当前位置:文档之家› 数学建模椅子问题

数学建模椅子问题

数学建模椅子问题
数学建模椅子问题

椅子能在不平的地面上放稳

把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。

一、模型假设

对椅子和地面都要作一些必要的假设:

1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的

连线呈正方形。

2、地面高度是连续变化的,沿椅子的任何方向都不会出现间断

(没有像台阶那样的情况),即地面可视为数学上的连续曲面。

3、对于椅脚的间距和椅子脚的长度而言,地面是相对平坦的,

使椅子在任何位置至少有三只同时着地。

二、模型建立

示四只同时着地的条件、结

论。

首先用变量表示椅子的

位置,由于椅脚的连线呈正

方形,以中心为对称点,正

方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。

其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。

由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。

三、模型求解

将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,则存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。

四、评 注

模型巧妙在于用已知的元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转090并不是本质的,同学们可以考虑四脚呈长方形的情形。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

最新数学建模椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了.下面用数学语言证明. 一、 模型假设 对椅子和地面都要作一些必要的假设: 1. 椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形. 2. 3. 地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面. 4. 5. 对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 二、模型建立 中心问题是数学语言表 示四只脚同时着地的条件、 结论. 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转 D '

角度θ这一变量来表示椅子的位置. 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了.椅子要挪动位置说明这个距离是位置变量的函数. 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0.当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g . 三、模型求解 将椅子旋转90?,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g .令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()000g f θθ?=,所以()()000==θθf g . 四、评 注 模型巧妙在于用一元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离.利用正方形的中心对称性及旋转90?并不

椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。 一、模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的 连线呈正方形。 2、地面高度是连续变化的,沿任何方向都不会出现间断(没有 像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使 椅子在任何位置至少有三只脚同时着地。 二、模型建立 示四只脚同时着地的条件、 结论。 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正 方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 三、模型求解 将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。令()()()θθθf g h -=,则()()02,00<>πh h ,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。 四、评 注 模型巧妙在于用已元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转090并不是本质的,同学们可以考虑四脚呈长方形的情形。

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

最新数学建模使用MATLAB进行数据拟合

1.线性最小二乘法 x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=r\y % if AB=C then B=A\C x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 运行结果: 2.多项式拟合方法 x0=[1990 1991 1992 1993 1994 1995 1996]; y0=[70 122 144 152 174 196 202]; a=polyfit(x0,y0,1) y97=polyval(a,1997) x1=1990:0.1:1997; y1=a(1)*x1+a(2);

plot(x1,y1) hold on plot(x0,y0,'*') plot(1997,y97,'o') 3.最小二乘优化 3.1 lsqlin 函数 例四: x=[19 25 31 38 44]'; y=[19.0 32.3 49.0 73.3 97.8]'; r=[ones(5,1),x.^2]; ab=lsqlin(r,y) x0=19:0.1:44; y0=ab(1)+ab(2)*x0.^2; plot(x,y,'o',x0,y0,'r') 3.2lsqcurvefit 函数

(1)定义函数 function f=fun1(x,tdata); f=x(1)+x(2)*exp(-0.02*x(3)*tdata); %其中x(1)=a,x(2)=b,x(3)=k (2) td=100:100:1000; cd=[4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59]; x0=[0.2 0.05 0.05]; x=lsqcurvefit(@fun1,x0,td,cd) % x(1)=a,x(2)=b,x(3)=k t=100:10:1000; c=x(1)+x(2)*exp(-0.02*x(3)*t); plot(t,c) hold on plot(td,cd,'*')

长方形椅子能否在不平的地面上放稳吗

长方形椅子能否在不平的地面上放稳吗? 【问题提出】 日常生活中有这样的现象:把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只需稍微挪动几次,一般都可以使四只脚同时着地.试从数学的角度加以解释. 【模型假设】 为了明确问题,对上述现象中的有关因素在符合日常生活的前提下,作出如下假设: (1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形. (2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件. (3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的. 【建立模型】 在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来. 首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形. 注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题. 如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置. 其次,把椅脚是否着地用数学形式表示出来. 我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数. 由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记

