当前位置:文档之家› 图像二值化中阈值选取方法研究

图像二值化中阈值选取方法研究

目录

摘要 ................................................................. III Abstract............................................................... IV 第一章绪论. (1)

1.1 图像与数字图像 (1)

1.2 数字图像处理技术内容与发展现状 (2)

1.3 灰度图像二值化原理及意义 (4)

第二章软件工具——MATLAB (6)

2.1 MATLAB概述 (6)

2.2 MATLAB的工作环境 (6)

2.3 MATLAB图像处理工具箱 (8)

2.4 工具箱实现的常用功能 (9)

第三章图像二值化方法 (11)

3.1 课题研究对象 (11)

3.2 二值化方法研究动态 (13)

3.3 全局阈值法 (18)

3.4 局部阈值法 (18)

第四章 Otsu方法和Bernsen方法 (20)

4.1 Otsu算法分析 (20)

4.2 Otsu方法流程图 (22)

4.3 Bernsen算法分析 (23)

4.4 Bernsen方法流程图 (23)

第五章 Otsu方法和Bernsen方法实验比较 (25)

5.1 Otsu方法实验结果分析 (25)

5.2 Bernsen方法结果分析 (27)

5.3 0tsu方法和Bernsen方法实验结果比较 (28)

5.4 结论 (29)

结束语 (31)

参考文献 (32)

致谢 (33)

附录:源代码 (34)

摘要

在人类获取的信息中,视觉信息约占60%,听觉约占20%,其它约占20%。由此可见,视觉信息对人类非常重要。同时,图像是人类获取视觉信息的主要途径。图像二值化是图像预处理中的一项重要技术,在模式识别、光学字符识别、医学成像等方面都有重要应用。论文介绍了图像及数字图像处理技术的一些概念和相关知识;对Matlab7.0 软件的发展和软件在图像处理中的应用做了简要介绍;还介绍了灰度图像二值化方法以及利用Matlab7.0软件工具进行算法的实现。课题重点实现了图像分割技术中灰度图像二值化方法,如Otsu算法、Bernsen算法,并对这些算法运行的实验结果进行分析与比较。

关键词:图像处理,二值化,Matlab,Otsu算法,Bernsen算法

Abstract

Human beings obtain a lot of information, among which the visual information is about 60%, the sense of hearing about 20%, and others about 20%. Therefore, the visual information is very important for human beings. Moreover, the images are the primary way, by which a lot of information is obtained. Image binarization, as an important technology in image pre-processing, is widely-employed in pattern recognition, optical character recognition, medical imaging and so forth. In this paper, some notions and relative knowledge in digital image processing technology are introduced; then, the development of Matlab7.0 and its application in image processing briefly introduced; in addition, the method of grayscale image binarization and how to implement these algorithms based on Matlab7.0 are presented. This paper mainly implements the grayscale image binarization method in image segmentation technology, such as Otsu algorithm and Bernsen algorithm, and analyzes and compares the experimental results of the above algorithms.

Keywords: Image processing, Binarization, Matlab, Otsu algorithm, Bernsen algorithm

第一章绪论

1.1 图像与数字图像

图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。

图像存在方式多种多样,可以是可视的或者非可视的,抽象的或者实际的,适于计算机处理的和不适于计算机处理的。但就其本质来说,可以将图像分为以下两大类。

模拟图像。包括光学图像、照相图像、电视图像等。比如人在显微镜下看到的图像就是一幅光学模拟图像。对模拟图像的处理速度快,但精度和灵活性差,不易查找和判断。

数字图像。数字图像是将连续的模拟图像经过离散化处理后得到的计算机能够辨识的点阵图像。在严格意义上讲,数字图像是经过等距离矩形网格采样,对幅度进行等间隔量化的二维函数。因此,数字图像实际上就是被量化的二维采样数组。

一幅数字图像都是由若干个数据点组成的,每个数据点称为像素(pixel)。比如一幅256×400,就是指该图像是由水平方向上256列像素和垂直方向上400行像素组成的矩形图。每一个像素具有自己的属性,如颜色(color)、灰度(gray scale)等,颜色和灰度是决定一幅图像表现里的关键因素。其中颜色量化等级包括单色、四色、16色、256色、24位真彩色等,量化等级越高,则量化误差越小,图像的颜色表现力越强。同样,灰度是单色图像中像素亮度的表征,量化等级越高,表现力越强。但是随着量化等级的增加,数据量将大大增加,使得图像处理的计算量和复杂度相应的增加。

