当前位置:文档之家› 电源完整性仿真与EMC分析培训讲学

电源完整性仿真与EMC分析培训讲学

电源完整性仿真与EMC分析培训讲学
电源完整性仿真与EMC分析培训讲学

电源完整性仿真与

E M C分析

高速PCB的信号/电源完整性仿真与EMC分析

摘要

本文以高速系统的信号/电源完整性分析和EMC分析的为基本出发点,着重介绍了高速PCB的信号和电源完整性分析的基本要领和设计准则,通过EDA分析工具实现PCB的建模与参数提取;通过电磁场分析工具完成网络参数定量分析,从最基本的设计方法入手,提出了高速PCB的信号/电源系统设计参数优化方案,指出了信号/电源完整性仿真设计和EMC设计的内在联系,最后介绍了利用EDA仿真工具和EMC测试验证相结合解决单板PCB设计的EMI问题的成功范例,希望本文总结的经验能给予正在从事高速系统仿真的设计开发人员和EDA设计人员解决此类问题的基本思路与方法。

关键词

非理想化电容建模、信号/电源完整性分析、EMC分析、应用举例、问题总结

引言

当今的高速PCB设计领域,由于芯片的高集成度使PCB的布局布线密度变大,同时信号的工作频率不断提高,信号边沿(Tr)的不断变陡,由此而引发的信号完整性和电源完整性问题给EDA设计人员和硬件开发人员带来前所未有的挑战,信号/电源完整性问题处理不当同时会带来一系列的EMC问题,给产品的可靠性造成危害。目前,基于Cadence公司SQ的板级与系统级互连仿真已经在公司各事业部广泛应用,在硬件设计流程中引入了SI/PI/EMI的仿真分析环节。网络南

研的信号/电源完整性仿真的最新进展表明:信号完整性与电源完整性分析做的较成功的PCB,电磁兼容性(EMC)也明显改善。

信号/电源完整性分析通过对PCB的信号互连与电源分配系统(PDS)分析,使用EDA与电磁场分析软件找出PCB的噪声点并加以抑制,通过PCB的优化设计改善层间噪声与电源层和地线层之间的阻抗。降低信号的反射和串扰;改进信号的回流路径,降低电源分配系统阻抗,同步开关噪声,消除PCB上关键点和关键频率的谐振,合理放置去耦电容改善电源地的阻抗与谐振,使用屏蔽过孔等措施减小PCB的边缘辐射。

随着信号的Tr变快,产品的EMC问题成为EDA设计的最大难点。EMC问题由来已久,涉及面较广,随着信号速率的提高和芯片尺寸的减少,传统的EMI设计方法显得力不从心。解决EMC问题和解决其它SI问题显著的不同点在于EMC 更依赖于测试,或者是仿真与测试过程两者的融合,不同类型的EMI包括来自于信号互连的连接器,电缆,PCB的连线以及边缘辐射等。

电源和信号完整性对EMI的性能有着直接的影响,从PCB设计阶段控制EMI,能起到事半功倍的作用。我们通常采用下列几种方法来分析并改进信号和电源完整性,从而减小EMI辐射。

1.减少电源地平面间噪声-电源完整性分析

2.优化电源地系统阻抗-电源完整性分析

3.降低串扰和反射-信号完整性分析

4.改善同步开关噪声-信号完整性分析

5.减少边缘辐射-信号完整性/电源完整性分析

一、关于电源完整性仿真的电容建模

1、非理想旁路电容的定义:

在电源系统的设计中,我们经常用到以下的三类电容:

1)旁路电容:主要作用是给交流信号提供低阻抗的回流路径;

2)去耦电容:增加电源和地的交流耦合,减少交流信号对电源的影响;

3)滤波电容:用于电源滤波电路中,消除电源纹波;

在电源完整性仿真中,我们主要研究对象是非理想化的旁路电容。对于理想的电容来说,不考虑寄生电感和等效串联电阻的影响,那么我们在电容设计上就没有任何顾虑,电容的值越大越好。但实际情况却与理论分析相差很远,并不是电容越大对高速电路越有利,反而在高频段往往采用小电容,电容的材料和制造工艺也有要求。要理解这个问题,我们首先必须了解实际电容器本身的特性,在频率很高时,电容不再被当作理想的电容看待。电容的寄生参数的影响不能忽略。考虑到电容具有一定的物理尺寸,以及起连接作用的安装焊盘和过孔,其寄生参数包括一个串联电感和串联电阻,由此得到如图1-1的电容模型。

