当前位置:文档之家› 4.4法拉第电磁感应定律_每课一练(人教版选修3-2)

4.4法拉第电磁感应定律_每课一练(人教版选修3-2)

4.4法拉第电磁感应定律_每课一练(人教版选修3-2)
4.4法拉第电磁感应定律_每课一练(人教版选修3-2)

4.4法拉第电磁感应定律

1.(2011年兰州高二检测)如果闭合电路中的感应电动势很大,那一定是因为() A.穿过闭合电路的磁通量很大

B.穿过闭合电路的磁通量变化很大

C.穿过闭合电路的磁通量的变化很快

D.闭合电路的电阻很小

解析:选C.根据法拉第电磁感应定律,感应电动势取决于穿过闭合电路的磁通量的变化率.即磁通量的变化快慢与磁通量大小、磁通量变化量大小、电路电阻无必然联系,所以C项正确,A、B、D错误.

2.穿过一个单匝线圈的磁通量始终保持每秒均匀地减少2 Wb,则()

A.线圈中感应电动势每秒增加2 V

B.线圈中感应电动势每秒减少2 V

C.线圈中无感应电动势

D.线圈中感应电动势大小不变

答案:D

3.一航天飞机下有一细金属杆,杆指向地心.若仅考虑地磁场的影响,则当航天飞机位于赤道上空()

A.由东向西水平飞行时,金属杆中感应电动势的方向一定由上向下

B.由西向东水平飞行时,金属杆中感应电动势的方向一定由上向下

C.沿经过地磁极的那条经线由南向北水平飞行时,金属杆中感应电动势的方向一定由下向上

D.沿经过地磁极的那条经线由北向南水平飞行时,金属杆中一定没有感应电动势解析:选AD.赤道上方的地磁场方向由南指向北,根据右手定则,飞机由东向西水平飞行时,下端电势高,故A对,B错.若飞机沿经线由南向北或由北向南水平飞行时,杆均不切割磁感线,杆中不会产生感应电动势,故C错,D正确.

图4-4-10

4.如图4-4-10所示,在竖直向下的匀强磁场中,将一水平放置的金属棒ab以水平初速度v0抛出,设在整个过程中棒的方向不变且不计空气阻力,则在金属棒运动过程中产生的感应电动势大小变化情况是()

A.越来越大

B.越来越小

C.保持不变

D.无法判断

解析:选C.金属棒水平抛出后,在垂直于磁场方向上的速度不变,由E=Bl v知,电动势也不变,故C正确.

图4-4-11

5.如图4-4-11所示,将直径为d,电阻为R的闭合金属环从匀强磁场B拉出,求这一过程中

(1)磁通量的改变量.

(2)通过金属环某一截面的电量.

解析:(1)由已知条件得金属环的面积S =π(d 2)2=πd 2

4

磁通量的改变量

ΔΦ=BS =πd 2B

4

.

(2)由法拉第电磁感应定律E =ΔΦ

Δt

又因为I =E

R ,q =I t

所以q =ΔΦR =πd 2B

4R

.

答案:(1)πd 2B 4 (2)πd 2B

4R

一、选择题

1.一闭合线圈,放在随时间均匀变化的磁场中,线圈平面和磁场方向垂直,若想使线圈中感应电流增强一倍,下述哪些方法是可行的( )

A .使线圈匝数增加一倍

B .使线圈面积增加一倍

C .使线圈匝数减少一半

D .使磁感应强度的变化率增大一倍

解析:选D.根据E =n ΔΦΔt =n ΔB

Δt

S 求电动势,要考虑到当n 、S 发生变化时导体的电阻

也发生了变化.若匝数增加一倍,电阻也增加一倍,感应电流不变,故A 错.同理C 错.若面积增加一倍,长度为原来的2倍,因此电阻为原来的2倍,电流为原来的2倍,故B 错.正确选项为D.

2.将一磁铁缓慢或者迅速地插到闭合线圈中的同一位置处,不会发生变化的物理量是( )

A .磁通量的变化量

B .磁通量的变化率

C .感应电流的大小

D .流过导体横截面的电荷量

解析:选AD.将磁铁插到闭合线圈的同一位置,磁通量的变化量相同.而用的时间不

同,所以磁通量的变化率不同.感应电流I =E R =ΔΦ

Δt ·R

,感应电流的大小不同,流过线圈横

截面的电荷量q =I ·Δt =ΔΦR ·Δt

·Δt =ΔΦ

R ,两次磁通量的变化量相同,电阻不变,所以q 与磁

铁插入线圈的快慢无关.选A 、D.

3.如图4-4-12甲所示,圆形线圈中串联了一个平行板电容器,圆形线圈中有磁场,磁感应强度B 随时间t 按图乙所示正弦规律变化.以垂直纸面向里的磁场为正.关于电容器极板的带电情况,以下判断正确的是( )

图4-4-12

A.第二个T

4内,上板带正电

B.第二个T

4内,下板带正电

C.第三个T

4内,上板带正电

D.第三个T

4内,下板带正电

解析:选BD.第二个T

4内,磁感应强度向里减小(磁通量减小),若有感应电流的话,感

应电流的磁场向里,应是顺时针方向的电流,则电容器的下极板带正电.第三个T

4内,磁感

应强度向外增大,感应电流的磁场仍向里,电容器的下板电势高,所以下板带正电.