与模拟图像相比,数字图像具有以下显著优点:

(1)精度高。目前的计算机技术可以将一幅模拟图像数字化为任意的二维数组,即

数字图像可以由无限个像素组成,每个像素的亮度可以量化为12位(即4096个灰度级),这样的精度是数字图像处理与彩色照片的效果相差无几。

(2)处理方便。数字图像在本质上是一组数据,所以可以用计算机对他进行任意方式的修改,如放大、缩小、改变颜色、复制和删除某一部分等。

(3)重复性好。模拟图像,如照片,即便是使用非常好的底片和相纸,也会随着时间的流逝而褪色、发黄,而数字图像可以存储在光盘中,上百年后再用计算机重现也不会有丝毫的改变。

1.2 数字图像处理技术内容与发展现状

数字图像处理就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。图像处理的基础是数字,主要任务是进行各种算法设计和算法实现。

目前,图像处理技术已经在许多不同的应用领域中得到重视,并取得了巨大成就。根据应用领域要求的不同,数字图像处理技术可以分为许多分支技术。重要的分支技术有:

(1)图像变换。图像阵列很大时,若直接在空域中处理,计算量将很大。为此,通常采用各种图像变换方法,如傅立叶变换、沃尔什变换、离散余弦变换、小波变换等间接处理技术,将空域处理转换到变换域处理,这样可以有效地减少计算量,提高处理性能。

(2)图像增强与复原。主要目的是增强图像中的有用信心,削弱干扰和噪声,使图像更加清晰,或者将其转换为更适合人或机器分析的形式。图像增强并不是要求真实地反映原始图像,而图像复原则要求尽量消除或减少获取图像过程中所产生的某些退化,使图像能够反映原始图像的真实面貌。

(3)图像压缩编码。在满足一定保真度条件下,对图像信息进行编码,可以压缩图像信息量,简化图像的边式,从而大大压缩图像描述的数据量,以便存储和传输;图像压缩在不同应用背景下可以采用不失真压缩和失真压缩。

(4)图像分割。图像分割是数字图像处理中的关键技术之一,是为了将图像中有意义的特征提取出来。它是进一步进行图像识别、分析和理解的基础。图像的有意义特征

包括图像的边缘、区域等。

(5)图像分析。对图像中的不同对象进行分割、分类、识别、描述和解释。

(6)图像识别。图像识别属于模式识别的范畴,起主要内容是在图像经过某些预处理(增强、复原、压缩)后,进行图像分割和提取,从而进行判别分类。图像分类常用的经典识别方法有统计模式分类和句法模式分类。近年来,新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中越来越受到重视。

(7)图像隐藏。是指媒体信息的相互隐藏,常见的有数字水印和图像的信息伪装等。

以上图像处理内容也并非孤立存在的,往往相互联系,而一个实用的图像处理系统通常需要将几种图像处理技术结合起来,才能得到所需要的结果。例如,图像变换是图像编码技术的基础,而图像增强与复原一般又是图像处理的最终目的,也可以作为进一步图像处理工作的准备;通过图像分割得到的图像特征既可以作为最后结果,也可以作为下一步图像分析的基础。

不同的图像处理技术应用与不同的领域,发展出不同的分支学科,如遥感图像处理、医学图像处理等,其他如计算机图形学、模式识别、人工智能和机器人视觉等学科领域也与图像处理有着密切的关系。

图像处理技术的发展大致经历了初创期、发展期、普及期和实用化期4个阶段。初创期开始与20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理。在这一时期,由于图像存储成本高、处理设备昂贵,其应用面很窄。进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。到了20世纪80年代,图像处理技术进入普及期,此时的微机已经能够担当起图形图像处理的任务。超大规模集成电路(Very Large Scale Integration, VLSI)的出现更使处理速度大大提高,设备造价也进一步降低,极大地促进了图形图像系统的普及和应用。20世纪90年代是图像处理技术的实用化时期,图像处理的信息量巨大,对处理速度的要求极高。