数学建模习题及问题详解

第一部分课后习题 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍。学生 们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1)按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者。 (2)2.1节中的Q值方法。 (3)d’Hondt方法:将A,B,C各宿舍的人数用正整数n=1,2,3,…相除,其商数 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A,B,C行有横线的数分别为2,3,5,这就是3个宿舍分配的席位。你能解释这种方法的道理吗。 如果委员会从10人增至15人,用以上3种方法再分配名额。将3种方法两次分配的结果列表比较。 (4)你能提出其他的方法吗。用你的方法分配上面的名额。 2.在超市购物时你注意到大包装商品比小包装商品便宜这种现象了吗。比如洁银牙膏50g 装的每支1.50元,120g装的3.00元,二者单位重量的价格比是1.2:1。试用比例方法构造模型解释这个现象。 (1)分析商品价格C与商品重量w的关系。价格由生产成本、包装成本和其他成本等决定,这些成本中有的与重量w成正比,有的与表面积成正比,还有与w无关的因素。 (2)给出单位重量价格c与w的关系,画出它的简图,说明w越大c越小,但是随着w 的增加c减少的程度变小。解释实际意义是什么。 3.一垂钓俱乐部鼓励垂钓者将调上的鱼放生,打算按照放生的鱼的重量给予奖励,俱乐部 只准备了一把软尺用于测量,请你设计按照测量的长度估计鱼的重量的方法。假定鱼池中只有一种鲈鱼,并且得到8条鱼的如下数据(胸围指鱼身的最大周长): 先用机理分析建立模型,再用数据确定参数 4.用宽w的布条缠绕直径d的圆形管道,要求布条不重叠,问布条与管道轴线的夹角 应 多大(如图)。若知道管道长度,需用多长布条(可考虑两端的影响)。如果管道是其他形状呢。

椅子能在不平的地面上放稳吗

椅子能在不平的地面上放稳吗? 模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的连线呈正方形。 2、地面高度是连续变化的,沿任何方向都不会出现间断(没有像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅脚的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 假设1显然是合理的。假设2相当于给出了椅子能放稳的条件,因为如果地面高度不连续,譬如在有台阶的地方是无法使四只脚同时着地的。至于假设3是要排除这样的情况:地面上与椅脚间距和椅脚长度的尺寸大小相当的范围内,出现深沟或凸峰(即连续变化的),致使三只脚无法同时着地。 模型建立 中心问题是数学语言表示四只脚同时着地的条件、结论。 首先用变量表示椅子的位置,由于椅脚的连线呈正方形,以中心为对称点,正方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 模型求解 将椅子旋转0 90,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。 令()()()h f g θθθ=-,则()()02,00<>πh h ,由f 、g 的连续性知h 也是连续函数,由零点定理,必存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以 ()()000==θθf g 。 四、模型的进一步讨论 Ⅰ.考虑椅子四脚呈长方形的情形 设A 、B 两脚与地面之和为()θf ,C 、D 两脚与地面距离之和为()θg ,θ为AC 连线与x 轴正向的夹角(如图2所示)。显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、 ()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只脚同 C ' D '