图4-4-13

4. (2010年高考课标全国卷)如图4-4-13所示,两个端面半径同为R的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R时铜棒中电动势大小为E1,下落距离为0.8R时电动势大小为E2.忽略涡流损耗和边缘效应.关于E1、E2的大小和铜棒离开磁场前两端的极性,下列判断正确的是()

A.E1>E2,a端为正

B.E1>E2,b端为正

C.E1<E2,a端为正

D.E1<E2,b端为正

解析:选D.设下落距离为d,则铜棒在匀强磁场中切割磁感线的等效长度l=2R2-d2,铜棒做的是自由做落体运动,故v2=2gd,v=2gd,故有E=Bl v=B·2R2-d2·2gd=2B2gd(R2-d2),将d1=0.8 R,代入后比较得E1<E2;据安培定则知缝隙处的磁场方向水平向左,再由右手定则知b端等效为电源正极,电势高,选D.

图4-4-14

5.(2010年高考山东卷)如图4-4-14所示,空间存在两个磁场,磁感应强度大小均为B,方向相反且垂直纸面,MN、PQ为其边界,OO′为其对称轴.一导线折成边长为l的正方形闭合回路abcd,回路在纸面内以恒定速度v0向右运动,当运动到关于OO′对称的位置时()

A.穿过回路的磁通量为零

B.回路中感应电动势大小为2Bl v0

C.回路中感应电流的方向为顺时针方向

D.回路中ab边与cd边所受安培力方向相同

解析:选ABD.正方形闭合回路运动到关于OO′对称的位置时,穿过回路的合磁通量为零,A正确;由右手定则可判断ab边上的电流方向为由a到b,cd边上的电流方向为由c到d,所以回路中感应电流的方向为逆时针方向,C错误;由法拉第电磁感应定律可知回路中感应电动势大小为E感=E ab+E cd=2Bl v0,B正确;由左手定则可判定出回路中ab边

与cd 边所受安培力方向相同,都是水平向左的,D 正确.

图4-4-15

6.(2011年高考江苏物理卷)如图4-4-15所示,水平面内有一平行金属导轨,导轨光滑且电阻不计,匀强磁场与导轨平面垂直.阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触良好.t =0时,将开关S 由1掷到2.q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.下列图象正确的是( )

图4-4-16

解析:选D.导体棒做加速度减小的加速运动,直至匀速.故q -t 图象应如图甲所示,A 错;i -t 图象应如图乙所示,B 错;v -t 图象应如图丙所示,C 错.D 对.

图4-4-17

7.如图4-4-17所示,圆环a 和b 的半径之比R 1∶R 2=2∶1,且是粗细相同,用同样材料的导线构成,连接两环的导线电阻不计,匀强磁场的磁感应强度始终以恒定的变化率变化,那么,当只有a 环置于磁场中与只有b 环置于磁场中两种情况下,A 、B 两点的电势差之比为( )

A .1∶1

B .2∶1

C .3∶1

D .4∶1

解析:选B.设b 环的面积为S ,由题可知a 环的面积为4S ,若b 环的电阻为R ,则a 环的电阻为2R .

当只有a 环置于磁场中时,a 环等效为内电路,b 环等效为外电路,A 、B 两端的电压

为路端电压,根据法拉第电磁感应定律E =ΔΦΔt =4ΔBS Δt ,U AB =ER R +2R =4S ΔB

3Δt

当只有b 环置于磁场中时

E ′=ΔΦΔt =ΔBS

Δt ,U ′AB =E ′2R R +2R =2R ΔBS 3R Δt =2S ΔB 3Δt

所以U AB ∶U ′AB =2∶1.故选项B 正确.

图4-4-18

8.如图4-4-18所示,粗细均匀的、电阻为r 的金属圆环,放在图示的匀强磁场中,磁感应强度为B ,圆环直径为l ;长为l 、电阻为r /2的金属棒ab 放在圆环上,以v 0向左运动,当ab 棒运动到图示虚线位置时,金属棒两端的电势差为( )

A .0

B .Bl v 0 C.Bl v 02 D.Bl v 03

解析:选D.切割磁感线的金属棒ab 相当于电源,其电阻相当于电源内阻,当运动到虚线位置时,两个半圆金属环相当于并联,可画

出如图所示的等效电路图.R 外=R 并=r 4,I =E

R 外+r 2=Bl v 034r

=4Bl v 03r .金

属棒两端电势差相当于路端电压U ab =IR 外=4Bl v 03r ×r 4=1

3

Bl v 0.

图4-4-19

9.(2011年成都高二检测)如图4-4-19所示,导线OA 长为l ,在匀强磁场中以角速度ω沿图所示方向绕通过悬点O 的竖直轴旋转,OA 与竖直方向的夹角为θ.那么,OA 导线中的感应电动势大小和O 、A 两点电势高低( )

A .Bl 2ω O 点高

B .Bl 2ω A 点高 C.1

2Bl 2ωsin 2θ O 点高 D.1

2

Bl 2ωsin 2θ A 点高 解析:选D.OA 切割磁感线的有效长度等于圆半径,即:R =l ·sin θ,产生的电动势E =12BR 2ω=1

2

Bl 2ωsin 2θ,由右手定则判断知A 点电势高,所以D 正确. 二、非选择题

10.(2011年南京高二检测)一个边长为a =1 m 的正方形线圈,总电阻为R =2 Ω,当线圈以v =2 m/s 的速度通过磁感应强度B =0.5 T 的匀强磁场区域时,线圈平面总保持与磁场垂直.若磁场的宽度b >1 m ,如图4-4-20所示,求:

图4-4-20

(1)线圈进入磁场过程中感应电流的大小;

(2)线圈在穿过整个磁场过程中释放的焦耳热.