针对现有的实际应用,数字图像处理具有以下特点。

(1)信息量大,要求处理速度比较快。目前,数字图像处理的信息大多是二维信息,处理信息量很大。比如一幅256×256低分辨率的黑白图像,要求64Kbit的数据量;对

高分辨率彩色512×512图像,则要求256Kbit数据量;如果要处理30帧/s的视频图像,则每秒要求处理500Kbit~22.5Mbit数据量。因此对计算机的计算速度、存储容量等要求较高。

(2)占用频带较宽。与语音信息相比,数字图像占用的频带要大几个数量级。如电视图像的带宽约56MHz,而语音带宽仅为4KHz左右。所以数字图像在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本高,且对频带压缩技术提出了更高的要求。

(3)数字图像中各个像素间的相关性强,压缩潜力大。在图像画面上,经常有很多像素有相同或接近的灰度。就电视画面而言,同一行中相邻两个像素或相邻两行间的像素,其相关系数可达0.9以上。一般而言,相邻两帧之间的相关性比帧内相关性还要大。因此,图像处理中的信息压缩潜力巨大。

(4)图像质量评价受主观因素影响。数字图像处理后的图像一般需要给人观察和评价,而人的视觉系统很复杂,受环境条件、视觉性能、人的情绪、爱好以及知识状况影响很大,因此评价结果受人的主观因素影响较大。为此,如何客观评价图像质量还有待进一步深入的研究。另外,计算机视觉是模仿人的视觉,人类的感知原理必然严重影响计算机视觉的研究。

(5)图像处理技术综合性强。数字图像处理技术中设计的基础知识和专业技术相当广泛,通常涉及通信技术、计算机技术、电子技术、电视技术以及更多的数学、物理等方面的基础知识。例如,图像编码的理论基础是信息论和抽象数学的结合,而图像识别则需要掌握随机过程和信号处理方面的知识。此外,不少课题还需要更加专业的知识,如小波变换、神经网络、分形理论等。

另外,图像处理是一门应用性很强的学问,必须与计算机技术的发展相适应。随着电子技术和计算机技术的不断提高和普及,数字图像处理技术进入高速发展时期。

1.3 灰度图像二值化原理及意义

灰度图像是指只含亮度信息,不含色彩信息的图像。将彩色图像转化成为灰度图像的过程称为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255种值可取,这样一个像素点可以有1600多万的颜色的变化范围。而

灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,一个像素点的变化范围为255种,所以在数字图像处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。图像的灰度化处理可先求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。

图像的二值化处理就是将图像上的点的灰度置为0或255,也就是使整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。

在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处理时,图像的集合性质只与像素的值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。二值图像在图像分析中应用非常广泛,二值图像就是指只有两个灰度级的图像,二值图像具有存储空间小,处理速度快,可以方便地对图像进行布尔逻辑运算等特点。更重要的是,在二值图像的基础上,还可以进一步对图像处理,获得该图像的一些几何特征或者其他更多特征。

第二章软件工具——MATLAB

2.1 MATLAB概述

MATLAB是Matrix Laboratory的缩写,是由美国MathWorks公司推出的计算机软件,经过多年的逐步发展与不断完善,现已成为国际公认的最优秀的科学计算与数学应用软件之一,是近几年来在国内外广泛流行的一种可视化科学计算软件。它集数值分析,矩阵运算,信号处理和图形显示于一体,构成了一个方便的,界面友好的用户环境,而且还具有可扩展性特征。MathWorks公司针对不同领域的应用,推出了信号处理,控制系统,神经网络,图像处理,小波分析,鲁棒控制,非线性系统控制设计,系统辨识,优化设计,统计分析,财政金融,样条,通信等30多个具有专门功能的工具箱,这些工具箱是由该领域内的学术水平较高的专家编写的,无需用户自己编写所用的专业基础程序,可直接对工具箱进行运用。同时,工具箱内的函数源程序也是开放性的,多为M 文件,用户可以查看这些文件的代码并进行更改,MALAB支持用户对其函数进行二次开发,用户的应用程序也可以作为新的函数添加到相应的工具箱中。MATLAB中的数字图像是以矩阵形式表示的,这意味着MATLAB强大的矩阵运算能力用于图像处理非常有利,矩阵运算的语法对MATLAB中的数字图像同样适用。本文对MATLAB图像处理工具箱进行探索及应用,实验证明该软件功能强大,语言简洁易学,人机界面友好,工具箱具有丰富的技术支持并集成了该领域专家的智慧,应用简单而效果良好。

