当前位置:文档之家› 电力电子技术

电力电子技术

电力电子技术
电力电子技术

1

、从晶闸管开始承受正向电压的到晶闸管导通时刻的电度角称为( )。

1. 控制角

2. 延迟角

3. 滞后角

4.

重叠角

2、当晶闸管承受反向阳极电压时,不论门极加何种极性触发电压,管子都将工作在( )

1. 导通状态

2. 关断状态

3. 饱和状态

4.

不定

3、如某晶闸管的正向阻断重复峰值电压为745V ,反向重复峰值电压为825V ,则该晶闸管的额定电压应为 。

1. 700V

2. 750V

3. 800V

4.

850V

4、快速熔断器可以用于过电流保护的电力电子器件是 。

1. 功率晶体管

2. IGBT

3. 功率MOSFET

4.

晶闸管

5、三相半波可控整流电路的自然换相点是 。

1. 交流相电压的过零点

2. 本相相电压与相邻相电压正、负半周的交点处

3. 比三相不控整流电路的自然换相点超前30°

4.

比三相不控整流电路的自然换相点滞后60°

6、在一般可逆电路中,最小逆变角βmin 选在下面那一种围合理 。

1. 30o -35o

2. 0o -15o

3. 0o

-10o

4.

0o

7、可实现有源逆变的电路为 。

1. 三相半波可控整流电路

2. 三相半控桥整流桥电路

3.

单相全控桥接续流二极管电路

4.

单相半控桥整流电路

8

、晶闸管触发电路中,若改变 的大小,则输出脉冲产生相位移动,达到移相控制的目的。

1. 同步电压

2. 控制电压

3. 脉冲变压器变比

4.

控制电流

9、α为 时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

1. 0度

2. 30度

3. 60度

4.

90度

10、单相全控桥式有源逆变电路,控制角为a ,则输出电压的平均值为( )

1. Ud=1.17U2cosa

2. Ud=0.9U 2cosa

3. Ud=-2.34U 2cosa

4.

Ud=0.45U 2cosa

11、压敏电阻在晶闸管整流电路中主要是用来( )

1. 分流

2. 降压

3. 过电压保护

4.

过电流保护

12、在PWM 逆变电路的相电压正弦波调制信号中叠加适当的3次谐波,使之成为鞍形波的目的在于( )

1. 消除谐波分量

2. 包含幅值更大的基波分量

3. 减少开关次数

4.

削弱直流分量

13、下列全控器件中,属于电流控制型的器件是( )。

1. P-MOSFET

2. SIT

3. GTR

4.

IGBT

14、若晶闸管电流有效值是157A ,则其额定电流为 ( )

1. 157A

2.

100A

4.

246.5A

15

、在PWM 斩波方式的开关信号形成电路中,比较器反相输入端加三角波信号,同相端加( )

1. 正弦信号

2. 方波信号

3. 锯齿波信号

4.

直流信号

16、可在第一和第四象限工作的变流电路是( )

1. 三相半波可控变流电路

2. 单相半控桥

3. 接有续流二极管的三相半控桥

4.

接有续流二极管的单相半波可控变流电路

17、IGBT 是一个复合型的器件,它是( )

1. GTR 驱动的MOSFET

2. MOSFET 驱动的GTR&"160;

3. MOSFET 驱动的晶闸管

4.

MOSFET 驱动的GTO

18、对于电阻负载单相交流调压电路,下列说法错误的是( )

1. 输出负载电压与输出负载电流同相

2. α的移项围为00<α<1800

3. 输出负载电压UO 的最大值为U1

4.

以上说法均是错误的

19、降压斩波电路中,已知电源电压Ud=16V ,负载电压Uo=12V ,斩波周期T=4ms ,则开通时Ton=

1. 1ms

2. 2ms

3. 3ms

4.

4ms

20、有源逆变发生的条件为( )

1. 要有直流电动势

2. 要求晶闸管的控制角大于90度

3. 直流电动势极性须和晶闸管导通方向一致

4.

以上说法都是对的

21、单相全控桥式整流电路电阻性负载中,控制角的最大移相围是( )

2. 120° &"160

3. 150°

4.

180°

22、逆变电路是一种( )变换电路

1. AC/AC

2. DC/AC

3. DC/DC

4.

AC/DC

23、直流斩波电路是一种( )变换电路。

1. AC/AC

2. DC/AC

3. DC/DC

4.

AC/DC

24、已经导通的晶闸管的可被关断的条件是流过晶闸管的电流( )

1. 减小至维持电流以下

2. 减小至擎住电流以下

3. 减小至门极触发电流以下

4.

减小至5A 以下

25、在型号KP10-12G 中,数字10表示( )

1. 额定电压10V

2. 额定电流10A

3. 额定电压1000V

4.

额定电流100A

26、触发电路中的触发信号应具有( )

1. 足够大的触发功率

2. 足够小的触发功率

3. 尽可能缓的前沿

4.

尽可能窄的宽度

27、有源逆变发生的条件为( )

1. 要有直流电动势

2. 要求晶闸管的控制角大于900

3. 直流电动势极性须和晶闸管导通方向一致

4.

以上说法都是对的

28

、三相半波可控整流电路在换相时,换相重叠角γ的大小与哪几个参数有关( )。

1. α、Id 、 X L 、U2

2. α、Id

3. α、U2

4.

α、U2、X L

29、变流装置的功率因数总是 ( )。

1. 大于1

2. 等于1

3. 小于1大于0

4.

为负

30、IGBT 属于( )控制型元件。

1. 电流

2. 电压

3. 电阻

4.

频率

31、晶闸管的伏安特性是指( )

1. 阳极电压与阳极电流的关系

2. 门极电压与阳极电流的关系

3. 阳极电压与门极电流的关系

4.

门极电压与门极电流的关系

32、降压斩波电路中,已知电源电压Ud=16V ,导通比0.75,则负载电压U0=( )

1. 64V

2. 12V

3. 21V

4.

4V

33、电流型三相桥式逆变电路,120°导通型,则在任一时刻开关管导通的个数是不同相的上、下桥臂( )

1. 各一只

2. 各二只

3. 共三只

4.

共四只

34、具有自关断能力的电力半导体器件称为( )

1.

全控型器件

2.

半控型器件

3. 不控型器件

4.

触发型器件

35

、α为( )度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

1. 0

2. 60

3. 30

4.

120

36、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差( )度。

1. 180

2. 60

3. 360

4.