解析:(1)根据E =Bl v ,I =E

R 知

I =

Ba v R =0.5×1×2

2

A =0.5 A (2)线圈穿过磁场过程中,由于b >1 m ,故只在进入和穿出时有感应电流,故

Q =2I 2Rt =2I 2R ·a v =2×0.52

×2×12 J =0.5 J.

答案:(1)0.5 A (2)0.5 J

11.(2011年通州市调研)如图4-4-21甲所示,水平放置的线圈匝数n =200匝,直径d 1=40 cm ,电阻r =2 Ω,线圈与阻值R =6 Ω的电阻相连.在线圈的中心有一个直径d 2=20 cm 的有界匀强磁场,磁感应强度按图乙所示规律变化,规定垂直纸面向里的磁感应强度方向为正方向.试求:

图4-4-21

(1)通过电阻R 的电流方向; (2)电压表的示数;

(3)若撤去原磁场,在图中虚线的右侧空间加磁感应强度B =0.5 T 的匀强磁场,方向垂直纸面向里,试证明将线圈向左拉出磁场的过程中,通过电阻R 上的电荷量为定值,并求出其值.

解析:(1)电流方向从A 流向B .

(2)由E =n ΔΦΔt 可得:E =n πd 22ΔB

4Δt

,E =I (R +r ),U =IR

解得:U =1.5π V =4.7 V .

(3)设线圈拉出磁场经历时间Δt E =n ΔΦΔt =n πd 21B

4Δt ,I =E R +r

,电荷量q =I Δt

解得:q =n πd 21B

4(R +r )

,与线圈运动的时间无关,即与运动的速度无关.代入数据得:q

=0.5π C =1.57 C.

答案:(1)从A 流向B (2)4.7 V (3)证明见解析 1.57 C

图4-4-22

12.如图4-4-22所示,一水平放置的平行导体框宽度L =0.5 m ,接有R =0.2 Ω的电阻,磁感应强度B =0.4 T 的匀强磁场垂直导轨平面方向向下,现有一导体棒ab 跨放在框架上,并能无摩擦地沿框架滑动,框架及导体棒ab 电阻不计,当ab 以v =4.0 m/s 的速度向右匀速滑动时,试求:

(1)导体棒ab 上的感应电动势的大小及感应电流的方向;

(2)要维持ab 向右匀速运动,作用在ab 上的水平外力为多少?方向怎样? (3)电阻R 上产生的热功率多大?

解析:(1)导体棒ab 垂直切割磁感线,产生的电动势大小为E =BL v =0.4×0.5×4.0 V =0.8 V ,

由右手定则知感应电流的方向由b向a.

(2)导体棒ab相当于电源,由闭合电路欧姆定律得

回路电流I=

E

R+r

0.8

0.2+0

A=4.0 A,

导体棒ab所受的安培力

F=BIL=0.4×0.5×4.0 N=0.8 N,

由左手定则知其方向水平向左.

ab匀速运动,所以水平拉力F′=F=0.8 N,方向水平向右.(3)R上的热功率:P=I2R=4.02×0.2 W=3.2 W.

答案:(1)0.8 V由b向a(2)0.8 N水平向右

(3)3.2 W

《4.4法拉第电磁感应定律教案》

4.4法拉第电磁感应定律 【教学目标】 (1)知道感应电动势,及决定感应电动势大小的因素。 (2)知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 t ??Φ。 (3)理解法拉第电磁感应定律内容、数学表达式。 (4)知道E =BLv sin θ如何推得。 【教学重点】法拉第电磁感应定律。 【教学难点】感应电流与感应电动势的产生条件的区别。 【教学方法】自主学习 合作探究 巩固延伸 【教学过程】 一、复习提问:1、在电磁感应现象中,产生感应电流的条件是什么? 2、恒定电流中学过,电路中存在持续电流的条件是什么? 3、在发生电磁感应的情况下,用什么方法可以判定感应电流的方向? 二、引入新课 1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢? 2、问题2:如图所示,在螺线管中插入一个条形磁铁,问 ①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么? ②、有感应电流,是谁充当电源? ③、上图中若电路是断开的,有无感应电流电流?有无感应电动势? 3、产生感应电动势的条件是什么?4、比较产生感应电动势的条件和产生感应电流的条件你有什么发现? 三、进行新课 (一)、探究影响感应电动势大小的因素 (1)猜测:感应电动势大小跟什么因素有关?(2)探究问题: 问题1、在实验中,电流表指针偏转原因是什么? 问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:在实验中,快速和慢速效果有什么相同和不同? 实验结论电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大,磁通量的变化越慢电动势越小。 (二)、法拉第电磁感应定律 a b G E r