2.2 MATLAB的工作环境

MATLAB的工作环境简单明了,易于操作,使用的MATLAB软件一般是6.x版本。其工作环境包括五个部分:命令窗口(Command Window),MATLAB的主窗口用户可以直接在此窗口输入命令,系统将自动显示信息;启动平台(Launch Pad),当用户需要启动某个工具箱的应用程序时,可以在启动平台中实现。工作空间(Workspace),MATLAB 工作空间作为一个独立的窗口,其操作相当方便。它包含着用户已建立的变量,而且变量在工作空间中是以矩阵的形式存储;命令历史记录(Command History),主要显示在命

令中已执行过的命令;当前路径窗口(Current Directory),主要显示当前工作在什么路径下进行,包括M文件的打开路径,双击M文件名打开该文件进行编辑。如图2.1所示。

图2.1 MATLAB6.X

论文中使用的MATLAB软件为7.0版本,如图2.2所示。

图2.2 MATLAB7.0

MATLAB7.0针对编程环境、代码效率、数据可视化、数学计算、文件I/O操作等方面都有进行不断升级、增加了新功能。为此、相对于以前的版本,也具有一些新的特性。就起开发环境方面来说:

(1)重新设计的桌面环境,针对多文档界面提供了简便的管理和访问方法,允许用户自定义桌面外貌,创建常用命令的快捷方式。

(2)增强数组编辑器(Array Editor)和工作空间浏览器(Workspace Browser)功能,用于数据的显示、编辑和处理。

(3)在当前目录浏览器(Current Directory Browser)工具中,增加了代码效率分析、覆盖度的分析等功能。

(4)增加了M-Lint编码分析,能辅助用户完成程序性能分析,提高程序执行效率。

(5)对M文件编辑器(M-Editor)进行了功能增强,可以支持多种格式的源代码文件可视化编辑,如C/C++、HTML、Java等。

2.3 MATLAB图像处理工具箱

数字图像处理工具箱函数包括以下15类:

(1) 图像显示函数;

(2) 图像文件输入、输出函数;

(3) 图像几何操作函数;

(4) 图像像素值及统计函数;

(5) 图像分析函数;

(6) 图像增强函数;

(7) 线性滤波函数;

(8) 二维线性滤波器设计函数;

(9) 图像变换函数;

(10) 图像邻域及块操作函数;

(11) 二值图像操作函数;

(12) 基于区域的图像处理函数;

(13) 颜色图操作函数;

(14) 颜色空间转换函数;

(15) 图像类型和类型转换函数。

MATLAB图像处理工具箱支持四种图像类型,分别为真彩色图像、索引图像、灰度图像、二值图像,由于有的函数对图像类型有限制,这四种类型可以用工具箱的类型转换函数相互转换。MATLAB可操作的图像文件包括BMP、HDF、JPEG、PCX、TIFF、XWD等格式。

2.4 工具箱实现的常用功能

就图像处理的基本过程讨论工具箱所实现的常用功能。

(1)常用图像操作:

图像的读写与显示操作:用imread()读取图像,imwrite()输出图像,把图像显示于屏幕有imshow(),image()等函数。imcrop()对图像进行剪裁,图像的插值缩放可用imresize()函数实现,旋转用imrotate()实现。

(2)图像增强功能:

图像增强是数字图像处理过程中常用的一种方法,目的是采用一系列技术去改善图像的视觉效果或将图像转换成一种更适合于人眼观察和机器自动分析的形式。常用的图像增强方法有以下几种:

灰度直方图均衡化。均匀量化的自然图像的灰度直方图通常在低灰度区间上频率较大,似的图像中较暗区域中细节看不清楚,采用直方图修整可使原图灰度集中的区域拉开或使灰度分布均匀,从而增大反差,使图像的细节清晰,达到增强目的。直方图均衡化可用histeq()函数实现。