图1-1

对电容的高频特性影响最大的则是ESR和ESL,我们通常采用图1-1中简化的电容模型。电容也可以看成是一个串联的谐振电路,当它在低频的情况(谐振频率以下),表现为电容性的器件,而当频率增加(超过谐振频率)的时候,它渐渐的表现为电感性的器件。也就是说它的阻抗随着频率的增加先增大后减小,等效阻抗的最小值发生在串联谐振频率处,这时候,电容的容抗和感抗正好抵消,表现为阻抗大小恰好等于寄生串联电阻ESR,变化曲线如图1-2所示:

图1-2

从谐振频率的公式可以看出,电容大小和ESL值的变化都会影响电容器的谐振频率。由于电容在谐振点附近的阻抗最低,所以设计时尽量选用FR和实际工作频率相近的电容。如果工作的频率变化范围很大,则可以混合使用不同容值和FR 电容,即同时选择一些FR较小的大电容和FR较大的小电容。

2、PI仿真电容及分布参数的建模:

非理想旁路电容由ESR、C、ESL、引线和过孔等几部分组成,见图1-3所示。

图1-3

在高速PCB设计中,我们常用的电容引线方式有以下几种,为定量分析各种引线方式的影响和建模的需要,我们从正在设计中的单板中提取了用于分析的样板,见图1-4所示。

图1-4

叠层结构为:

图1-5

常见的电容的引线方式有以下5种,如图1-6所示,其中第5种在焊盘上开孔目前公司的工艺不推荐,在此只作分析,首先,我们分别计算了VCC3.3V到电容管脚的引线和过孔的电感,

图1-6

得到以下5组数据(单位:亨利):

L001 2.82101E-010

L002 2.70197E-010

L003 8.36196E-010

L004 9.23669E-010

L005 3.65286E-010

为了尽量减小引线电感,在设计中我们可以优先采用第2种引线方式,其中第4种引线方式在传统的PCB设计中广泛采用,由于这种引线方式会带来较大的引线电感,建议在高速PCB设计中尽量不要采用。

接下来,我们对电源/地的回路作进一步分析,提取了第二种引线方式的SPICE子电路,得到的结果如下:

VCC3.3V到电容PIN1的子电路为:

.subckt cap_2_via_vcc 1 2 3

C001 4 3 1.27114E-010

V001 1 5 DC 0

L001 5 6 1.39697E-010

R001 6 4 0.00663062

V002 4 7 DC 0

L002 7 8 1.39697E-010

R002 8 2 0.00663062

.ENDS cap_2_via_vcc

电容PIN2到GND的子电路为:

.subckt cap_2_via_gnd 1 2 3

C001 4 3 1.28742E-010

V001 1 5 DC 0

L001 5 6 2.75467E-010

R001 6 4 0.00513052

V002 4 7 DC 0

L002 7 8 2.75467E-010

R002 8 2 0.00513052

.ENDS cap_2_via_gnd

通过以上过程,我们得到了回路所有构件的RLC参数,由此我们可以建立以下电流回路,如图1-7所示。

VCC3.3V -----子电路1----- pin1 ----- 电容(C/ESL/ESR)----- pin2 ----- 子电路2 ----- GND

图1-7

定义各部分子电路的连接关系,我们可以得出电容和引线/过孔对结果的影响,取电容值为:1000pf ;ESL=5E-10;ESR=0.065(AVX),得到无引线电容和考虑过孔与引线电容的频率响应曲线如图所示,其中红色曲线为无引线电容的阻抗-频率曲线,兰色曲线为有引线/过孔的阻抗-频率曲线,我们可以得出分析结果如图1-8所示。

1)由于引线及过孔的分布参数存在,电容的谐振点会向低频率漂移;

2)由于在电源地之间加入了电容、引线及过孔,会带来新的谐振点,在设计中必须充分加以考虑。

图1-8

3、电源完整性仿真电容的建库问题:

根据公司现有的电容库,我们选择出一部分常用于PI仿真的电容如下表(参数取自AVX):

C ESL ESR

X7R 0.1u 5E-10 0.035

0.01u 5E-10 0.097

4700p 5E-10 0.134

3300p 5E-10 0.157

2200p 5E-10 0.186

1000p 5E-10 0.261

NPO 1000p 5E-10 0.065

470p 5E-10 0.09

330p 5E-10 0.1

c

表1-1

由上表的参数,得到如下的无引线电容的阻抗-频率曲线,如图1-9所示。

图1-9 220p

5E-10 0.125 100p

5E-10 0.175 68p 5E-10 0.206

考虑引线与过孔的影响,可以推算出电容加上两端引线和过孔的阻抗-频率响应曲线,如图1-10所示:

图1-10

图1-11反映了有引线/过孔的电容(绿色曲线)和无引线/过孔电容(红色曲线)的阻抗-频率特性的比较,可以看出电容的谐振点有向下漂移的趋势。

图1-11

4、电源完整性分析软件对电容分布参数的计算:

使用SIWAVE也可以分析出电容的引线及过孔的电感对谐振点的影响,将上面的例子转换成siw文件,加入上述参数的电容(NPO 1000pf),设定PORT,得到如图1-12的阻抗-频率曲线。

图1-12

从图1-12可以看出:SIWAVE计算阻抗时已经考虑了引线及过孔的影响,1000pf电容的谐振点已经由225MHz向下漂移到150MHz左右。

【仿真电容问题总结】

1)电容的建模问题是PI仿真非常重要的一步,目前公司采用的电容厂家很多,参数不一致,影响PI仿真结果的准确性。一般国内的电容厂家的ESL/ESR值很难提供,可以借助于仪器测量得到参数;

2)在PCB上完成电容引线时,应该以最小ESL为原则,如:加粗引线,加大过孔等,尽量减小分布电感对谐振点的影响;

3)可以适当采用电容组合;

4)对高频段采用小电容要慎重,以防引线/过孔电感造成实际谐振点的向低漂移与产生新的谐振点(反谐振),高频段应该以改进与优化PCB设计为原则。

二、高速PCB的信号电源完整性分析与EMI控制

PCB板上存在有两个主要辐射源。第一是来自顶层和底层的传输线。假设这些线相对应的参考平面是理想的,那么它们的差模辐射是可以根据导线电流计算得到的。对于顶层和底层的传输线,尤其是时钟,应避免1/4波长的走线;第二个源就是边缘辐射。电磁场从激发区域经过电源地平面间传播到边缘,在那里产生辐射。平面上存在的任何过孔、不连续阻抗等,都将转变为电源/地噪声和边缘辐射,因此,边缘辐射直接和电源/地噪声和电源完整性相关。一块具有良好信号完整性的PCB很自然的具有较低的电源/地噪声和较低的边缘辐射。

下面结合高速PCB的SI和设计过程和本人在设计中积累的经验,介绍一些通用的设计规则和值得注意的设计要点:

1、信号的过冲与振铃:

信号质量是我们首要关注的问题,信号的过冲与振铃会带来一系列可靠性问题,在EMI的测试方面,数据/地址等信号线的过冲与振铃是辐射背景噪声的主要贡献者。

图2-1

解决信号过冲与振铃问题的主要手段是端接,选用适当的拓扑结构等。

在我们进行高速系统级仿真时,往往常常分析的问题是:当CPU通过总线,接插件,板间级连,PCB走线和多个对象通讯时,在不同对象个数、不同信号传输方向的情况下,系统的各个接收端波形会产生很大的差异,采用适当的端接策略可以解决这些SI问题,

下面举例说明:

图2-2

图2-2是一个典型的CPU通过板级互连的点到多点拓扑结构图,在源端已经加匹配电阻端接,以下是CPU发送,IOP5接收,在不同负载的条件下,IOP5的

接收波形,图2-3是IOP6不用,其余3个接收端使用的情况下,IOP5的接收波形,可以看出,接收端有明显的过冲。

图2-3

解决的方法有:更改拓扑结构、调整PCB走线的线长,阻抗、更换器件、调整端接方案等。通过改变图2-2的拓扑结构的端接电阻的位置,得到拓扑结构图2-4,我们得到当IOP6不用,其余3个接收端使用的情况下,IOP5的接收波形,见图2-5。

图2-4

比较图2-3和图2-5可以看出,信号的单调性(monotonic),过冲(Overshoot,undershoot)等方面已经得到了明显的改善,同时,时序的改善也是显而易见的。

图2-5

2、时钟电路的处理

时钟电路的设计和EMI问题切切相关,高速PCB的时钟电路的设计必须遵循严格的设计原则保证SI和PI的要求,由于时钟的周期性,在远场表现为离散的频谱,EMI超标的部分往往是时钟或时钟的谐波,时钟对远场EMI的贡献如图2-6所示。