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

物理法拉第电磁感应定律的专项培优练习题及答案

物理法拉第电磁感应定律的专项培优练习题及答案 一、法拉第电磁感应定律 1.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I 内有方向垂直于斜面的匀强磁场,磁感应强度为B ;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度B t 的大小随时间t 变化的规律如图(b )所示。t =0时刻在轨道上端的金属细棒ab 从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd 在位于区域I 内的导轨上由静止释放。在ab 棒运动到区域Ⅱ的下边界EF 处之前,cd 棒始终静止不动,两棒均与导轨接触良好。已知cd 棒的质量为m 、电阻为R ,ab 棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为2l ,在t =t x 时刻(t x 未知)ab 棒恰进入区域Ⅱ,重力加速度为g 。求: (1)通过cd 棒电流的方向和区域I 内磁场的方向; (2)ab 棒开始下滑的位置离EF 的距离; (3)ab 棒开始下滑至EF 的过程中回路中产生的热量。 【答案】(1)通过cd 棒电流的方向从d 到c ,区域I 内磁场的方向垂直于斜面向上;(2)3l (3)4mgl sin θ。 【解析】 【详解】 (1)由楞次定律可知,流过cd 的电流方向为从d 到c ,cd 所受安培力沿导轨向上,由左手定则可知,I 内磁场垂直于斜面向上,故区域I 内磁场的方向垂直于斜面向上。 (2)ab 棒在到达区域Ⅱ前做匀加速直线运动, a = sin mg m θ =gs in θ cd 棒始终静止不动,ab 棒在到达区域Ⅱ前、后,回路中产生的感应电动势不变,则ab 棒在区域Ⅱ中一定做匀速直线运动,可得: 1Blv t ?Φ =? 2(sin )x x B l I BI g t t θ??= 解得 2sin x l t g θ = ab 棒在区域Ⅱ中做匀速直线运动的速度

高中物理-法拉第电磁感应定律教案

高中物理-法拉第电磁感应定律教案 教学目标:知识与技能1、知道什么是感应电动势。2、了解什么是磁通量以及磁通量的变化量和磁通量的变化率。3、在实验基础上,了解法拉第电磁感应定律内容及数学表达式,学会用该定律分析与解决一些简单的问题。4、培养类比推理和通过观察、实验、归纳寻找物理规律的能力。 过程与方法通过推导到线切割磁感线时的感应电动势公式t n E ??Φ=,掌握运用理论知识探究问题的方法 情感态度与价值观从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想;了解法拉第探索科学的方法,学习他的执著的科学探究精神 教学重点:法拉第电磁感应定律 教学难点:磁通量的理解 教具:磁铁、螺线管、电流表、学生电源、电键、滑动变阻器、小螺线管A 、大螺线管B 教学过程: 一、感应电动势 说明:既然在闭合电路中产生了感应电流,这个电路中就一定有电动势。我们把电磁感应现象中产生的电动势叫做感应电动势。在闭合电路里,产生感应电动势的那部分导体相当十电源。在同一个电路中,感应电动势越大,感应电流越大。那么,感应电动势的大小跟什么因素有关呢?请看实验 演示实验:实验装置:图3 .1-2 和图3.1-3 实验过程:在图3.1 -2中,使导体捧以不同的速度切割磁感线,砚察电流表指针偏转的幅度。 实验结论:在导线切割磁感线的过程中,切割速度越大,感应电动势越大 实验过程:在图3.1-3 中,使磁铁以不同的速度插入线圈和从线圈中抽出,观察电流表指针偏转的幅度。 实验结论:在磁铁插入和从线圈中拔出的过程中,插入和拔出的速度越大,感应电动势越大 说明:导体捧以较大的速度切割磁感线,和磁体以较大的速度插入线圈和从线圈中抽出,都使线圈中的磁通量发生变化,且磁通量变化的速度比较大 说明:许多实验都表明,感应电动势的大小跟磁通变化的快慢有关。我们用磁通

《法拉第电磁感应定律》教学案例

法拉第电磁感应定律教学设计 鹿城中学理化生教研组田存群 课程背景: “法拉第电磁感应定律”是高二物理选修(3-2)中的第四章第4节内容,是电磁学的核心内容。从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础。从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。 鉴于此部分知识较抽象,而我的学生的抽象思维能力较弱。在这节课的教学中,我注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简,使同学们利用已掌握的旧知识,来理解所要学习的新概念。力求通过明显的实验现象诱发同学们真正的主动起来,从而激发兴趣,变被动记忆为主动认识。 课程详述: 一.教学目标: 1.知道感应电动势,能区分磁通量的变化Δφ和磁通量的变化率Δφ/Δt。 通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力。 2.通过法拉第电磁感应定律的建立,进一步定量揭示电与磁的关系,培养学生类比推理能力和通过观察、实验寻找物理规律.使学生明确电磁感应现象中的电路结构,通过对公式E=nΔφ/Δt的理解,引导学生推导出E=BLv,并学会初步的应用。 3.通过介绍法拉第的生平事迹,使学生了解法拉第探索科学的方法和执著的科学研究精神,教育学生加强学习的毅力和恒心。 二.教学重点: 法拉第电磁感应定律的建立过程及规律理解。 三.教学难点: 1.磁通量、磁通量的变化量、磁通量的变化率三者的区别。 2.理解E=nΔφ/Δt是普遍意义的公式,而E=BLv是特殊情况下导线在切割磁感线情况下的计算公式。 四.教具:

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

物理法拉第电磁感应定律的专项培优练习题及答案

一、法拉第电磁感应定律 1.如图所示,正方形单匝线框bcde边长L=0.4 m,每边电阻相同,总电阻R=0.16 Ω.一根足够长的绝缘轻质细绳跨过两个轻小光滑定滑轮,一端连接正方形线框,另一端连接物体P,手持物体P使二者在空中保持静止,线框处在竖直面内.线框的正上方有一有界匀强磁场,磁场区域的上、下边界水平平行,间距也为L=0.4 m,磁感线方向垂直于线框所在平面向里,磁感应强度大小B=1.0 T,磁场的下边界与线框的上边eb相距h=1.6 m.现将系统由静止释放,线框向上运动过程中始终在同一竖直面内,eb边保持水平,刚好以v =4.0 m/s的速度进入磁场并匀速穿过磁场区,重力加速度g=10 m/s2,不计空气阻力. (1)线框eb边进入磁场中运动时,e、b两点间的电势差U eb为多少? (2)线框匀速穿过磁场区域的过程中产生的焦耳热Q为多少? (3)若在线框eb边刚进入磁场时,立即给物体P施加一竖直向下的力F,使线框保持进入磁场前的加速度匀加速运动穿过磁场区域,已知此过程中力F做功W F=3.6 J,求eb边上产生的焦耳Q eb为多少? 【答案】(1)1.2 V(2)3.2 J(3)0.9 J 【解析】 【详解】 (1)线框eb边以v=4.0 m/s的速度进入磁场并匀速运动,产生的感应电动势为: 10.44V=1.6 V E BLv ==?? 因为e、b两点间作为等效电源,则e、b两点间的电势差为外电压: U eb=3 4 E=1.2 V. (2)线框进入磁场后立即做匀速运动,并匀速穿过磁场区,线框受安培力: F安=BLI 根据闭合电路欧姆定律有: I=E R 联立解得解得F安=4 N

法拉第电磁感应专题大题

法拉第电磁感应定律专题 1.如图所示,宽度L二的足够长的平行光滑金属导轨固定在绝缘水平面上,导 轨的一端连接阻值R=Q的电阻。导轨所在空间存在竖直向下的匀强磁场,磁感应强度B=.—根质量m=10g的导体棒MN放在导轨上,并与导轨始终接触良好,导轨和导体棒的电阻均可忽略不计。现用垂直MN的水平拉力F拉动导体棒使其沿导轨向右匀速运动,速度v=s,在运动过程中始终保持导体棒与导轨垂直。求: (1)在闭合回路中产生感应电流I的大小; (2)作用在导体棒上拉力F的大小; (3)当导体棒移动50cm时撤去拉力,求整个过程中电阻R上产生的热量Q。 X X 乂MX XXX Q, R2=6Q,整个装置放在磁感应强度为B=的匀强磁场中,磁场方向垂直与整个导轨平面,现用外力F拉着AB向右以v=5m/s速度作匀速运动.求: (1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向, (2)导体棒AB两端的电压U. 3.如图所示,半径为R的圆形导轨处在垂直于圆平面的匀强磁场中,磁感应 强度为B,方向垂直于纸面向内。一根长度略大于导轨直径的导体棒MN以速率v在圆导轨上从左端滑到右端,电路中的定值电阻为r,其余电阻不计, 导体棒与圆形导轨接触良好。求: (1)在滑动过程中通过电阻r的电流的平均值; (2)MN从左端到右端的整个过程中,通过r的电荷量; (3)当MN通过圆导轨中心时,通过r的电流是多大 2.如图所示,两个光滑金属导轨(金属导轨电阻忽略不计)相距L=50cm, 导体棒AB的电阻为r=1 Q,且可以在光滑金属导轨上滑动,定值电阻R1=3 4?如图(a)所示,平行金属导轨MN、PQ光滑且足够长,固定在同一水平面上,两导轨间距L=,电阻R=Q,导轨上停放一质量m =、电阻r =Q的金属杆, 导轨 X X n n XXX F X X X [x X XXX X X i/ X X X

法拉第的电磁感应实验

法拉第的电磁感应实验 作者:不详日期:2006-11-2 来源:本站点击: 我们现在生活在一个电气时代里:电动机在工厂里轰鸣,电车在飞驰,电灯照亮了千家万户,电视机在播放节目,电脑在运作……由于有了电,旧时代许多令人神往的幻想已变成了现实。如今电气业给我们创造的这一切福利和文明,都起源于1831年10月17日法拉第的一次具有划时代意义和意外的电磁实验成功。由于这次成功,法拉第制造了世界上第一台电磁感应发电机;由于这次成功,人类制造出今天的发电机、电动机、水电站,以及一切电力站网。 法拉第(1791~1867)出生于英国伦敦一个铁匠家里。由于家庭贫困,他12岁时就到一家书店当学徒。由于经常接触图书,他发现书里有许多自己从不知道的事物,书籍简直是知识的海洋。从此以后他开始刻苦自学,认真读书,发奋要成为一个有学识的人。他不仅认真阅读电学、化学方面的书籍,而且用平日节约下来的一点钱买了几件实验仪器,按书中所说的做起实验来。 法拉第不仅向书本学习,还利用一切机会向当时著名的科学家学习,买票听他们的讲演,认真做记录。1810年春天,法拉第凑钱去听科学家塔特林讲解自然科学。他每晚都将所做的记录整理誊清。特别对法拉第人生具有重大转折意义的是,他于1812年时到英国皇家学院去听著名科学家戴维的化学讲演。正是从此开始,他踏上了献身科学的道路。 他大胆地给戴维先生写了封信,而且将听讲的记录全寄去了。他在信中说明了自己对科学的热爱,并且渴望能在皇家学会得到一份工作。戴维看到了他的严肃认真和对科学的热情,竟然答应了他的请求,介绍他到皇家学院当助理员,担任了戴维的实验助手。 实验室的工作为法拉第提供了优越的条件。他可以自由地利用图书馆,获得各种资料,从而可以发展各方面的知识。作为戴维的助手和随从,法拉第又获得了到欧洲大陆进行科学考察的机会。尽管在旅行中受到戴维夫人的凌辱,以及其他不公正的待遇,但法拉第借这次机会却增长了知识,结交了朋友,了解了当时各国的科学状况。