灰度变换法。照片或电子方法得到的图像,常表现出低对比度即整个图像较亮或较暗,为此需要对图像中的每一像素的灰度级进行标度变换,扩大图像灰度范围,以达到改善图像质量的目的。这一灰度调整过程可用imadjust()函数实现

平滑与锐化滤波。平滑技术用于平滑图像中的噪声基本采用在空间域上的求平均值或中值。或在频域上采取低通滤波,因在灰度连续变化的图像中,我们通常认为与相邻像素灰度相差很大的突变点为噪声点,灰度突变代表了一种高频分量,低通滤波则可以削弱图像的高频成分,平滑了图像信号,但也可能使图像目标区域的边界变得模糊。而

锐化技术采用的是频域上的高通滤波方法,通过增强高频成分而减少图像中的模糊,特别是模糊的边缘部分得到了增强,但同时也放大了图像的噪声。在MATLAB中,各种滤波方法都是在空间域中通过不同的军纪模板即滤波算子实现,可用fspecial()函数创建预定义的滤波算子,然后用filter2()或conv2()函数在实现卷积运算的基础上进行滤波。

(3)边缘检测和图像分割功能

边缘检测是一种重要的区域处理方法,边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。如果一个像素落在边界上,那么它的邻域将成为一个灰度级变化的带。对这种变化最有用的两个特征就是灰度的变化率和方向。边缘检测算子可以检查每个像素的邻域并对灰度变化率进行量化,也包括对方向的确定,其中大多数是基于方向倒数掩模求卷积的方法。MATLAB工具箱提供的edge()函数可针对sobel 算子、prewitt算子、Roberts算子、log算子和canny算子实现边缘检测的功能。基于灰度的图像分割方法也可以用简单的MATLAB代码实现。

(4)图像变换功能

图像变换技术是图像处理的重要工具,常运用于图像压缩、滤波、编码和后续的特征抽取或信息分析过程。MATLAB工具箱提供了常用的变换函数,如fft2()与ifft2()函数分别实现二维快速傅立叶变换与其逆变换,dct2()与idct2()函数实现二维离散余弦变换与其逆变换,Radon()与iradon()函数实现Radon变换与逆Radon变换。

除以上基本图像处理功能,MATLAB还提供了如二值图像的膨胀运算dilate()函数、腐蚀运算erode()函数等基本数学形态学与二值图像的操作函数。

第三章图像二值化方法

3.1 课题研究对象

论文主要研究BMP格式的灰度图像文件。BMP(Bitmap Picture)文件格式是Windows 系统交换图形、图像数据的一种标准格式。BMP图像的数据由四个部分组成,如表3.1所示。

表3.1 BMP图像文件结构

第一部分为位图文件头BITMAPFILEHEADER,它是个结构提,其定义如下:typedef struct tagBITMAPFILEHEADER {

WORD bfType;

DWORD bfSize;

WORD bfReserved1;

WORD bfReserved2;

DWORD bfOffBits;

} BITMAPFILEHEADER;

这个结构的长度是固定的,为14个字节(WORD为无符号16位二进制整数,DWORD 为无符号32位二进制整数)。

第二部分为位图信息头BITMAPINFOHEADER,也是一个结构,其定义如下:typedef struct tagBITMAPINFOHEADER {

DWORD biSize;

LONG biWidth;

LONG biHeight;

WORD biPlanes;

WORD biBitCount;

DWORD biCompression;

DWORD biSizeImage;

LONG biXPelsPerMeter;

LONG biYPelsPerMeter;

DWORD biClrUsed;

DWORD biClrImportant;

} BITMAPINFOHEADER;

这个结构的长度是固定的,为40个字节(LONG为32位二进制整数)。其中,biCompression的有效值为BI_RGB、BI_RLE8、BI_RLE4、BI_BITFIELDS,这都是一些Windows定义好的常量。由于RLE4和RLE8的压缩格式用的不多,一般仅讨论biCompression的有效值为BI_RGB,即不压缩的情况。

第三部分为调色板(Palette),当然,这里是对那些需要调色板的位图文件而言的。

真彩色图像是不需要调色板的,BITMAPINFOHEADER后直接是位图数据。调色板实际上是一个数组,共有biClrUsed个元素(如果该值为零,则有2的biBitCount次方个元素)。数组中每个元素的类型是一个RGBQUAD结构,占4个字节,其定义如下:typedef struct tagRGBQUAD {