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

在不平地面上把椅子放稳的充分必要条件

数学的实践与认识 MATHEMATICS IN PRACTICE AND THEORY 1999 Vol.29 No.3 P.62-65 在不平地面上把椅子放稳的 充分必要条件 赵彦晖 摘 要:把椅子放在不平的地面上,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地、放稳.本文指出,当且仅当椅子的四脚共圆时,才能在一般不平的地面上放稳,并对此建立了数学模型,给出了理论上的证明. 关键词:椅子:不平地面;放稳;充分必要条件;数学模型 The Sufficient and Necessary Condition to Make a Chair Steady on Uneven Ground Zhao Yanhui (Xi′an Univ. of Arch. & Tech., Xi′an 710055) Abstract:Under normal conditions, it is impossible to make a chair Steady on uneven ground. In this paper, a mathematical model on this question is established, and it is proved that a sufficient and necessary conditon to make the chair Steady on uneven ground is four feet of the chair is on the common circle. Keywords:Chair, Uneven Ground, Stendy, Sufficient and Necessary Condition, Mathematical Model▲ 在不平的地面上能否把椅子放稳问题已在文[1]、[2]中作过介绍,但这些文献中都只就四脚连线呈正方形(或长方形)的椅子进行讨论.众所周知,我们日常生活中所遇到的椅子大都是四脚连线呈等腰梯形的椅子,那么,对这样的椅子甚至四脚连线为任意四边形的椅子是否也能在不平的地面上放稳?文[1]、[2]中并未讨论,也没有作出任何结论.对此,本文进行了全面的讨论,给出了完整的结论,使问题得到了圆满的解决. 1 模型假设 首先讨论四脚共圆的椅子,对此,我们作如下的必要假设: 假设1 椅子四条腿一样长,椅脚与地面接触处可视为一个点,椅子四脚连线为圆内接四边形 即椅子四个脚共面且共圆. 假设2 地面高度是连续变化的,即地面可视为数学上的连续曲面. 假设3 对于椅脚的间距和椅腿的长度而言,地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地. 上述假设显然是合理的[1]. 2 模型建立 将椅子放在地面上任一位置,并使至少三只脚同时着地.这时以椅子四脚共圆的圆心O为原点,四脚所在的平面为xoy坐标面,并使椅脚之一(如椅脚A)在x轴的正半轴上建立平面坐标系,如图1.

数学建模案例分析插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分 段多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。

数学建模椅子问题

椅子能在不平的地面上放稳 把椅子往不平的地面上一放,通常只有三只脚着地,放不稳,然而只要稍挪动几次,就可以四脚着地,放稳了。下面用数学语言证明。 一、模型假设 对椅子和地面都要作一些必要的假设: 1、椅子四条腿一样长,椅脚与地面接触可视为一个点,四脚的 连线呈正方形。 2、地面高度是连续变化的,沿椅子的任何方向都不会出现间断 (没有像台阶那样的情况),即地面可视为数学上的连续曲面。 3、对于椅脚的间距和椅子脚的长度而言,地面是相对平坦的, 使椅子在任何位置至少有三只同时着地。 二、模型建立 示四只同时着地的条件、结 论。 首先用变量表示椅子的 位置,由于椅脚的连线呈正 方形,以中心为对称点,正 方形绕中心的旋转正好代表了椅子的位置的改变,于是可以用旋转角度θ这一变量来表示椅子的位置。 其次要把椅脚着地用数学符号表示出来,如果用某个变量表示椅

脚与地面的竖直距离,当这个距离为0时,表示椅脚着地了。椅子要挪动位置说明这个距离是位置变量的函数。 由于正方形的中心对称性,只要设两个距离函数就行了,记A 、C 两脚与地面距离之和为()θf ,B 、D 两脚与地面距离之和为()θg ,显然()θf 、()0≥θg ,由假设2知f 、g 都是连续函数,再由假设3知()θf 、()θg 至少有一个为0。当0=θ时,不妨设()()0,0>=θθf g ,这样改变椅子的位置使四只同时着地,就归结为如下命题: 命题 已知()θf 、()θg 是θ的连续函数,对任意θ,()θf *()θg =0,且()()00,00>=f g ,则存在0θ,使()()000==θθf g 。 三、模型求解 将椅子旋转090,对角线AC 和BD 互换,由()()00,00>=f g 可知()()02,02=>ππf g 。令()()()θθθf g h -=,则()()00,20h h π<>,由f 、g 的连续性知h 也是连续函数,由零点定理,则存在()2000πθθ<<使()00=θh ,()()00θθf g =,由()()0*00=θθf g ,所以()()000==θθf g 。 四、评 注 模型巧妙在于用已知的元变量θ表示椅子的位置,用θ的两个函数表示椅子四脚与地面的距离。利用正方形的中心对称性及旋转090并不是本质的,同学们可以考虑四脚呈长方形的情形。