120

37、一般认为交交变频输出的上限频率( ) 。

1. 与电网有相同的频率

2. 高于电网频率

3. 可达电网频率的80%

4.

约为电网频率的1/2~1/3

38、在一般可逆电路中,最小逆变角βmin 选在下面那一种围合理( )。

1. 30°-35°

2. 10°-15°

3. 0°-10°

4.

39、α为( )时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

1. 0°

2. 60°

3. 30°

4.

120°

40、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差( )度。

1. 180

2. 60

3. 360

4.

120

41、在三相三线交流调压电路中,输出电压的波形如图所示,在t2~t3时间段,有( )晶闸管导通。

<="" span="" style="box-sizing: border-box;

1. 1个

2. 2个

3. 3个

4. 4个

42、对于单相交交变频电路如下图,在t2~t3时间段,P组晶闸管变流装置与N组晶闸管变流装置的工作状态是

()

<="" span="" style="box-sizing: border-box; border: 0px; vertical-a

1. P组阻断,N组整流

2. P组阻断,N组逆变

3. N组阻断,P组整流

4. N组阻断,P组逆变

43、降压斩波电路中,已知电源电压Ud=16V,负载电压Uo=12V,斩波周期T=4ms,则开通时Ton=()

1. 1ms

2. 2ms

3.

3ms

4. 4ms

44、三相半波可控整流电路中,晶闸管可能承受的反向峰值电压为()

1.

2.

3.

4.

45、若增大SPWM逆变器的输出电压基波频率,可采用的控制方法是()

1.增大三角波幅度

2.增大三角波频率

3.增大正弦调制波频率

4.增大正弦调制波幅度

46、三相半波可控整流电路的自然换相点是()

1.交流相电压的过零点

2.本相相电压与相邻相电压正半周的交点处

3.比三相不控整流电路的自然换相点超前30°

4.比三相不控整流电路的自然换相点滞后60°

47、晶闸管稳定导通的条件()