BYTE rgbBlue;

BYTE rgbGreen;

BYTE rgbRed;

BYTE rgbReserved;

} RGBQUAD;

第四部分就是实际的图像数据。对于用到调色板的位图,图像数据就是该像素颜色在调色板中的索引值,对于真彩色图像,图像数据就是实际的R、G、B值。下面就2色、16色、256色和真彩色位图分别介绍。

对于2色位图,用1位就可以表示该像素的颜色(一般0表示黑色,1表示白色),所以一个字节可以表示8个像素。对于16色位图,用4位就可以表示一个像素的颜色,所以一个字节可以表示2个像素。对于256色位图,一个字节刚好可以表示1个像素。

下面有两点值得注意:

(1) 每一行的字节数必须是4的整倍数,如果不是,则需要补齐。

(2) BMP文件的数据存放是从下到上,从左到右的,也就是说,从文件中最先读到的是图像最下面的一行的左边的第一个像素,然后是左边的第二个像素,接下来是倒数第二行左边第一个像素,左边第二个像素。依次类推,最后得到的是最上面的最右边的一个像素。

DIB(Device Independent Bitmap)图像格式是设备无关位图文件,描述图像能力基本与BMP相同,并且能够运行多种硬件平台,只是文件格式较大。

3.2 二值化方法研究动态

作为一种高效智能的人机交互手段,身份证的快速识别技术可以广泛的应用于公民身份核查、暂住人口调查、旅店业登记核查、罪犯追逃等公安业务当中,大大提高了工作人员的录入速度,减少了用户的等待时间,提高了工作效率。由于身份证图像背景复

杂,由激光防伪阴影网格线及各种版面噪声构成;且因激光防伪标志和打印条件的千差万别,再加上身份证图像质量偏差,给身份证的字符识别带来了很大的困难。必须经过预处理,除去大量的噪声信号,才能更好的进行字符的定位、分割,以及识别。而二值化是预处理中非常重要的一步,也是最为关键的一步,它直接影响到OCR 系统的性能。研究者在分析和讨论了多种图像二值化的优缺点后,在吸取各种方法优点的基础上,提出了一种新的身份证扫描图像的二值化方法——嵌入式多阈值动态自适应的二值化方法。

图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程。在颗粒分析、模式识别技术、光学字符识别(OCR)、医学数据可视化中的切片配准等应用中,图像二值化是它们进行数据预处理的重要技术。由于图像二值化过程将会损失原图像的许多有用信息,因此在进行二值化预处理过程中,能否保留原图的主要特征非常关键。在不同的应用中,图像二值化时阈值的选择是不同的。因此,自适应图像阈值的选取方法非常值得研究。研究者对图像二值化方法进行了讨论,在此基础上提出了一个新的图像二值化算法。该算法基于数学形态学理论,较好地保留了图像二值化时原图的边缘特征。

激光雕刻中图像处理的二值化处理激光雕刻是近十几年随着激光技术的发展而产生的一种新的雕刻技术,它与计算机图形学、图像处理等学科的结合,应用在各种材料上进行文字、图案加工。如何能得到光滑且能真实反映原图像的雕刻图像是其中的主要问题,但是激光器的开关只有两种状态,因此,图像的二值化处理就成为了关键性技术,其中阈值的选取是决定二值化图像好坏的因素。现实世界中黑白二值图像很少用,大多数图像都是灰度图像或是彩色图像。要使这些图像适用于激光雕刻中,就需要对其进行二值化处,研究者针对激光雕刻总结了适用于雕刻的二值化处理,然而没有一种方法适合于所有图像雕刻的,因而实际中要选择一种合适的二值化方法,使得得到的二值图像效果最好。

在信息社会中人的身份识别得到广泛关注。指纹识别技术除了在传统的法律公安上得到应用之外,还有更广阔的应用前景,如计算机用户的确认、访问网络资源的口令、银行ATM 机和信用卡的使用、各类智能IC 卡的双重确认,以及雇员证明、海关身份鉴定、家用电子门锁等一个完整的自动指纹识别系统(AFIS) 包括指纹采集、指纹图像