数学建模转运问题

长江学院 课程设计报告课程设计题目:数学建模转运问题 姓名1:朱天伟学号:09321232 姓名2:胡锦堂学号:09321206 姓名3:吴腾学号:09321222 专业:计算机科学与技术 班级:093212 指导教师:闫菲菲 2010 年12 月5 日

摘要 近些年,随着市场经济发展迅速,竞争也随之加快。为了能在这激烈的市场竞争中立足,企业都谋取最大的利润,最少的成本也就是最小的费用。企业通过不断的改进,利用各种方式企图使得费用最少。本题是通过建立合适的运输法案来获得最佳方法,降低运输成本。主要是费用最小化,我们运用新学到的lingo 模型来合理的安排工厂的运输问题。我们得到的结果是从A工厂运8个单位产品到X仓库;从A工厂运1个单位产品到Y仓库;从B工厂运3个单位产品到Y仓库;从B工厂运5个单位产品到Z仓库;从X仓库运3个单位产品到顾客1;从X仓库运5个单位产品到顾客2;从Y仓库运4个单位产品到顾客3;从Z仓库运5个单位产品到顾客4,最终工厂最小的费用是121。通过此例子讨论用数学建模的思想寻求最优解的办法解决这类问题。 本论文为我组三人刻苦实践后所得,其间辛苦唯有自当勉励,论文包括了问题重述,模型假设,问题分析,关系建立和符号分析,模型建立及求解,模型检验,参考文献。其中原材料简单介绍我组选择之课题的问题,问题背景简单的介绍了我组所设计的数学建模所适用的各个场合和背景,问题的分析阐述了该数学建模的构造原理,数学思想,以及其具体的方法,是整篇论文的核心,也是构造出这个模型的主要思想。求解方法是具体的解决过程,还有编译的源程序代码和运行的结果,还有编辑方法的优点介绍。 我们的论文仍有许多值得推敲之处,故而不求闻达于学术,但求能阐述我等这一个礼拜来数学建模的学习体验,再次感谢老师的指导。 以下就是我等的课程实践论文报告。 关键词:成本最少转运问题lingo 数学