电工基础知识-技成培训网

电工基础知识 一,通用部分 1,什麽叫电路? 电流所经过的路径叫电路。电路的组成一般由电源,负载和连接部分(导线,开关,熔断器)等组成。 2,什麽叫电源? 电源是一种将非电能转换成电能的装置。 3,什麽叫负载? 负载是取用电能的装置,也就是用电设备。 连接部分是用来连接电源与负载,构成电流通路的中间环节,是用来输送,分配和控制电能的。 4,电流的基本概念是什麽? 电荷有规则的定向流动,就形成电流,习惯上规定正电荷移动的方向为电流的实际方向。 电流方向不变的电路称为直流电路。 单位时间内通过导体任一横截面的电量叫电流(强度),用符号I表示。 电流(强度)的单位是安培(A),大电流单位常用千安(KA)表示,小电流单位常用毫安(mA),微安(μA)表示。 1KA=1000A 1A=1000 mA 1 mA=1000μA 5,电压的基本性质? 1)两点间的电压具有惟一确定的数值。 2)两点间的电压只与这两点的位置有关,与电荷移动的路径无关。 3)电压有正,负之分,它与标志的参考电压方向有关。 4)沿电路中任一闭合回路行走一圈,各段电压的和恒为零。 电压的单位是伏特(V),根据不同的需要,也用千伏(KV),毫伏(mV)和微伏(μV)为单位。 1KV=1000V 1V=1000 mV 1mV=1000μV 6,电阻的概念是什麽? 导体对电流起阻碍作用的能力称为电阻,用符号R表示,当电压为1伏,电流为1安时,导体的电阻即为1欧姆(Ω),常用的单位千欧(KΩ),兆欧(MΩ)。 1 MΩ=1000 KΩ 1 KΩ=1000Ω 7,什麽是部分电路的欧姆定律? 流过电路的电流与电路两端的电压成正比,而与该电路的电阻成反比,这个关系叫做欧姆定律。用公式表示为I=U/R 式中:I——电流(A);U——电压(V);R——电阻(Ω)。 部分电路的欧姆定律反映了部分电路中电压,电流和电阻的相互关系,它是分析和计算部分电路的主要依据。 8,什麽是全电路的欧姆定律?

最新开关电源基础知识

开关电源基础知识

?开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50Hz高很多.所以开关变压器可以做的很小,而且工作时不是很热!成本很低.如果不将50Hz变为高频那开关电源就没有意义 ? ?开关电源大体可以分为隔离和非隔离两种,隔离型的必定有开关变压器,而非隔离的未必一定有. ? ? ? ?开关电源的工作原理是: ? ? ? ? 1.交流电源输入经整流滤波成直流; ? ? 2.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上; ? ? 3.开关变压器次级感应出高频电压,经整流滤波供给负载; ? ? 4.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的. ? ? ?

?交流电源输入时一般要经过厄流圈一类的东西,过滤掉电网上的干扰,同时也过滤掉电源对电网的干扰; ? ?在功率相同时,开关频率越高,开关变压器的体积就越小,但对开关管的要求就越高; ? ?开关变压器的次级可以有多个绕组或一个绕组有多个抽头,以得到需要的输出; ? ?一般还应该增加一些保护电路,比如空载、短路等保护,否则可能会烧毁开关电源 ? ? ? ? ? ?ATX电源的主要组成部分 ? ?EMI滤波电路:EMI滤波电路主要作用是滤除外界电网的高频脉冲对电源的干扰,同时也起到减少开关电源本身对外界的电磁干扰,在优质电源中一般都有两极EMI滤波电路。 ? ? ? ?一级EMI电路:交流电源插座上焊接的是一级EMI电源滤波器电路,这是一块独立的电路板,是交流电输入后所经过的第一组电路,这个由扼流圈和电容组成的低通网络能滤除电源线上的高频杂波和同相干扰信号,

电源基础知识

在通信电源中,主要用到两种类型的电源,分别为线性电源和开关电源,在这篇文档中,主要针对这两种类型的电源电路的工作原理进行简要的介绍,同时对相关参数和电源芯片的选取方法进行了简要介绍。 一、线性电源 这里要介绍的线性电源主要包括低压线性稳压电源LDO电路和芯片内部集成的LDO电路,下面针对这两种电路进行介绍。 1.1 LDO电源 1.1.1 LDO的基本原理 低压差线性稳压器(LDO)的基本电路如图1-1所示,该电路由串联调整管VT、取样电阻R1和R2、比较放大器A组成。 图1-1 低压差线性稳压器基本电路 取样电压加在比较器A的同相输入端,与加在反相输入端的基准电压Uref 相比较,两者的差值经放大器A放大后,控制串联调整管的压降,从而稳定输出电压。当输出电压Uout降低时,基准电压与取样电压的差值增加,比较放大器输出的驱动电流增加,串联调整管压降减小,从而使输出电压升高。相反,若输出电压Uout超过所需要的设定值,比较放大器输出的前驱动电流减小,从而使输出电压降低。供电过程中,输出电压校正连续进行,调整时间只受比较放大器和输出晶体管回路反应速度的限制。 1.1.2 LDO的主要参数 低压差线性稳压器LDO的主要参数如如下几个: 1)输出电压(Output Voltage)