1.晶闸管阳极电流大于晶闸管的擎住电流

2.晶闸管阳极电流小于晶闸管的擎住电流

3.晶闸管阳极电流大于晶闸管的维持电流

4.晶闸管阳极电流小于晶闸管的维持电流

48、下列电路中,不可以实现有源逆变的有()。

1.三相桥式全控整流电路

2.三相半波可控整流电路

3.单相桥式可控整流电路

4.单相全波可控整流电路外接续流二极管

判断题

49、三相桥式半控整流电路,带大电感性负载,有续流二极管时,当电路出故障时会发生失控现象。

1. A.√

2. B.×

50、并联与串联谐振式逆变器属于负载换流方式,无需专门换流关断电路。

1. A.√

2. B.×

51、大功率晶体管的放大倍数β都比较低。

1. A.√

2. B.×

52、在触发电路中采用脉冲变压器可保障人员和设备的安全。

1. A.√

2. B.×

53、晶闸管投切电容器选择晶闸管投入时刻的原则是:该时刻交流电源电压应和电容器预先充电电压相等。

1. A.√

2. B.×

54、斩波电路用于拖动直流电动机时,降压斩波电路能使电动机工作于第2象限,升压斩波电路能使电动机工作于第2象限,电流可逆斩波电路能使电动机工作于第1和第2象限。

1. A.√

2. B.×

55、单结晶体管组成的触发电路也可以用在双向晶闸管电路中。

1. A.√

2. B.×

56、对低电压大电流的负载供电,应该用带平衡电抗器的双反星型可控整流装置。

1. A.√

2. B.×

57、应急电源中将直流电变为交流电供灯照明,其电路中发生的“逆变”称有源逆变。

1. A.√

2. B.×

58、绝缘栅双极型晶体管具有电力场效应晶体管和电力晶体管的优点。

1. A.√

2. B.×

59、工作温度升高,会导致GTR的寿命减短。

1. A.√

2. B.×

60、设置补偿电容可以提高变流装置的功率因数。

1. A.√

2. B.×

61、用稳压管削波的梯形波给单结晶体管自激振荡电路供电,目的是为了使触发脉冲与晶闸管主电路实现同步。

1. A.√

2. B.×

62、双向晶闸管额定电流的定义,与普通晶闸管的定义相同。

1. A.√

2. B.×

63、有源逆变装置是把逆变后的交流能量送回电网。

1. A.√

2. B.×

64、变频调速实际上是改变电动机旋转磁场的速度达到改变输出转速的目的。

1. A.√

2. B.×

65、并联谐振逆变器必须是略呈电容性电路。

1. A.√

2. B.×

66、逆变角太大会造成逆变失败。

1. A.√

2. B.×

67、晶闸管串联使用时,必须注意均流问题。

1. A.√

2. B.×

68、在半控桥整流带大电感负载不加续流二极管电路中,电路出故障时会出现失控现象。

1. A.√

2. B.×

69、三相桥式半控整流电路,带大电感性负载,有续流二极管时,当电路出故障时会发生失控现象。

1. A.√

2. B.×

70、电压型逆变电路,为了反馈感性负载上的无功能量,必须在电力开关器件上反并联反馈二极管。

1. A.√

2. B.×

71、用多重逆变电路或多电平逆变电路,可以改善逆变电路的输出波形,使它更接近正弦波。

1. A.√

2. B.×

72、三相半波整流电路电阻负载时的a移相围为0o到180o。

1. A.√

2. B.×

73、在无源逆变与直接斩波电路中,都必须设置换流辅助电路,强迫导通的晶闸管可靠关断。

1. A.√

2. B.×

74、一般认为交交变频输出的上限频率约为电网频率的1/2~1/3。

1. A.√

2. B.×

75、载波比(又称频率比)K是PWM主要参数。设正弦调制波的频率为fr,三角波的频率为fc,则载波比表达式为K=fr/fc。

1. A.√

2. B.×

76、变频调速是改变电动机旋转磁场的速度达到改变转速的目的。

1. A.√

2. B.×

77、三相半波可控整流电路中,电路输出电压波形的脉动频率为300Hz。

1. A.√

2. B.×

78、在单相全控桥整流电路中,晶闸管的额定电压应取U2。

1. A.√

2. B.×

79、有源逆变指的是把直流电能转变成交流电能送给负载。

1. A.√

2. B.×

80、给晶闸管加上正向阳极电压它就会导通。

1. A.√

2. B.×

81、并联谐振逆变器必须是略呈电容性电路。

1. A.√

2. B.×

82、逆变角太大会造成逆变失败。

1. A.√

2. B.×

83、在用两组反并联晶闸管的可逆系统,使直流电动机实现四象限运行时,其中一组逆变器工作在整流状态,另一组工作在逆变状态。

1. A.√

2. B.×

84、在半控桥整流带大电感负载不加续流二极管电路中,电路出故障时会出现失控现象。

1. A.√

2. B.×

85、在DC/DC变换电路中,可以采用电网换流方法。

1. A.√

2. B.×

86、为避免三次谐波注入电网,晶闸管整流电路中的整流变压器应采用Y/Y接法。

1. A.√

2. B.×

87、电流可逆斩波电路可实现直流电动机的四象限运行。

1. A.√

2. B.×

88、过快的晶闸管阳极du/dt会使误导通。

1. A.√

2. B.×

89、在变流装置系统中,增加电源的相数也可以提高电网的功率因数。

1. A.√

2. B.×

90、PWM脉宽调制型逆变电路中,采用不可控整流电源供电,也能正常工作。

1. A.√

2. B.×

91、对三相桥式全控整流电路的晶闸管进行触发时,只有采用双窄脉冲触发,电路才能正常工作。

1. A.√

2. B.×

92、无源逆变指的是把直流电能转换成交流电能送给交流电网。

1. A.√

2. B.×

93、逆变器采用负载换流方式实现换流时,负载谐振回路不一定要呈电容性。

1. A.√

2. B.×

94、双向晶闸管的额定电流的定义与普通晶闸管不一样,双向晶闸管的额定电流是用电流有效值来表示的。

1. A.√

2. B.×

主观题

95、电压型逆变电路中反馈二极管的作用是什么?为什么电流型逆变电路中没有反馈二极管?

参考答案:

在电压型逆变电路中,当交流侧为阻感负载时需要提供无功功率,直流侧电容起缓冲无功能量的作用。为了给交流侧向直流侧反馈的无功能量提供通道,逆变桥各臂都并联了反馈二极管。当输出交流电压和电流的极性相同时,电流经电路中的可控开关器件流通,而当输出电压电流极性相反时,由反馈二极管提供电流通道。在电流型逆变电路中,直流电流极性是一定的,无功能量由直流侧电感来缓冲。当需要从交流侧向直流侧反馈无功能量时,电流并不反向,依然经电路中的可控开关器件流通,因此不需要并联反馈二极管。

96、交交变频电路的最高输出频率是多少?制约输出频率提高的因素是什么?

参考答案:

一般来讲,构成交交变频电路的两组变流电路的脉波数越多,最高输出频率就越高。当交交变频电路中采用常用的6脉波三相桥式整流电路时,最高输出频率不应高于电网频率的1/3~1/2。当电网频率为50Hz时,交交变频电路输出的上限频率为20Hz左右。

当输出频率增高时,输出电压一周期所包含的电网电压段数减少,波形畸变严重,电压波形畸变和由此引起

的电流波形畸变以及电动机的转矩脉动是限制输出频率提高的主要因素。

97、什么是直流斩波电路?分别写出降压和升压斩波电路直流输出电压U0与电源电压U d的关系式。

参考答案:

直流斩波电路是将直流电源的恒定直流电压通过电力电子器件的开关作用变换为可调直流电压的装置。(7分)降压斩波电路的表达式为:

(4分)

升压斩波电路的表达式为:

(4分)

98、简述实现有源逆变的基本条件,并指出至少两种引起有源逆变失败的原因。

参考答案:

(1)外部条件:要有一个能提供逆变能量的直流电源,且极性必须与直流电流方向一致,其电压值要稍

大于Ud;

(2)部条件:变流电路必须工作于β<90°区域,使直流端电压Ud的极性与整流状态时相反,才能把直流

功率逆变成交流功率返送回电网。这两个条件缺一不可。

当出现触发脉冲丢失、晶闸管损坏或快速熔断器烧断、电源缺相等原因都会发生逆变失败。当逆变角太小时,也会发生逆变失败。

99、三相桥式电压型逆变电路,180°导电方式,U d=100V。试求输出相电压的基波幅值U UN1m和有效值U UN1、输出

线电压的基波幅值U UV1m和有效值U UV1、输出线电压中5次谐波的有效值U UV5。

参考答案:

100、单相桥式全控整流电路,U2=100V,负载中R=20Ω,L值极大,反电动势E=60V。当α=30°时,要求:(1)作出u d、id和i2的波形;

(2)求整流输出平均电压U d、电流I d,变压器二次电流有效值I2;

(3)考虑安全裕量,确定晶闸管的额定电压和额定电流。

参考答案:

电力电子技术的发展史

电力电子技术的发展史 电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。 目录 电力电子技术 现代电力电子技术 高频开关电源的发展趋势 半导体器件基础 电路发展 1.电力电子技术发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

电力电子技术仿真实验指导书

《电力电子技术实验》指导书 合肥师范学院电子信息工程学院

实验一电力电子器件 仿真过程: 进入MATLAB环境,点击工具栏中的Simulink选项。进入所需的仿真环境,如图所示。点击File/New/Model新建一个仿真平台。点击左边的器件分类,找到Simulink和SimPowerSystems,分别在他们的下拉选项中找到所需的器件,用鼠标左键点击所需的元件不放,然后直接拉到Model平台中。 图 实验一的具体过程: 第一步:打开仿真环境新建一个仿真平台,根据表中的路径找到我们所需的器件跟连接器。

提取出来的器件模型如图所示: 图 第二步,元件的复制跟粘贴。有时候相同的模块在仿真中需要多次用到,这时按照常规的方法可以进行复制跟粘贴,可以用一个虚线框复制整个仿真模型。还有一个常用方便的方法是在选中模块的同时按下Ctrl键拖拉鼠标,选中的模块上会出现一个小“+”好,继续按住鼠标和Ctrl键不动,移动鼠标就可以将模块拖拉到模型的其他地方复制出一个相同的模块,同时该模块名后会自动加“1”,因为在同一仿真模型中,不允许出现两个名字相同的模块。 第三步,把元件的位置调整好,准备进行连接线,具体做法是移动鼠标到一个器件的连接点上,会出现一个“十字”形的光标,按住鼠标左键不放,一直到你所要连接另一个器件的连接点上,放开左键,这样线就连好了,如果想要连接分支线,可以要在需要分支的地方按住Ctrl键,然后按住鼠标左键就可以拉出一根分支线了。 在连接示波器时会发现示波器只有一个接线端子,这时可以参照下面示波器的参数调整的方法进行增加端子。在调整元件位置的时候,有时你会遇到有些元件需要改变方向才更方便于连接线,这时可以选中要改变方向的模块,使用Format菜单下的Flip block 和Rotate