数学建模问题1

在习题1-8中,情景是模糊地陈述的。从这些模糊的情景中,识别要研究的问题。哪些变量影响到问题识别中你已经识别的行为?哪些变量最重要?记住,实际上没有正确的答案. 1.单种群的总量增长. 2.一家零售店要建造一个新的停车场,停车场应该怎样照明? 3.一位农民期望他的地里种植的粮食农作物的产量达到最大,他正确地识别了问题吗?试讨论另一种目标. 4.怎样设计一个供大班级用的演讲厅? 5.一个物体从很高的地方掉下来.何时它撞击到地面?撞击到地面的力度有多大?6.某种产品的制造商应该怎样决定每年应该生产多少件产品,以及每件产品应该标价多少? 7.美国食品及药物管理局(FDA)想要了解一种新药对控制人口中的某种疾病是否有效.8.滑雪者滑下山坡有多快? 对于习题9~17中提出的情景,识别值得研究的问题并列出会影响你已经识别的行为的变量.哪些变量可以完全忽略?哪些变量在开始时可以认为它们是常数?你能识别出你想仔细研究的子模型吗?识别任何你想收集的数据. 9.一位植物学家有兴趣研究叶子的形状以及影响叶子长成这种形状的各种支配力量,她从一棵白橡树的底部剪下几片叶子,发现叶子相当宽,没有很明显的锯齿形.当她到树的顶部去看时,她发现有很明显的锯齿形而几乎没有展得很宽的叶子. 10. 不同大小的动物其他特性也不同.小动物比之于较大的动物,叫声尖细、心跳较快以及呼吸次数更多.另一方面,较大的动物的骨骼比小动物的骨骼更为强健,较大的动物的直径和体长之比大于小动物.所以,当体格从小到大增加时,存在着以和动物尺寸的比例相应的规则的变形. 11.一位物理学家想要研究光的性质.他想了解当光线从空气进入平滑的湖中,特别是在两种不同介质的交界处,光线的路径. 12. 拥有一队卡车的一家公司面临着因卡车使用年限和油耗而增加的维修费用. 13. 人们偏爱于计算机的速度.哪些计算机系统提供了最快的速度? 14. 怎样提高我们的能力,使得每学期都能报名上最好的班级? 15.怎样才能节约我们的一部分收入? 16. 考虑在竞争市场情况下一家刚开始运转的生产单一产品的新公司.讨论该公司营业初期的短期和长期目标,这些目标会怎样影响到雇员工作的指派?该公司有必要决定短期运行的最大利润吗? 17. 讨论利用模型来预测实际系统和利用模型来解释实际系统之间的差别.想象某些你要利用模型来解释实际系统的情景;类似地,想象你要利用模型来预测实际系统的其他情景.研究课题 1.考虑冲泡咖啡的味道问题. 什么是影响味道的变量?哪些变量一开始可以忽略?假定除了水温外,已经固定了所有的变量,多数咖啡壶都用沸水以某种方式从底部的咖啡中蒸馏出滋味. 你认为用沸水是产生最佳滋味的最优方式吗?你将怎样检验这个子模型?你将收集什么样的数据以及怎样去收集这些数据? 2.一家运输公司正在考虑用直升飞机在纽约市摩天楼之间运送人员,你被聘为顾问确定所需直升飞机的数量.精确地识别适当的问题,运用模型构建的过程来确定你所选定的变量之间的关系所需要的数据.当你着手进行时,可能需要重新定义你的问题. 3.考虑酿酒问题. 提出若干商业制造商可能会有的目标.把考虑品位作为一个子模型,什么是影响品位的变量?哪些变量一开始就可以忽略?怎样把余下的变量关联起来?为确定

椅子放平稳问题-数学建模

椅子放平稳问题 所谓数学模型是指对于一个实际问题,为了特定目的,作出必要的简化假设,根据问题的内在规律,运用适当的数学工具,得到的一个数学结构 . 建立及求解数学模型的过程就是数学建模. 下面例子是一个简单的数学建模问题. 问题:四条腿一样长的椅子一定能在不平的地面上放平稳吗? 1.模型假设 (文字转化为数学语言) (1) 椅子四条腿一样长,椅子脚与地面的接触处视为一个点,四脚连线呈正方形; (2) 地面高度是连续变化的,沿任何方向都不会出现间断(没有台阶那样的情况),即视地面为数学上的连续曲面; (3) 地面起伏不是很大,椅子在任何位置至少有三只脚同时着地. 2.模型建立 (运用数学语言把条件和结论表现出来) 设椅脚的连线为正方形 ABCD ,对角线 AC 与 x 轴重合,坐标原点 O 在椅子中心,当椅子绕 O 点旋转后,对角线 AC 变为 A'C',A'C'与 x 轴的夹角为θ. 由于正方形的中心对称性,只要设两个距离函数就行了,记 A 、C 两脚与地面距离之和为 )(θf ,B 、D 两脚与地面距离之和为 )(θg .显然0)(≥θf 、0)(≥θg 。 因此椅子和地面的距离之和可令)()()(θθθg f h +=。由假设(2),)(x f 、)(x g 为连续函数,因此)(θh 也是连续函数;由假设(3),得:0)()(=θθg f 。则该问题归结为: 已知连续函数0)(≥θf 、0)(≥θg 且0)()(=θθg f ,至少存在一个0θ,使得: 0)()(00==θθg f 3.模型求解 (找出0θ) 证明:不妨设,0)0(>f 则0)0(=g 令2π θ=(即旋转o 90,对角线AC 和BD 互换)。则有0)2 (,0)2(>=π πg f