预处理、指纹特征提取和比对等几个模块。在自动指纹识别系统中,指纹图像的预处理是正确进行特征提取、比对等操作的基础,而二值化是指纹图像预处理中必不可少的一步。目前,国内外学者在这方面已经做了大量的工作,常用的二值化方法有固定阈值法、自适应阈值法、局部自适应阈值法等。由于指纹图像是一种方向性很强的图像,这些方法仅仅利用了指纹图像的灰度信息,而忽略了指纹图像的方向信息,因此这些方法对指纹图像的二值化效果并不十分理想。尔后提出了一种改进的二值化方法:利用梯度法求取块方向图,将其量化成8个标准方向,以块方向代替点方向并利用灰度信息对指纹图像进行二值化。最后将该的方法和局部自适应阈值二值化方法及改进前的方法进行比较,可以发现:采用该方法二值化效果有了明显提高,对于不同质量的指纹图像有着令人满意的处理效果。

结合Canny 算子的图像二值化方法,对经典的二值化方法Otsu 算法和Bernsen 算法中存在的缺点进行了分析后提出图像二值化方法,该方法综合考虑了边缘信息和灰度信息,通过边缘附近种子点在高阈值二值化图像中的填充和低阈值图像对它的修补而得到二值化结果图像,较好地解决了经典二值化方法中存在的抗噪能力差、边缘粗糙、伪影现象等缺点,实验结果证明,该方法能够较好地解决低对比度图像和目标像素灰度不均匀图像的二值化问题。

采用信号匹配的支票图像二值化提出了一种基于信号匹配的低信噪比图像的信号提取方法,解决类似支票日期域的这种既有复杂背景,又有印章噪声干扰的图像二值化问题。这种二值化方法完全不同于传统的方法,它从信号处理的角度出发,利用了部分先验知识和理想状态下的投影轮廓信号,再通过用不同阈值分割的投影信号与之匹配,匹配度最大时的阈值即为图像分割的最佳阈值。本方法比其他的传统的二值化方法更具有自适应性和鲁棒性,通过大量的实验数据,以及与常用的其他算法进行的比较得到了验证。

基于灰度的车牌图像二值化算法不均匀光照下的图像二值化是数字图像处理中的一个难题,汽车牌照自动识别系统工作在复杂的光照环境下,经常会出现车牌光照不均的现象,给图像二值化带来困难。为此,研究者提出一种解决办法,首先使用同态滤波去掉车牌图像的不均匀光照的影响,然后使用改进的Bernsen 算法对车牌图像进行二值化。实验表明,使用该算法能有效地克服不均匀光照的影响,二值化效果良好,车牌识

别率得到显著的提高;针对常用车牌识别二值化算法存在的问题,提出了基于分形维数的二值化的方法。根据分形维数反映图像复杂程度的定义,通过计算两次突变的分维数,来确定图像的灰度值范围,并利用该灰度值范围确定阈值。并通过实验,表明利用分形维数所得到的阈值进行二值化处理较传统方法有较大改进,且该方法解决了在自然光和不同光照背景下对车牌识别的干扰问题,也可以从复杂背景中提取出倾斜的车牌;偏白或泛白背景的车牌图像二值化方法,在车辆牌照识别系统中,由于摄像机畸变、动态范围太窄、车辆牌照被污染等原因,灰度化的车辆牌照图像背景变得模糊,接近于字体的灰度或者动态范围不高,使得前景字体跟背景难以分开。该文采用高帽与低帽形态滤波增强车牌图像中的字体,去除背景对图像的影响,使用基于迭代的图像分块二值化算法进行二值化。实验表明,该算法可有效克服偏暗或泛白背景的影响,二值化效果良好。

基于自组织特征映射(SOFM)神经网络的图像融合二值化方法介绍了SOFM 神经网络的特点及学习算法,根据SOFM 的聚类确定图像第一阈值作为循环迭代的初始值,对整幅图像进行循环迭代得到第二阈值,使用第二阈值对原始图像进行二值化,得到第一幅待融合图像;通过改进的Bernsen方法对原始图像进行二值化,得到第二幅待融合图像;最后根据图像灰度值选小的原则作为图像融合方法,得到最终的二值化图像。该方法既能有效地消除伪影,又能较好地分离字符和文字。模拟实验结果表明,该方法的二值化效果明显优于Bernsen方法和Otsu方法,且具有良好的适应性。