电力电子技术答案第五版(全)

电子电力课后习题答案 第一章电力电子器件 1.1 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正相阳极电压,并在门极施加触发电流(脉冲)。 或者U AK >0且U GK >0 1.2 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 1.3 图1-43中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为 I m ,试计算各波形的电流平均值I d1 、I d2 、I d3 与电流有效值I 1 、I 2 、I 3 。 解:a) I d1= Im 2717 .0 )1 2 2 ( 2 Im ) ( sin Im 2 1 4 ≈ + = ?π ω π π π t I 1= Im 4767 .0 2 1 4 3 2 Im ) ( ) sin (Im 2 1 4 2≈ + = ?π ? π π π wt d t b) I d2= Im 5434 .0 )1 2 2 ( 2 Im ) ( sin Im 1 4 = + = ?wt d t π π ? π I 2= Im 6741 .0 2 1 4 3 2 Im 2 ) ( ) sin (Im 1 4 2≈ + = ?π ? π π π wt d t c) I d3= ?= 2 Im 4 1 ) ( Im 2 1π ω π t d I 3= Im 2 1 ) ( Im 2 1 2 2= ?t dω π π 1.4.上题中如果不考虑安全裕量,问100A的晶阐管能送出的平均电流I d1、I d2 、I d3 各为多 少?这时,相应的电流最大值I m1、I m2 、I m3 各为多少? 解:额定电流I T(AV) =100A的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1 35 . 329 4767 .0 ≈ ≈ I A, I d1 ≈0.2717I m1 ≈89.48A

电力电子技术课程综述.doc

HefeiUniversity 合肥学院电力电子技术课程综述 系别:电子信息及电气工程系 专业:自动化 班级: 姓名: 学号:

目录 摘要: (3) 绪论 (4) 1.1电力电子技术简介: (4) 1.2电力电子技术的应用: (4) 1.3电力电子技术的重要作用: (5) 1.4电力电子技术的发展 (5) 本课程简介 (6) 2.1电力电子器件: (6) 2.1.1根据开关器件是否可控分类 (6) 2.1.2 根据门极)驱动信号的不同 (6) 2.1.3 根据载流子参与导电情况之不同,开关器件又可分为单极型器件、双极型器 件和复合型器件。 (6) 2.2 DC-DC变换器 (7) 2.2.1主要内容: (7) 2.2.2直流-直流变换器的控制 (7) 2.3 DC-AC变换器(无源逆变电路) (8) 2.3.1电压型变换器 (8) 2.3.2电流型变换器 (8) 2.3.3脉宽调制(PWM)变换器 (9) 2.4 AC-DC变换器(整流和有源逆变电路) (9) 2.4.1简介 (9) 2.4.2工作原理 (9) 2.5 AC-AC变换器 (10) 2.5.1 简介 (10) 2.5.2 分类 (10) 2.6 软开关变换器 (10) 2.6.1分类 (10) 2.6.2 重点 (10) 总结 (11) 参考文献 (11)

摘要:电力电子技术是在电子、电力与控制技术上发展起来的一门新兴交 叉学科,被国际电工委员会(IEC)命名为电力电子学(Power Electronics)或称为电力电子技术。近20年来,电力电子技术已渗透到国民经济各领域,并取得了迅速的发展。作为电气工程及其自动化、工业自动化或相关专业的一门重要基础课,电力电子技术课程讲述了电力电子器件、电力电子电路及变流技术的基本理论、基本概念和基本分析方法,为后续专业课程的学习和电力电子技术的研究与应用打下良好的基础。 关键词:电力电子技术控制技术自动化电力电子器件 Abstract: Power electronic technology is in Electronics, electric Power and control technology developed on an emerging interdisciplinary, is the international electrotechnical commission (IEC) named Power Electronics (Power Electronics) or called Power electronic technology. Nearly 20 years, power electronic technology has penetrated into every field of national economy, and have achieved rapid development. As electrical engineering and automation, industrial automation or related professional one important courses, power electronic technology course about power electronics device, power electronic circuits, the basic theory of converter technology, the basic concept and basic analysis for subsequent specialized course of study and power electronic technology research and application lay a good foundation. Keywords:Power electronic technology control technology automation power electronics device

电力电子技术知识点

(供学生平时课程学习、复习用,●为重点) 第一章绪论 1.电力电子技术:信息电子技术----信息处理,包括:模拟电子技术、数字电子技术 电力电子技术----电力的变换与控制 2. ●电力电子技术是实现电能转换和控制,能进行电压电流的变换、频率的变换及相 数的变换。 第二章电力电子器件 1.电力电子器件分类:不可控器件:电力二极管 可控器件:全控器件----门极可关断晶闸管GTO电力晶体管GTR 场效应管电力PMOSFET绝缘栅双极晶体管IGBT及其他器件 ☆半控器件----晶闸管●阳极A阴极K 门极G 2.晶闸管 1)●导通:当晶闸管承受正向电压时,仅在门极有触电电流的情况晶闸管才能开通。 ●关断:外加电压和外电路作用是流过晶闸管的电流降到接近于零 ●导通条件:晶闸管承受正向阳极电压,并在门极施加触发电流 ●维持导通条件:阳极电流大于维持电流 当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才会开通。 当晶闸管导通,门极失去作用。 ●主要参数:额定电压、额定电流的计算,元件选择 第三章 ●整流电路 1.电路分类:单相----单相半波可控整流电路单相整流电路、桥式(全控、半控)、单相全波可控整流电路单相桥式(全控、半控)整流电路 三相----半波、●桥式(●全控、半控) 2.负载:电阻、电感、●电感+电阻、电容、●反电势 3.电路结构不同、负载不同●输出波形不同●电压计算公式不同

单相电路 1.●变压器的作用:变压、隔离、抑制高次谐波(三相、原副边星/三角形接法) 2.●不同负载下,整流输出电压波形特点 1)电阻电压、电流波形相同 2)电感电压电流不相同、电流不连续,存在续流问题 3)反电势停止导电角 3.●二极管的续流作用 1)防止整流输出电压下降 2)防止失控 4.●保持电流连续●串续流电抗器,●计算公式 5.电压、电流波形绘制,电压、电流参数计算公式 三相电路 1.共阴极接法、共阳极接法 2.触发角ā的确定 3.宽脉冲、双窄脉冲 4.●电压、电流波形绘制●电压、电流参数计算公式 5.变压器漏抗对整流电流的影响●换相重叠角产生原因计算方法 6.整流电路的谐波和功率因数 ●逆变电路 1.●逆变条件●电路极性●逆变波形 2.●逆变失败原因器件触发电路交流电源换向裕量 3.●防止逆变失败的措施 4.●最小逆变角的确定 触发电路 1.●触发电路组成 2.工作原理 3.触发电路定相 第四章逆变电路