数学建模追逐问题

实验追逐问题 Matlab程序如下: %取v=1,t=12,A,B,C,D点的坐标分另为(0,10),(10,10),(10,0),(0, 0) v=1; dt=0.05; d=20; x=[0 0 0 10 10 10 10 0]; x(9)=x(1); x(10)=x(2); hold axis('equal') axis([0 10 0 10]); for k=1:2:7 plot(x(k),x(k+1),'.' ) end while(d>0.1) for i=1:2:7 d=sqrt((x(i)-x(i+1))^2+(x(i+1)-x(i+3))^2); x(i)=x(i)+v*dt*(x(i+2)-x(i))/d; x(i+1)=x(i+1)+v*dt*(x(i+3)-x(i+1))/d;

plot(x(i),x(i+1),'.') end x(9)= x(1); x(10)= x(2); end hold 运行结果如下: 狼追击兔子的问题狼追击兔子问题是欧洲文艺复兴时代的著名人物达.芬奇提出的一个数学问题。当一个兔子正在它的洞穴南面60码处觅食时,一只恶狼出现在兔子正东的100码处。当两只动物同时发现对方以后,兔子奔向自己的洞穴,狼以快于兔子一倍的速度紧追兔子不放。狼在追赶过程中所形成的轨迹就是追击曲线。狼是否会在兔子跑回洞穴之前追赶上兔子? 为了研究狼是否能够追上兔子,可以先考虑求出狼追兔子形成的追击曲线,然后根据曲线来确定狼是否能够追上兔子。 可以对狼与兔子的追击过程通过计算机进行模拟,然后从模拟结果获取。模拟程序如下,程序文件名sim_langtu.m: function sim_langtu %《狼兔追击问题》 %(离散模拟) %这里没有具体考虑狼、兔的具体速度 %主要通过二者的速度倍速关系及方向向量奔跑过程 Q=[0 0];%兔子坐标

椅子能否放稳

1 椅子在不平的地面上能放稳吗 (一)问题的分析与假设 由三点构成一个平面可知,通常情况下,在不平的地面椅子是三只脚着地,如果要达到放稳的要求,必须是四只椅脚同时着地。问题中,椅子四脚呈长方形,在以下建模过程中,为方便讨论,我们作出以下假设: (1)椅子的四条腿一样长,椅脚与地面点接触,四角连线呈矩形; (2)地面高度连续变化,可视为数学上的连续曲面; (3)地面相对平坦,使椅子在任意位置至少三只脚同时着地。(二)模型的建立与求解 问题的解决,是通过建立直角坐标系,利用矩形的对角线平分且相等,以AC所在直线作为X轴,以垂至于AC的直线作为为Y轴,以矩形的中心点为原点建立直角坐标系。如图所示: 错误! 用对角线AC与X轴的夹角α表示椅子当前的位置,此时,可设椅脚与地面的距离是α的函数。椅子的四脚与地面应有四个距离的函数,但由于矩形的对称性,对角上的两点距离之和可用一个函数表示。设A,C两脚与地面的距离之和为,B,D两脚与地面的距离之和为。 已知地面是连续曲面,椅子可在任意位置至少三只脚着地,把已知条件转化为数学问题为已知,是连续函数,即α为任意值,·=0总成立;且。现只需证明存在α0,使。

现给出证明方法: 开始α=0,将椅子旋转角度大小为∠AOB=a,此时对角线AC和BD互换。由,知,。 令, 则有。 因为,为连续函数,所以也为连续函数,根据连续函数的基本性质,必存在α0使=0,即,又因为·=0,所以可得,证毕。 由证明的结果看,在不平的平面上,椅子呈矩形四脚距离地面的距离能同时为零,即椅子能在不平的地面放平稳。 若椅子的四脚呈等腰梯形,同理可证这样的椅子也能在不平的地面上放稳。