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

法拉第电磁感应定律高三物理一轮专题.docx

法拉第电磁感应定律 例 1. 如图 3 所示,边长为 a 的正方形闭合线框 ABCD 在匀强磁场中绕 AB 边匀速转动,磁感应强度为 B,初时刻线框所在平面与磁感应线垂直,经过 t 时间转 过 120°角,求:(1)线框内感应电动势在 t 时间内 的平均值; ( 2)转过 120°角时感应电动势的瞬时值 . 例 2 A 、B 两闭合圆形导线环用相同规格的导线制成,他们的半径之比为 rA:rB = 2:1 ,在导线环保会的匀强磁场区域,磁场方向垂直于导线环平面,如图,当磁场的磁感应强度随时间均匀增大过程中,求两导线 环内产生的感应电动势之比和流过两导线环的感 应电流大小之比 例 3.. 如图 5 所示,闭合导线框的质量可以忽略不计,将它从图示位置匀速拉出匀强磁场。若第一次用 0.3s 时间拉出,外力所做的功为 W1,通过导线截面 的电 量为 q 1;第二次用 0.9s 时间拉出,外力所做的功为W2,通过导线截面的电量为 q 2,则() A. W1W2,q1q2 B. W 1W2,q1q2 C. W1W2,q1q2 D.W1W2, q1q2 例 4. 一直升机停在南半球的地磁极上空,该处地磁场叶片的长度为 l,螺旋桨转动的频率为 f ,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动 .螺 旋桨叶片的近轴端为 a ,远轴端为 b ,如图所示 . 如果 忽略 a 到转轴中心线的距离,用 E 表示每个叶片 中的感应电动势,则() A.E=πfl2B, 且 a 点电势低于 b 点电势 B.E=2πfl2B ,且 a 点电势低于 b 点电势 C.E=πfl2B ,且 a 点电势高于 b 点电势 D.E=2πfl2B ,且 a 点电势高于 b 点电势 例5 如图所示,一导线弯成半径为a 的半圆形闭合回路。虚线 MN 右侧有磁感应强度为 B 的匀强磁场。方向垂直 于回路所在的平面。回路以速度 v 向右匀速进入磁场,直径 CD 始络与 MN 垂直。从 D 点到达 边界开始到 C 点进入磁场为止,下列结论正确的是 () A 感应电流方向不变 B .CD段直线始 终不受安培力 C 感应电动势最大值 E=Bav D 感应电动势平均 值 E=0.25πBav y v R B O x

(计算题)法拉第电磁感应定律及其应用专题训练

法拉第电磁感应定律及其应用专题训练 计算题部分 1.如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距L为1m,电阻不计.导轨所在的平面与磁感应强度B为1T的匀强磁场垂直.质量m=0.2kg、电阻r=1Ω的金属杆ab始终垂直于导轨并与其保持光滑接触,导轨的上端有阻值为R=3Ω的灯泡.金属杆从静止下落, 当下落高度为h=4m后灯泡保持正常发光.重力加速度为g=10m/s2.求: (1)灯泡的额定功率; (2)金属杆从静止下落4m的过程中通过灯泡的电荷量; (3)金属杆从静止下落4m的过程中所消耗的电能 2.如图所示,两根足够长的光滑直金属导轨MN、PQ平行固定在倾角θ=37°的绝缘斜面上,两导轨间距L=1m,导轨的电阻可忽略.M、P两点间接有阻值为R的电阻.一根质量m=1kg、电阻r=0.2Ω的均匀直金属杆ab放在两导轨上,与导轨垂直且接触良好.整套装置处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直斜面向下.自图示位置起,杆ab受到大小为F=0.5v+2(式中v为杆ab运动的速度,力F的单位为N)、方向平行导轨沿斜面向下的拉力作用,由静止开始运动,测得通过电阻R的电流随时间均匀增大.g取10m/s2,sin37°=0.6. (1)试判断金属杆ab在匀强磁场中做何种运动,并请写出 推理过程; (2)求电阻R的阻值; (3)求金属杆ab自静止开始下滑通过位移x=1m所需的时 间t. 3.如图,两根相距l=0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连。导轨x>0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k=0.5T/m,x=0处磁场的磁感应强度B0=0.5T。一根质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直。棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变。求: (1)电路中的电流; (2)金属棒在x=2m处的速度; (3)金属棒从x=0运动到x=2m过程中安培力做功的大小; (4)金属棒从x=0运动到x=2m过程中外力的平均功率