电力电子技术的发展及应用趋势

浅析电力电子技术的发展及应用 张友均 摘要:本文主要简要回顾了电力电子技术的发展史,简述了电力电子在电力系统中的一些应用及发展趋势。关键词:电力电子技术;发展史;电力系统;应用;发展趋势 1 引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?美国电气与电子工程师协会下设的电力电子学会对“电力电子技术”的阐述是:有效的使用电力半导体器件,应用电路设计理论以及分析开发工具,实现对电能高效能变换和控制的一门技术。对电能的高效能变换和控制包括对电压,电流,频率或波形等方面的变换。它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 2 电力电子技术的发展史 电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 2.1 整流器时代 大功率的工业用电由工频( 50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解) 、牵引(电气机车、电传动的

#电力电子技术实验报告答案

实验一锯齿波同步移相触发电路实验 一、实验目的 (1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。 (2)掌握锯齿波同步移相触发电路的调试方法。 三、实验线路及原理 锯齿波同步移相触发电路的原理图如图1-11所示。锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。 四、实验内容 (1)锯齿波同步移相触发电路的调试。 (2)锯齿波同步移相触发电路各点波形的观察和分析。 五、预习要求 (1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相 触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。 (2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。 六、思考题 (1)锯齿波同步移相触发电路有哪些特点? (2)锯齿波同步移相触发电路的移相范围与哪些参数有关? (3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大? 七、实验方法 (1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。 ①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。 ②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。 ③调节电位器RP1,观测“2”点锯齿波斜率的变化。 ④观察“3”~“6”点电压波形和输出电压的波形,记下各波形的幅值与宽度,并比较“3”点电压U3和“6”点电压U6的对应关系。 (2)调节触发脉冲的移相范围

电力电子技术试题及答案(B)

电力电子技术答案 2-1与信息电子电路中的二极管相比,电力二极管具有怎样的结构特点才使得其具有耐受高压和大电流的能力? 答:1.电力二极管大都采用垂直导电结构,使得硅片中通过电流的有效面积增大,显著提高了二极管的通流能力。 2.电力二极管在P 区和N 区之间多了一层低掺杂N 区,也称漂移区。低掺杂N 区由于掺杂浓度低而接近于无掺杂的纯半导体材料即本征半导体,由于掺杂浓度低,低掺杂N 区就可以承受很高的电压而不被击穿。 2-2. 使晶闸管导通的条件是什么? 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 2-3. 维持晶闸管导通的条件是什么?怎样才能使晶闸管由导通变为关断? 答:维持晶闸管导通的条件是使晶闸管的电流大于能保持晶闸管导通的最小电流,即维持电流。 要使晶闸管由导通变为关断, 可利用外加电压和外电路的作用使流过晶闸管的电流降 到接近于零的某一数值以下,即降到维持电流以下,便可使导通的晶闸管关断。 2-4图2-27中阴影部分为晶闸管处于通态区间的电流波形,各波形的电流最大值均为I m ,试计算各波形的电流平均值I d1、I d2、I d3与电流有效值I 、I 、I 。 πππ4 π4 π2 5π4a) b)c) 图1-43 图2-27 晶闸管导电波形 解:a) I d1= π21?π πωω4 )(sin t td I m =π2m I (122+)≈0.2717 I m I 1= ?π πωωπ 4 2 )()sin (21 t d t I m =2m I π 2143+≈0.4767 I m b) I d2 = π1?π πωω4)(sin t td I m =π m I ( 12 2 +)≈0.5434 I m I 2 = ? π π ωωπ 4 2) ()sin (1 t d t I m = 2 2m I π 21 43+ ≈0.6741I m c) I d3=π21?2 )(π ωt d I m =41 I m I 3 =? 2 2 ) (21π ωπt d I m = 2 1 I m 2-5上题中如果不考虑安全裕量,问100A 的晶阐管能送出的平均电流I d1、I d2、I d3各为多少?这时,相应的电流最大值I m1、I m2、 I m3各为多少? 解:额定电流I T(AV)=100A 的晶闸管,允许的电流有效值I=157A,由上题计算结果知 a) I m1≈4767.0I ≈329.35, I d1≈0.2717 I m1≈89.48 b) I m2≈ 6741 .0I ≈232.90, I d2≈0.5434 I m2≈126.56 c) I m3=2 I = 314, I d3= 4 1 I m3=78.5 2-6 GTO 和普通晶闸管同为PNPN 结构,为什么GTO 能够自关断,而普通晶闸管不能? 答:GTO 和普通晶阐管同为PNPN 结构,由P1N1P2和N1P2N2构成两个晶体管V1、V2,分别具有共基极电流增益 1α和2α, 由普通晶阐管的分析可得, 121=+αα是器件临界导通的条件。1 21>αα+两个等效晶体管过饱和而导通;