数学建模曲线拟合

曲线拟合 摘要 根究已有数据研究y关于x的关系,对于不同的要求得到不同的结果。 问题一中目标为使的各个观察值同按直线关系所预期的值的偏差平方和为最小,利用MATLAB中t lsqcurvefi函数在最小二乘法原理下拟合出所求直线。 问题二目标为使绝对偏差总和为最小,使用MATLAB中的fminsearch函数,在题目约束条件内求的最优答案,以此方法同样求得问题三中最大偏差为最小时的直线。 问题四拟合的曲线为二阶多项式,方法同前三问类似。 问题五为求得最佳的曲线,将之前的一次曲线换成多次曲线进行拟合得到新的结果。经试验发现高阶多项式的阶数越高拟和效果最好。 ) 关键词:函数拟合最小二乘法线性规划 | < ¥

一、问题的重述 已知一个量y 依赖于另一个量x ,现收集有数据如下: (1)求拟合以上数据的直线a bx y +=。目标为使y 的各个观察值同按直线关系所预期的值的偏差平方和为最小。 (2)求拟合以上数据的直线a bx y +=,目标为使y 的各个观察值同按直线关系所预期的值的绝对偏差总和为最小。 (3)求拟合以上数据的直线,目标为使y 的各个观察值同按直线关系所预期的值的最大偏差为最小。 (4)求拟合以上数据的曲线a bx cx y ++=2,实现(1)(2)(3)三种目标。 } (5)试一试其它的曲线,可否找出最好的? 二、问题的分析 对于问题一,利用MATLAB 中的最小二乘法对数据进行拟合得到直线,目标为使各个观察值同按直线关系所预期的值的偏差平方和为最小。 对于问题二、三、四均利用MATLAB 中的fminsearch 函数,在题目要求的约束条件下找到最佳答案。 对于问题五,改变多项式最高次次数,拟合后计算残差,和二次多项式比较,再增加次数后拟合,和原多项式比较残差,进而找到最好的曲线。 ~

数学建模问题分析

问题分析: 我们的目标是通过决策好向不同的证卷分别投入多少的资金来实现税后收益最大化 限制条件有投资资金,必须购买的证券,平均信用等级,平均到期年限,以及其他证卷的50%的税率 虽然市政不收税并且相比税后的其他证券有很大的收益,但是有限制条件其他证券必须至少购进400万,那除了这400万是不是600万都买市政呢?但是市政的信用等级都高于1.4,所以必须还得在其他证券和市政上取得平衡,虽然其他证券中代办机构收入最高,但是到期年限也是最高的,所有在平均到期年限5年上也要做平衡 文字模型: (1) 决策变量: 用x1,x2,x3,x4,x5分别表示A,B,C,D,E五中证券的购买量 决策目标: 税后收益为税前收益*税率 每种证券的购买量与到期税后收益的乘积的和就是总收益Z max z = 0.043*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5; 约束条件: 金钱约束:总的投资资金只有1000万,得 x1+x2+x3+x4+x5<=1000; 信用约束:平均信用等级不超过1.4,将信用进行购买量加运算再取平均值 2*x1 + 2*x2 + 1*x3 + 1*x4 + 5*x5 < 1.4*(x1 + x2 + x3 + x4 + x5); 到期年限约束:平均到期年限不超过五年,同理加权求平均值 9*x1 + 15*x2 + 4*x3 + 3*x4 + 2*x5 < 5*(x1 + x2 + x3 + x4 + x5); 必须购买的证券限制:必须购买政府及代办机构至少购进400万 x2 + x3 + x4 > 400; (2) 设借k万元资金 决策目标: 在原来的基础上减去k万的利率 max z = 0.043*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5 – 0.0275*k; 金钱约束:总的投资资金只有1000+k万,得 x1+x2+x3+x4+x5<=1000+k; 借钱约束:不超过100万 k<=100; (3) 1. 只需要把决目标中相应的收益改为: max z = 0.045*x1 + 0.054*0.5*x2 + 0.050*0.5*x3 + 0.044*0.5*x4 + 0.045*x5 ; 2. 只需要把决目标中相应的收益改为:

相关主题
文本预览
相关文档 最新文档