3.法拉第电磁感应定律

学案《法拉第电磁感应定律》 【基础知识】: 1.内容:电路中感应电动势的大小,跟穿过这个电路的 成正比. 2.公式:E = ,其中n 为 ,ΔΦ总是 该公式一般用来求Δt 时间内感应电动势的 3.对法拉第电磁感应定律的理解 (1)磁通量的变化率ΔΦ Δt 和磁通量Φ (填“有”或“没有”)直接关系. Φ很大时,ΔΦΔt 可能很小,也可能很大;Φ=0时,ΔΦ Δt 可能不为0. (2)E =n ΔΦ Δt 有两种常见形式: ①线圈面积S 不变,磁感应强度B 均匀变化,则E =n ΔB Δt ·S ; ②磁感应强度B 不变,线圈面积S 均匀变化,则E =nB ·ΔS Δt .(其中ΔΦΔt 是Φ-t 图像上某点切线的斜率. ΔB Δt 为B -t 图像上某点切线的斜率) (3)产生感应电动势的那部分导体相当于 如果电路没有闭合,这时虽然没有 ,但感应电动势依然存在. 【实验方案设计】: 物理量 物理意义 与电磁感应的关系 磁通量Ф 磁通量变化△Ф 磁通量变化率 ΔΦ/Δt 【反馈练习】: 1、下列说法正确的是( ) A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中的磁通量越大,线圈中产生的感应电动势一定越大 C.线圈处在磁场越强的位置,线圈中产生的感应电动势一定越大 D.线圈中磁通量变化得越快,线圈中产生的感应电动势越大 2、单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场。若线圈所围面积里磁通量随时间变化的规律如图所示,则:( ) A 、线圈中0时刻感应电动势最大 B 、线圈中D 时刻感应电动势为零 C 、线圈中D 时刻感应电动势最大 D 、线圈中0到D 时间内平均感应电动势为0.4V 【本节优化训练设计】: 1.某单匝闭合线圈电阻是1 Ω,当穿过它的磁通量始终以每秒2 Wb 速率减小时,则 ( ) A.线圈中感应电动势一定每秒降低2 V B.线圈中感应电动势一定是2 V C.线圈中感应电流一定每秒减少2 A D.线圈中感应电流一定是2 A 2.穿过一个单匝闭合线圈的磁通量始终为每秒钟均匀地增加2 Wb,则 ( ) A.线圈中的感应电动势每秒钟增加2 V B.线圈中的感应电动势每秒钟减少2 V C.线圈中的感应电动势始终是2 V D.线圈中不产生感应电动势 3.N 匝线圈的总电阻为R,当它的磁通量由Φ1变到Φ2的过程中,通过线圈截面的总电量为 ( ) A.N(Φ2-Φ1)/ R B.(Φ2-Φ1)NR C.(Φ1-Φ2)/R D.R(Φ2-Φ1)/N 4.如图匀强磁场中,B=0.4 T,导体ab 长l=40 cm,以v=5 m/s 速度匀速向左运动,框架电阻不计,R ab=0.5 Ω.求:(1)导体向右匀速运动时,I 感多大? (2)感应电功率多大? (猜想):感应电动势的大小可能与哪些因素有关 试验方法 实验器材 电流表1只,条形磁铁2个,1000匝的线圈1个,2000匝的线圈1个,导线 实验步骤

法拉第电磁感应定律知识点及例题

第3讲 法拉第电磁感应定律及其应用 一、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 二、法拉第电磁感应定律 公式一: t n E ??=/φ 注意: 1)该式普遍适用于求平均感应电动势。 2)E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫 磁感应强度的变化率, 若 ??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。 2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: θsin Blv E = 要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。 2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 如图1所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动, 转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 显然, AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的线速度大小与半径成 正比, 所以AC 切割的速度可用其平均切割速v v v v l A C C =+==222ω, 故2 2 1l B E ω=。 ω2 2 1BL E = ——当长为L 的导线,以其一端为轴,在垂直匀强磁场B 的平面内,以角速度ω匀速转动时,其两端感应电动势为E 。

人教版高中物理选修3-24.法拉第电磁感应定律

高中物理学习材料 (灿若寒星**整理制作) 第4章第4节 (本栏目内容,在学生用书中以活页形式分册装订!) 一、选择题 1.如下图所示的几种情况中,金属导体中产生的感应电动势为Bl v的是() A.乙和丁B.甲、乙、丁 C.甲、乙、丙、丁D.只有乙 解析:公式E=Bl v中的l应指导体的有效切割长度,甲、乙、丁中的有效长度均为l,电动势E=Bl v,而丙有效长度为l sin θ,电动势E=Bl v sin θ,故B项正确.答案: B 2.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,如线圈所围面积里的磁通量随时间变化的规律如下图所示,则线圈中() A.0时刻感应电动势最大 B.0.05 s时感应电动势为零 C.0.05 s时感应电动势最大 D.0~0.05 s这段时间内平均感应电动势为0.4 V

解析: 由法拉第电磁感应定律E =ΔΦΔt ,在Φ-t 图象ΔΦ Δt 为某点斜率,0时刻和0.1 s 时刻斜率绝对值最大,表明电动势值最大,0.05 s 时刻斜率为零,则电动势为零,0~0.05 s 时间内平均感应电动势为0.4 V ,故选项A 、B 、D 正确. 答案: ABD 3.在匀强磁场中,有一个接有电容器的导线回路,如下图所示,已知电容C =30 μF ,回路的长和宽分别为L 1=8 cm ,L 2=5 cm ,磁场以5×10- 2 T/s 的速率增强,则( ) A .电容器带电荷量为2×10- 9 C B .电容器带电荷量为4×10- 9 C C .电容器带电荷量为6×10-9 C D .电容器带电荷量为8×10- 9 C 解析: 根据法拉第电磁感应定律:回路中的感应电动势即等于电容器充电电压E = ΔΦ Δt =ΔB ·L 1L 2Δt =5×10-2×0.05×0.08 V =2×10-4 V 电容器的带电荷量为q =CE =30×10- 6×2×10- 4 C =6×10- 9 C 可见,C 项正确. 答案: C 4.如下图甲所示,用均匀导线做成的正方形线框边长为0.2 m ,正方形的一半放在和纸面垂直向里的匀强磁场中.当磁场以每秒10 T 的变化率增加时,线框中a 、b 两点电势差( ) A .U ab =0.1 V B .U ab =-0.1 V C .U ab =0.2 V D .U ab =-0.2 V 解析: 当闭合线框不变化而磁场变化时,在线框中会产生感应电动势,如果磁场均匀变化时,会产生恒定的感应电动势,感应电动势的大小仍用法拉第电磁感应定律求解.此题线框的左边部分相当于电源.画出等效电路如图乙所示,由题意得ΔB Δt =10 T/s ,E =ΔΦΔt =ΔB Δt ·S =10×0.222 V =0.2 V ,U ab =IR =E r 2+r 2·r 2=0.2r ×r 2 V =0.1 V .由楞次定律可知,线框内的感 应电流方向为a →b ,a 点电势低于b 点电势.故正确答案为B. 答案: B 5.(2011·深圳高二检测)如图所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面的、电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁

法拉第电磁感应定律专题(高清图)

法拉第电磁感应定律(第5讲)倾向于专题 单杆平动切割专题 1.(2003沪)粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场出磁场,如图中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。现使线框以同样大小的速度沿四个不同方向平移所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是 A. B. C. D. 2.(2009上海)如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内 有一半径很小的金属圆环L ,圆环与导轨在同一平面内。当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有_____(填收缩、 扩张)趋势,圆环内产生的感应电流______(填变大、变小、不变)。 3.(2009山东)如图所示,一导线弯成半径为a 的半圆形闭合回路。虚线MN 右侧有磁感应强度为B 的匀 强磁场。方向垂直于回路所在的平面。回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。 从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是 A .感应电流方向不变 B .CD 段直线始终不受安培力 C .感应电动势最大值E m =Bav D .感应电动势平均值Bav E π4 1 = 4.(2010新课标)如图所示,两个端面半径同为R 的圆柱铁芯同轴水平放置,相对 的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场。一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直。让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为E 1,下落距离为0.8R 时电动势大小为E 2。忽略涡流损耗和边缘效应。关于E 1、E 2的大小和铜棒离开 磁场前两端的极性,下列判断正确的是 A .E 1>E 2,a 端为正 B .E 1>E 2,b 端为正 C .E 1

法拉第电磁感应定律教案

法拉第电磁感应定律 江苏省金湖中学 吉启洲 2006-7-30 【教学依据】 人教版高中物理选修3-2第四章第三节 【教学流程】 1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念 2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用 【课程标准的研究及教材分析】 研究新课程标准,是了解编者意图的有效途径,也是明确每节教材内容在前后知识体系中的地位,以及确立每节内容的三维目标的基础,更是进行案例设计和教学的前提。本节是选修3-2模块的一个二级主题“电磁感应”的一节内容(另外两个二级主题分别是交变电流和传感器)。【标准】中认为本模块的大部分内容都要求通过实验、探究与活动来展现。应让学生尽可能多的经历一些探究的过程,领悟物理学研究的思想和方法。结合这一要求,虽然本节教材没有安排实验,然笔者在本节教学设计中根据教材前后内容的承接关系及学生的认知能力和特点,还是以实验定性探究来突破重难点和落实三维目标。 新课程标准中为“电磁感应”确立了是4个主题,本节内容是第三个主题――通过探究,理解楞次定律,理解法拉第电磁感应定律。因此本节内容属知识与技能目标的“理解”水平。由于高中阶段电磁感应定律的定量实验很难完成,因而 【标准】没有要求通过实验来研究,但应通过定性的实验让学生观察磁通量的变化快慢是影响感应电动势的主要因素,从而直接给出法拉第电磁感应定律和公式。要求学生能应用电磁感应定律解释一些生活和技术中的现象,要会应用电磁感应定律计算有关问题。 就本节内容而言,“法拉第电磁感应定律”是电磁学的核心内容,从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础;从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。根据课程标准和学生的接受能力,教学中应着重揭示法拉第电磁感应定律及其公式E=n t ??Φ的建立过程、物理意义及应用,而公式E =BLv sin θ只作为法拉第电磁感应定律在特定条件下推导出的表达式.这样做可以让学生在这节课的学习中分清主次,减轻学生认知上的负担,又不降低应用上的要求. 此部分知识较抽象,而现在学生的抽象思维能力还比较弱。所以在这节课的

最新高中物理选修3-2法拉第电磁感应定律练习题及答案

法拉第电磁感应定律练习题 一、选择题 1.关于感应电动势大小的下列说法中,正确的是[ ] A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大 B.线圈中磁通量越大,产生的感应电动势一定越大 C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大 D.线圈中磁通量变化越快,产生的感应电动势越大 2.与x轴夹角为30°的匀强磁场磁感强度为B(图1),一根长l的金属棒在此磁场中运动时始终与z轴平行,以下哪些情况可在棒中得到方向相同、大小为Blv 的电动势[ ] A.以2v速率向+x轴方向运动 B.以速率v垂直磁场方向运动 3.如图2,垂直矩形金属框的匀强磁场磁感强度为B。导体棒ab垂直线框两长边搁在框上,ab长为l。在△t时间内,ab向右匀速滑过距离d,则[ ]

4.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ] A.线圈中O时刻感应电动势最大 B.线圈中D时刻感应电动势为零 C.线圈中D时刻感应电动势最大 D.线圈中O至D时间内平均感电动势为0.4V 5.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ] A.将线圈匝数增加一倍 B.将线圈面积增加一倍 C.将线圈半径增加一倍 D.适当改变线圈的取向 6.如图4所示,圆环a和圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中和b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ] A.4∶1

相关主题
文本预览
相关文档 最新文档