电力电子技术重点王兆安第五版打印版

第1章绪论 1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。 2 电力变换的种类 (1)交流变直流AC-DC:整流 (2)直流变交流DC-AC:逆变 (3)直流变直流DC-DC:一般通过直流斩波电路实现(4)交流变交流AC-AC:一般称作交流电力控制 3 电力电子技术分类:分为电力电子器件制造技术和变流技术。 第2章电力电子器件 1 电力电子器件与主电路的关系 (1)主电路:指能够直接承担电能变换或控制任务的电路。(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。 2 电力电子器件一般都工作于开关状态,以减小本身损耗。 3 电力电子系统基本组成与工作原理 (1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。 (2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。 (4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。 4 电力电子器件的分类 根据控制信号所控制的程度分类 (1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。如SCR晶闸管。 (2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。如GTO、GTR、MOSFET 和IGBT。 (3)不可控器件:不能用控制信号来控制其通断的电力电子器件。如电力二极管。 根据驱动信号的性质分类 (1)电流型器件:通过从控制端注入或抽出电流的方式来实现导通或关断的电力电子器件。如SCR、GTO、GTR。(2)电压型器件:通过在控制端和公共端之间施加一定电压信号的方式来实现导通或关断的电力电子器件。如MOSFET、IGBT。 根据器件内部载流子参与导电的情况分类 (1)单极型器件:内部由一种载流子参与导电的器件。如MOSFET。 (2)双极型器件:由电子和空穴两种载流子参数导电的器件。如SCR、GTO、GTR。(3)复合型器件:有单极型器件和双极型器件集成混合而成的器件。如IGBT。 5 半控型器件—晶闸管SCR 将器件N1、P2半导体取倾斜截面,则晶闸管变成V1-PNP 和V2-NPN两个晶体管。 晶闸管的导通工作原理 (1)当AK间加正向电压A E,晶闸管不能导通,主要是中间存在反向PN结。 (2)当GK间加正向电压G E,NPN晶体管基极存在驱动电流G I,NPN晶体管导通,产生集电极电流2c I。 (3)集电极电流2c I构成PNP的基极驱动电流,PNP导通,进一步放大产生PNP集电极电流1c I。 (4)1c I与G I构成NPN的驱动电流,继续上述过程,形成强烈的负反馈,这样NPN和PNP两个晶体管完全饱和,晶闸管导通。 2.3.1.4.3 晶闸管是半控型器件的原因 (1)晶闸管导通后撤掉外部门极电流G I,但是NPN基极仍然存在电流,由PNP集电极电流1c I供给,电流已经形成强烈正反馈,因此晶闸管继续维持导通。 (2)因此,晶闸管的门极电流只能触发控制其导通而不能控制其关断。 2.3.1.4.4 晶闸管的关断工作原理 满足下面条件,晶闸管才能关断: (1)去掉AK间正向电压; (2)AK间加反向电压; (3)设法使流过晶闸管的电流降低到接近于零的某一数值以下。 2.3.2.1.1 晶闸管正常工作时的静态特性 (1)当晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通。 (3)晶闸管一旦导通,门极就失去控制作用,不论门极触发电流是否还存在,晶闸管都保持导通。 (4)若要使已导通的晶闸管关断,只能利用外加电压和外电路的作用使流过晶闸管的电流降到接近于零的某一数值以下。 2.4.1.1 GTO的结构 (1)GTO与普通晶闸管的相同点:是PNPN四层半导体结构,外部引出阳极、阴极和门极。 (2)GTO与普通晶闸管的不同点:GTO是一种多元的功率集成器件,其内部包含数十个甚至数百个供阳极的小GTO元,这些GTO元的阴极和门极在器件内部并联在一起,正是这种特殊结构才能实现门极关断作用。 2.4.1.2 GTO的静态特性 (1)当GTO承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。 (2)当GTO承受正向电压时,仅在门极有触发电流的情

现代电力电子技术的发展(精)

现代电力电子技术的发展 浙江大学电气工程学院电气工程及其自动化992班马玥 (浙江杭州310027 E-mail: yeair@https://www.doczj.com/doc/6013285563.html,学号:3991001053 摘要:本文简要回顾电力电子技术的发展,阐述了现代电力电子技术发展的趋势,论述了走向信息时代的电力电子技术和器件的创新、应用,将对我国工业尤其是信息产业领域形成巨大的生产力,从而推动国民经济高速、高效可持续发展。 关键词:现代电力电子技术;应用;发展趋势 The Development of Modern Power Electronics Technique Ma Yue Electrical Engineering College. Zhejiang University. Hangzhou 310027, China E-mail: yeair@https://www.doczj.com/doc/6013285563.html, Abstract: This paper reviews the development of power electronics technique, as well as its current situation and anticipated trend of development. Keywords: modern power electronics technique, application, development trend. 1、概述 自本世纪五十年代未第一只晶闸管问世以来,电力电子技术开始登上现代电气传动技术舞台,以此为基础开发的可控硅整流装臵,是电气传动领域的一次革命,使电能的变换和控制从旋转变流机组和静止离子变流器进入由电力电子器件构成的变流器时代,这标志着电力电子的诞生。

电力电子技术实验(课程教案)

课程教案 课程名称:电力电子技术实验 任课教师:张振飞 所属院部:电气与信息工程学院 教学班级:电气1501-1504班、自动化1501-1504自动化卓越1501 教学时间:2017-2018学年第一学期 湖南工学院

课程基本信息

1 P 实验一、SCR、GTO、MOSFET、GTR、IGBT特性实验 一、本次课主要内容 1、晶闸管(SCR)特性实验。 2、可关断晶闸管(GTO)特性实验(选做)。 3、功率场效应管(MOSFET)特性实验。 4、大功率晶体管(GTR)特性实验(选做)。 5、绝缘双极性晶体管(IGBT)特性实验。 二、教学目的与要求 1、掌握各种电力电子器件的工作特性测试方法。 2、掌握各器件对触发信号的要求。 三、教学重点难点 1、重点是掌握各种电力电子器件的工作特性测试方法。 2、难点是各器件对触发信号的要求。 四、教学方法和手段 课堂讲授、提问、讨论、演示、实际操作等。 五、作业与习题布置 撰写实验报告

2 P 一、实验目的 1、掌握各种电力电子器件的工作特性。 2、掌握各器件对触发信号的要求。 二、实验所需挂件及附件 三、实验线路及原理 将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载 电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触 发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得 在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负 载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电 压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07 挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后 调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压 器调节的直流电压源。 实验线路的具体接线如下图所示:

电力电子技术课后题答案

0-1.什么是电力电子技术? 电力电子技术是应用于电力技术领域中的电子技术;它是以利用大功率电子器件对能量进行变换和控制为主要内容的技术。国际电气和电子工程师协会(IEEE)的电力电子学会对电力电子技术的定义为:“有效地使用电力半导体器件、应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制的一门技术,它包括电压、电流、频率和波形等方面的变换。” 0-2.电力电子技术的基础与核心分别是什么? 电力电子器件是基础。电能变换技术是核心. 0-3.请列举电力电子技术的 3 个主要应用领域。 电源装置;电源电网净化设备;电机调速系统;电能传输和电力控制;清洁能源开发和新蓄能系统;照明及其它。 0-4.电能变换电路有哪几种形式?其常用基本控制方式有哪三种类型? AD-DC整流电;DC-AC逆变电路;AC-AC交流变换电路;DC-DC直流变换电路。 常用基本控制方式主要有三类:相控方式、频控方式、斩控方式。 0-5.从发展过程看,电力电子器件可分为哪几个阶段? 简述各阶段的主要标志。可分为:集成电晶闸管及其应用;自关断器件及其应用;功率集成电路和智能功率器件及其应用三个发展阶段。集成电晶闸管及其应用:大功率整流器。自关断器件及其应用:各类节能的全控型器件问世。功率集成电路和智能功率器件及其应用:功率集成电路(PIC),智能功率模块(IPM)器件发展。 0-6.传统电力电子技术与现代电力电子技术各自特征是什么? 传统电力电子技术的特征:电力电子器件以半控型晶闸管为主,变流电路一般 为相控型,控制技术多采用模拟控制方式。 现代电力电子技术特征:电力电子器件以全控型器件为主,变流电路采用脉宽 调制型,控制技术采用PWM数字控制技术。 0-7.电力电子技术的发展方向是什么? 新器件:器件性能优化,新型半导体材料。高频化与高效率。集成化与模块化。数字化。绿色化。 1-1.按可控性分类,电力电子器件分哪几类? 按可控性分类,电力电子器件分为不可控器件、半控器件和全控器件。 1-2.电力二极管有哪些类型?各类型电力二极管的反向恢复时间大约为多少? 电力二极管类型以及反向恢复时间如下: 1)普通二极管,反向恢复时间在5us以上。 2)快恢复二极管,反向恢复时间在5us以下。快恢复极管从性能上可分为快速恢复和超快速恢复二极管。前者反向恢复时间为数百纳秒或更长,后者在100ns 以下,甚至达到20~30ns,多用于高频整流和逆变电路中。 3)肖特基二极管,反向恢复时间为10~40ns。 1-3.在哪些情况下,晶闸管可以从断态转变为通态? 维持晶闸管导通的条件是什么? 1、正向的阳极电压; 2、正向的门极电流。两者缺一不可。阳极电流大于维持电流。

现代电力电子技术的发展、现状与未来展望综述上课讲义

现代电力电子技术的发展、现状与未来展 望综述

课程报告 现代电力电子技术的发展、现状与 未来展望综述 学院:电气工程学院 姓名: ********* 学号: 14********* 专业: ***************** 指导教师: *******老师 0 引言

电力电子技术就是使用电力半导体器件对电能进行变换和控制的技术,它是综合了电子技术、控制技术和电力技术而发展起来的应用性很强的新兴学科。随着经济技术水平的不断提高,电能的应用已经普及到社会生产和生活的方方面面,现代电力电子技术无论对传统工业的改造还是对高新技术产业的发展都有着至关重要的作用,它涉及的应用领域包括国民经济的各个工业部门。毫无疑问,电力电子技术将成为21世纪的重要关键技术之一。 1 电力电子技术的发展[1] 电力电子技术包含电力电子器件制造技术和变流技术两个分支,电力电子器件的制造技术是电力电子技术的基础。电力电子器件的发展对电力电子技术的发展起着决定性的作用,电力电子技术的发展史是以电力电子器件的发展史为纲的。 1.1半控型器件(第一代电力电子器件) 上世纪50年代,美国通用电气公司发明了世界上第一只硅晶闸管(SCR),标志着电力电子技术的诞生。此后,晶闸管得到了迅速发展,器件容量越来越大,性能得到不断提高,并产生了各种晶闸管派生器件,如快速晶闸管、逆导晶闸管、双向晶闸管、光控晶闸管等。但是,晶闸管作为半控型器件,只能通过门极控制器开通,不能控制其关断,要关断器件必须通过强迫换相电路,从而使整个装置体积增加,复杂程度提高,效率降低。另外,晶闸管为双极型器件,有少子存储效应,所以工作频率低,一般低于400 Hz。由于以上这些原因,使得晶闸管的应用受到很大限制。 1.2全控型器件(第二代电力电气器件) 随着半导体技术的不断突破及实际需求的发展,从上世纪70年代后期开始,以门极可关断晶闸管(GTO)、电力双极晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。此外,这些器件的开关速度普遍高于晶闸管,可用于开关频率较高的电路。这些优点使电力电子技术的面貌焕然一新,把电力电子技术推进到一个新的发展阶段。 1.3电力电子器件的新发展 为了解决MSOFET在高压下存在的导通电阻大的问题,RCA公司和GE公司于1982年开发出了绝缘栅双极晶体管(IGBT),并于1986年开始正式生产并逐渐系列化。IGBT是MOS?FET和BJT得复合,它把MOSFET驱动功率小、开关速度快的优点和BJT通态压降小、载流能力大的优点集于一身,性能十分优越,使之很快成为现代电力电子技术的主导器件。与IGBT 相对应,MOS 控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)都是MOSFET和GTO的复合,它们都综合

电力电子技术课程重点知识点总结

1.解释GTO、GTR、电力MOSFET、BJT、IGBT,以及这些元件的应用范围、基本特性。 2.解释什么是整流、什么是逆变。 3.解释PN结的特性,以及正向偏置、反向偏置时会有什么样的电流通过。 4.肖特基二极管的结构,和普通二极管有什么不同 5.画出单相半波可控整流电路、单相全波可控整流电路、单相整流电路、单相桥式半控整流电路电路图。 6.如何选配二极管(选用二极管时考虑的电压电流裕量) 7.单相半波可控整流的输出电压计算(P44) 8.可控整流和不可控整流电路的区别在哪 9.当负载串联电感线圈时输出电压有什么变化(P45) 10.单相桥式全控整流电路中,元件承受的最大正向电压和反向电压。 11.保证电流连续所需电感量计算。 12.单相全波可控整流电路中元件承受的最大正向、反向电压(思考题,书上没答案,自己试着算) 13.什么是自然换相点,为什么会有自然换相点。 14.会画三相桥式全控整流电路电路图,波形图(P56、57、P58、P59、P60,对比着记忆),以及这些管子的导通顺序。

15.三相桥式全控整流输出电压、电流计算。 16.为什么会有换相重叠角换相压降和换相重叠角计算。 17.什么是无源逆变什么是有源逆变 18.逆变产生的条件。 19.逆变失败原因、最小逆变角如何确定公式。 做题:P95:1 3 5 13 16 17,重点会做 27 28,非常重要。 20.四种换流方式,实现的原理。 21.电压型、电流型逆变电路有什么区别这两个图要会画。 22.单相全桥逆变电路的电压计算。P102 23.会画buck、boost电路,以及这两种电路的输出电压计算。 24.这两种电路的电压、电流连续性有什么特点 做题,P138 2 3题,非常重要。 25.什么是PWM,SPWM。 26.什么是同步调制什么是异步调制什么是载波比,如何计算 27.载波频率过大过小有什么影响 28.会画同步调制单相PWM波形。 29.软开关技术实现原理。