输出电压是低压差线性稳压器最重要的参数,也是电子设备设计者选用稳压器时首先应考虑的参数。低压差线性稳压器有固定输出电压和可调输出电压两种类型。固定输出电压稳压器使用比较方便,而且由于输出电压是经过厂家精密调整的,所以稳压器精度很高。但是其设定的输出电压数值均为常用电压值,不可能满足所有的应用要求,但是外接元件数值的变化将影响稳定精度。 2)最大输出电流(Maximum Output Current) 用电设备的功率不同,要求稳压器输出的最大电流也不相同。通常,输出电流越大的稳压器成本越高。为了降低成本,在多只稳压器组成的供电系统中,应根据各部分所需的电流值选择适当的稳压器。 3)输入输出电压差(Dropout Voltage) 输入输出电压差也是低压差线性稳压器重要的参数。在保证输出电压稳定的条件下,该电压压差越低,线性稳压器的性能就越好。比如,5.0V的低压差线性稳压器,只要输入5.5V电压,就能使输出电压稳定在5.0V。 4)接地电流(Ground Pin Current) 接地电路IGND是指串联调整管输出电流为零时,输入电源提供的稳压器工作电流。该电流有时也称为静态电流,但是采用PNP晶体管作串联调整管元件时,这种习惯叫法是不正确的。通常较理想的低压差稳压器的接地电流很小。5)负载调整率(Load Regulation) 负载调整率可以通过图1-2和式1-1来定义,LDO的负载调整率越小,说明LDO抑制负载干扰的能力越强。 图1-2 Output Voltage&Output Current (1-1) 式中,△Vload—负载调整率 Imax—LDO最大输出电流

电源基础知识

电源基础知识 一、基础概念 1、电流:把单位时间里通过导体任一横截面的电量叫做电流强度,简称电流。通常用字母 I表示,它的单位是安培(A)。 2、电压:电压(voltage),也称作电势差或电位差,是衡量单位电荷在静电场中由于电势 不同所产生的能量差的物理量。其大小等于单位正电荷因受电场力作用从A点移动到B 点所做的功,电压的方向规定为从高电位指向低电位的方向。电压的国际单位制为伏特(V,简称伏),常用的单位还有毫伏(mV)、微伏(μV)、千伏(kV)。 3、电势差:电荷q 在电场中从A点移动到B点,电场力所做的功WAB与电荷量q 的比值, 叫做AB两点间的电势差(AB两点间的电势之差,也称为电位差),用UAB表示,则有 公式:Uab=Wab q 4、欧姆定律:U=IR(I为电流,R是电阻)但是这个公式只适用于纯电阻电路 串联电路电压规律:串联电路两端总电压等于各部分电路两端电压和。公式:ΣU=U1+U2 串联电路中:电流:I总=I1=I2....=In(串联电路中,电路各部分的电流相等) 并联电压之特点,:支压都等电源压,U=U1=U2 并联电路中:I总=I1+I2....+In(并联电路中,干路电流等于各支路电流之和) 5、功率:功率是指物体在单位时间内所做的功的多少,即功率是描述做功快慢的物理量。 功的数量一定,时间越短,功率值就越大。求功率的公式为功率=功/时间。功率表征作功快慢程度的物理量。单位时间内所作的功称为功率,用P表示。故功率等于作用力与物体受力点速度的标量积。 6、电功率计算公式:P=W/t =UI,公式中的P表示功率,单位是“瓦特”,简称“瓦”,符号 是W。1KW=1000W。 7、功率因素:功率因数,是用来衡量用电设备(包括:广义的用电设备,如:电网的变压 器、传输线路,等等)的用电效率的数据。 功率因数的定义公式:功率因数=有功功率/视在功率。 有功功率,是设备消耗了的,转换为其他能量的功率,单位为KVA。 无功功率,是维持设备运转,但是并不消耗的能量。他存在于电网与设备之间,是电网和设备不可缺少的能量部分。但是无功功率如果被设备占用过多,就造成电网效率低下,同时,大量无功功率在电网中来回传送,使得线损高企浪费严重。

相关主题
文本预览
相关文档 最新文档