? 答:对系统来说,熵是状态参数,只要始态和终态相同,过程的熵变就相等。所谓“可逆过程的熵变必然小于不可逆过程的熵变”中的熵变是指过程的总熵变,它应该包括系统的熵变和环境的熵变两部分。在始态和终态相同的情况下,系统的熵变相同,而不可逆过程中环境的熵变大于可逆过程中环境的熵变。 9.g f dS dS dS +=;熵可能大于零,可能等于零,也可能小于零。 T Q dS f δ=----熵流,表示系统与外界交换的热量与热源温差的比 值。 0≥g dS (大于时为不可逆过程,等于时为可逆过程)----熵产,表

工程热力学与传热学课程总结与体会(DOC)

工程热力学与传热学 题目:工程热力学与传热学课程总结与体会院系:水利建筑工程学院给排水科学与工程班级:给排水科学与工程一班 姓名:张琦文 指导老师:姚雪东 日期:2016年5月1日 认识看法地位作用存在问题解决措施未来 发展展望

传热学在高新技术领域中的应用 摘要: 热传递现象无时无处不在【2】它的影响几乎遍及现代所有的工业部门【1】也渗透到农业、林业等许多技术部门中。本文介绍了航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等诸多高新技术领域在不同程度上应用传热研究的最新成果。可以说除了极个别的情况以外,很难发现一个行业、部门或者工业过程和传热完全没有任何关系。不仅传统工业领域,像能源动力、冶金、化工、交通、建筑建材、机械以及食品、轻工、纺织、医药等要用到许多传热学的有关知识【1】而且诸如航空航天、核能、微电子、材料、生物医学工程、环境工程、新能源以及农业工程等很多高新技术领域也都在不同程度上有赖于 应用传热研究的最新成果,并涌现出像相变与多相流传热、(超)低温传热、微尺度传热、生物传热等许多交叉分支学科。在某些环节上,传热技术及相关材料设备的研制开发甚至成为整个系统成败的关键因素。 前言:通过对传热学这门课程的学习,了解了传热的基本知识和理论。发现传热学是一门基础学科应用非常广泛,它会解决许许多多的实际问题更是与机械制造这门学科息息相关。传热学是研究由温度差异引起的热量传递过程的科学。传热现

象在我们的日常生活中司空见惯。早在人类文明之初人们就学会了烧火取暖。随着工业革命的到来,蒸汽机、内燃机等热动力机械相继出现,传热研究更是得到了飞速的发展,被广泛地应用于工农业生产与人们的日常生活之中。当今世界国与国之间的竞争是经济竞争,而伴随着经济的高速发展也带来了资源、人口与环境等重大国际问题。传热学在促进经薪发展和加强环境保护方面起着举足轻重的作用。20世纪以前传热学是作为物理热学的一部分而逐步发展起来的。20世纪以后,传热学作为一门独立的技术学科获得迅速发展,越来越多地与热力学、流体力学、燃烧学、电磁学和机械工程学等一些学科相互渗透,形成多相传热、非牛顿流体传热、燃烧传热、等离子体传热和数值计算传热等许多重要分支。现在,机械工程仍不断地向传热学提出大量新的课题。如浇铸和冷冻技术中的相变导热,切削加工中的接触热阻和喷射冷却,等离子工艺中带电粒子的传热特性。核工程中有限空间的自然对流,动力和化工机械中超临界区换热,小温差换热,两相流换热,复杂几何形状物体的换热湍流换热等。随着激光等新的实验技术的引入和计算机的应用,为传热学的发展提供了广阔前景。 传热学是研究热量传递规律的一门学科,生产部门存在的多种多样的热量传递问题都可以用传热学来解决,这些部门包括能源、化工、冶金、建筑、机械制造、电子、制冷、