现代电力电子技术发展及其应用

现代电力电子技术发展及其应用 摘要:电力电子技术是研究采用电力电子器件实现对电能的控制和变换的科学,是介于电气工程三大主要领域——电力、电子和控制之间的交叉学科,在电力、工业、交通、航空航天等领域具有广泛的应用。电力电子技术的应用已经深入到工业生产和社会生活的各个方面,成为传统产业和高新技术领域不可缺少的关键技术,可以有效地节约能源。 一、引言 自上世纪五十年代末第一只晶闸管问世以来,电力电子技术开始登上现代电气控制技术舞台,标志着电力电子技术的诞生。究竟什么是电力电子技术呢?电力电子技术就是采用功率半导体器件对电能进行转换、控制和优化利用的技术,它广泛应用于电力、电气自动化及各种电源系统等工业生产和民用部门。它是介于电力、电子和控制三大领域之间的交叉学科。目前,电力电子技术的应用已遍及电力、汽车、现代通信、机械、石化、纺织、家用电器、灯光照明、冶金、铁路、医疗设备、航空、航海等领域。进入21世纪,随着新的理论、器件、技术的不断出现,特别是与微控制器技术的日益融合,电力电子技术的应用领域也必将不断地得以拓展,随之而来的必将是智能电力电子时代。 二、电力电子技术的发展 现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压

和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 1、整流器时代 大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 2、逆变器时代 七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。 3、变频器时代 进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能

电力电子技术 复习题答案

第二章: 1.晶闸管的动态参数有断态电压临界上升率du/dt和通态电流临界上升率等,若 du/dt过大,就会使晶闸管出现_ 误导通_,若di/dt过大,会导致晶闸管_损坏__。 2.目前常用的具有自关断能力的电力电子元件有电力晶体管、可关断晶闸管、 功率场效应晶体管、绝缘栅双极型晶体管几种。简述晶闸管的正向伏安特性 答: 晶闸管的伏安特性 正向特性当IG=0时,如果在器件两端施加正向电压,则晶闸管处于正向阻断状态,只有很小的正向漏电流流过。 如果正向电压超过临界极限即正向转折电压Ubo,则漏电流急剧增大,器件开通。 随着门极电流幅值的增大,正向转折电压降低,晶闸管本身的压降很小,在1V左右。 如果门极电流为零,并且阳极电流降至接近于零的某一数值IH以下,则晶闸管又回到正向阻断状态,IH称为维持电流。 3.使晶闸管导通的条件是什么 答:使晶闸管导通的条件是:晶闸管承受正向阳极电压,并在门极施加触发电流(脉冲)。或:uAK>0且uGK>0。 4.在如下器件:电力二极管(Power Diode)、晶闸管(SCR)、门极可关断晶闸管 (GTO)、电力晶体管(GTR)、电力场效应管(电力MOSFET)、绝缘栅双极型晶体管(IGBT)中,属于半控型器件的是 SCR 。 5.晶闸管的擎住电流I L 答:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流。 6.晶闸管通态平均电流I T(AV) 答:晶闸管在环境温度为40C和规定的冷却状态下,稳定结温不超过额定结温时所允许流过的最大工频正弦半波电流的平均值。标称其额定电流的参数。 7.晶闸管的控制角α(移相角) 答:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

电力电子技术复习要点

电力电子技术复习要点 第一章 电力电子器件及其应用 一、一般性概念 1、什么是场控(电压控制)器件、什么是电流控制器件?什么是半控型器件?什么是全控型器件?什么是复合器件? 2、波形系数的概念,如何利用波形计算相关的平均值、有效值 3、什么是器件的安全工作区,有何用途? 4、什么是器件的开通、关断时间,器件开关速度对电路工作有何影响? 二、二极管 1、常用二极管有哪些类型?各有什么特点? 2、二极管额定电流、额定电压的概念,如何利用波形系数选择二极管额定电流? 三、晶闸管 1、晶闸管的开通、关断条件、维持导通的条件 2、维持电流、擎住电流的概念 3、晶闸管额定电流、额定电压的概念,如何利用波形系数选择晶闸管额定电流? 四、GTR 1、GTR 如何控制工作? 2、GTR 正常工作对控制电流有何要求?为什么? 3、GTR 的安全工作区有何特别?什么是二次击穿现象,有何危害? 4、GTR 额定电流、额定电压的概念,如何利用波形系数选择GTR 额定电流? 五、MOSTFET 、IGBT 1、MOSTFET 、IGBT 如何控制工作? 2、MOSTFET 、IGBT 正常工作对控制电压有何要求?为什么? 3、MOSTFET 、IGBT 额定电流、额定电压的概念,如何利用波形系数选择MOSTFET 、IGBT 管额定电流? 六、如何设计RCD 缓冲电路的参数?各个约束条件的含义?如果增加m ax dt dU 、 瞬态冲击电流I max 限制,其约束条件如何表达?

第二章直流―直流变换电路 一、基本分析基础 1、电路稳态工作时,一个周期电容充放电平衡原理 2、电路稳态工作时,一个周期电感伏秒平衡原理 3、电路稳态工作时,小纹波近似原理 二、Buck、Boost、Buck-Boost、Flyback、Forward电路 1、电感电流连续时,电路稳态工作波形分析 2、利用工作波形分析计算输入输出关系 3、开关元件(VT、VD)的峰值电流、额定电流、承受的电压如何计算? 4、输出纹波如何计算? 第三章直流-交流变换电路 一、单相方波逆变电路 1、单相方波逆变电路控制规律、工作波形分析 2、利用波形分析计算单相方波逆变电路输入电流、电压、功率和输出的电流、 电压、功率 3、单相方波逆变电路移相调压、矩形波调制调压的原理 二、单相SPWM逆变 1、SPWM调制的原理 2、自然采样法、规则采样法、同步调制、异步调制、分段同步调制、幅度调制 比、载波比(频率调制比)的概念 3、桥式电路双极性SPWM逆变的控制方法、输入输出电压关系、如何实现输出 基波的调频调压 4、桥式电路单极性倍频SPWM逆变的控制方法、输入输出电压关系、如何实现 输出基波的调频调压 三、三相逆变 1、三相方波逆变的控制原理、纯电阻负载工作波形分析 2、三相方波逆变纯电阻负载输入、输出的电流、电压、功率计算 3、三相SPWM逆变的控制原理,纯电阻负载工作波形分析

相关主题
文本预览
相关文档 最新文档