工程热力学简答题汇总

循环吸热量q 仁h1-h4 ;循环放热量 q2=h2-h3 对外做功w 仁h1-h2 ;消耗功w2=h4-h3 热效率 n =Wnet/q 1=(h1-h2)-(h4-h3)/h1-h4 16R 和Rg 的意义及关系:Rg 是气体常数, 仅与气体种类有关而与气体的状态无关; R 是摩尔气体常数,不仅与气体状态无关, 也与气体的种类无关,R=8.3145J(mol K)。 若气体的摩尔质量为 M 则R=MRg 17热量 (可用能)的概念:在温度为T0 的环境条件下,系统(T >T0)所提供的热 量中可转化为有用功的最大值是热量 , 用EX, Q 表示。 18热力学第二定律的表述 克劳休斯从热量传递方向性的角度提出 : 热不可能自发地、不付出代价地从低温物 体传至高温物体。 热能转化为机械能的开尔文说法:不可能 制造出从单一热源吸热,使之全部转化为 功而不留下其他任何变化的热力发动机。 19熵定义式,及其适用条件 ds= S Q re /T(熵的变化等于可逆过程中系 统与外界交换的热量与热力学温度的比 值) 熵产由(△ S=A Sg+ △ Sf )得熵产△ Sg=A S-A Sf >0 在孤立系统内,一切实际过程(不可逆过 程)都朝着是系统熵增加的方向进行或在 极限情况下(可逆过程)维持系统的熵不 变,而任何使系统熵减少的过程是不可能 发生的。孤立系熵越大,不可逆过程越大。 1热力系统:被人为分割出来作为热力 学分析对象的有限物质系统。 开口系统:热力系统和外界不仅有能 量交换而且有物质交换。 闭口系统:热力系统和外界只有能量 交换而无物质交换。 孤立系统:热力系统和外界即无能量 交换又无物质交换。 2平衡状态:一个热力系统如果在受外 界影响的条件下系统的状态能够始终保 持不变,则系统的这种状态叫平衡状态。 准平衡过程:若过程进行的相对缓慢, 工质在被平衡破坏后自动回复平衡的时 间,即所谓弛豫时间又很短,工质有足 够的时间来恢复平衡,随时都不致显著 偏离平衡状态,那么这样的过程就叫做 准平衡过程。 可逆过程:当完成了某一过程之后, 如果有可能使工质沿相同的路径逆行而 回复到原来状态,并且相互作用中所涉 及到的外界亦回复到原来状态而不留下 任何改变。 3汽化潜热:即温度不变时, 单位质量 的某种液体物质在汽化过程中所吸 收的热量。 4比热的定义和单位:1kg 物质温度升高 1k 所需热量称为质量热容,又称比热 容,单位为J/(kg ? K),用c 表示,其定 义式为 c= S q/dT 或 c= S q/dt 。 5湿空气的露点:露点是在一定的pv 下 (指不与水或湿物料相接触的情况), 未饱和湿空气冷却达到饱和湿空气,即 将结出露珠时的温度,可用湿度计或露 点仪测量,测的td 相当于测定了 pv 。 6平衡状态与稳定状态有何区别和联 系,平衡状态与均匀状态有何区别和联 系? 答:“平衡状态”与“稳定状态”的概 念均指系统的状态不随时间而变化,这 是它们的共同点;但平衡状态要求 的是在没有 外界作用下保持不变; 而平衡状态则一般指在外界作用下 保持不变,这是它们的区别所在。 7卡诺定理:定理一:在相同温度的 高温热源和相同温度的低温热源之 间工作的一切可逆循环,其热效率 都相等,与可逆循环的种类无关, 与采用哪一种工质也无关。 定理二:在温度同为T1的热源和同 为T2的冷源间工作的一切不可逆 循环,其热效率必小于可逆循环。 推论一:在两个热源间工作的一切 可逆循环,他们的热效率都相同, 与工质的性质无关,只决定于热源 和冷源的温度,热效率都可以表示 为加=1 — T2/T1 推论二:温度界限相同,但具有两 个以上热源的可逆循环,其热效率 低于卡诺循环 推论三:不可逆循环的热效率必定 小于同样条件下的可逆循环 8气体在喷管中流动,欲加速处于 超音速区域的气流,应采取什么形 式的喷管,为什么: 因为Ma>1超声速流动,加速 dA>0 气流截面扩张,喷管截面形状与气 流截面形状相符合,才能保证气流 在喷管中充分膨胀,达到理想加速 度过程,采用渐扩喷管。 9压气机,实际过程与理想过程的 关系,在压气机采取多级压缩和级 间冷却有什么好处: 每级压气机所需功相等,这样有利 于压气 机曲轴平衡。每个汽缸气体 压缩后达到的 最高温度相同,这样 每个汽缸的温度条件相同。每级向 外排出的热量相等,而且每级的中 间冷却器向外排除的热量也相等。 (避免压缩因比压太高而影响容积 效率,有利于气体压缩以等温压缩进 行,对容积效率的提高也有利) 10逆向循环:把热量从低温热源传 给高温热源。 11绝热节流:在节流过程中,流体 与外界没有热量交换就称绝热节流。 14简述功和热量的区别与联系 :都 是过 程量,作功有宏观移动,传热无 宏观移动,作功有能量转化,传热无 能量转化,功变热无条件,热变功有 条件。 12喷管的形状选择与哪些因素有 关?背压对喷管性能有何影响? 温度有何变化规律和影响? 进口 截面参数(滞止压力 P °)和背压 (P b ); Pb>Per 选渐缩喷管,Pb v Per 选缩放喷管。 13蒸汽压缩式制冷和空气压缩式制 冷的联系与区别。蒸汽压缩式制冷 的优点,装置上的区别及原因。 答: 都是利用压缩气体来制冷,制冷装置 不用,使用的气体不同,前者使用的 是低沸点的水蒸气,后者使用的是空 气。蒸汽压缩式制冷的优点: 1,更 接近于同温限的逆向卡诺循环, 提高 了经济性;2,单位质量工质制冷量 较大。为了简化设备,提高装置运行 的可靠性,实际应用的蒸汽压缩制冷 循环常采用节流阀代替膨胀机。 14湿空气温度与吸湿能力的关系 湿含量一定时,温度升高,空气中水 蒸气密度变大,吸湿能力下降 15朗肯循环在T-S 图上表示 1- 2,绝热膨胀做功 2- 3,冷却放热,冷凝的饱和水 3- 4,在水泵里绝热压缩 4- 1,加热,汽化

相关主题
文本预览
相关文档 最新文档