基于贝叶斯算法的二值化算法。针对在图像二值化过程中动态选取阈值难的问题,在分析了全局阈值法和局部阈值法各自优缺点的基础上。提出了一种基于贝叶斯算法的全局阈值法和局部阈值法相结合的二值化方法。经实验证明,该方法既能够有效地消除光照不均匀对图像的影响,较好地保留目标图像的细节,又能够有效地消除伪影,提高处理速度。

在模式识别中,二值化效果的好坏直接影响着识别效果,首先通过改进的Bernsen 方法对原始图像进行二值化,得到第一幅源图像;然后根据自组织神经网络计算阈值,对图像进行二值化,得到第二幅源图像;再根据灰度值最小的原则作为图像融合方法,得到最终的二值化图像,最后给出模拟实验,实验结果表明该方法是有效的。提出了一种新的图像二值化方法。

图像的带参数的二值化方法。该方法不仅在实现传统的黑白二值化方面。有强于

基于MATLAB的数字二值图像处理与形状分析的实现

本科学生毕业论文 论文题目:基于MATLAB的数字二值图像处理与形 状分析实现 学院:电子工程学院 年级:2011 专业:电子信息科学与技术 姓名:刘学利 学号:20113564 指导教师:王晓飞 2014年06月24日

摘要 数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成为可能.由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好地为人们服务.数字图像处理是一种通过计算机采用一定算法对图形图像处理的技术.数字图像处理技术已经在各个领域上有了比较广泛的应用.图像处理的信息量很大,对处理速度的要求也比较高.MATLAB强大的运算和图像展示功能,使图像处理变得更加的简单和直观.本文介绍了MATLAB语言的特点,基于MATLAB的数字图像处理环境,介绍了如何利用MATLAB及其图像处理工具箱进行图像处理的方法.主要论述了利用MATLAB实现图像的二值化,二值图像的腐蚀、膨胀、开、闭等形态学处理. 关键词 MATLAB;数字图像处理;二值图像

Abstract Digital image processing is an emerging technology,with the development of computer hardware,real-time digital image processing has become possible due to digital image processing algorithms to appear,making it faster and faster processing speed,better for people services.Digital image processing is used by some algorithms Computer graphics image processing technology.Digital image processing technology has been used in various areas which have a relatively wide range of applications.The amount of information on the processing speed requirement is relatively high.MATLAB is good at computing and graphics display capabilities,so that image processing becomes more simple and intuitive.This paper introduces characteristics of MATLAB language and this MATLAB-based digital image processing environment,describes how to use the MATLAB Image Toolbox for its digital image processing,and through some examples to illustrate the use of MATLAB Image Processing Toolbox for image processing method.Mainly discuss the use of MATLAB for image processing enhancement,binary image and its corrode and dilate and open and close. Key words MATLAB;digital image processing;image enhancement and binary image

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

基于MATLAB的图像阈值分割技术

基于MATLAB 的图像阈值分割技术 摘要:本文主要针对图像阈值分割做一个基于MATLAB 的分析。通过双峰法,迭代法以及OUTS 法三种算法来实现图像阈值分割,并且就这三种算法做了一定的分析和比较,在加椒盐的图片上同时进行三种实验,做出比较,最终得出实践结论。 关键词:图像分割 MATLAB 阈值分割 算法 引言:图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准,图像阈值分割即是其中的一种方法。 阈值分割技术因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,已被应用于很多的领域,在很多图像处理系统中都是必不可少的一个环节。 1、阈值分割思想和原理 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T 进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的 设图像为f(x,y),其灰度集范围是[0,L],在0和L 之间选择一个合适的灰度阈值T ,则图像分割方法可由下式描述: 这样得到的g(x,y)是一幅二值图像。 (一)原理研究 图像阈值分割的方法有很多,在这里就其中三种方法进行研究,双峰法,迭代法,以及OUTS 法。 方法一:双峰法 T y x f T y x f y x g ≥<),(),(10){,(

二值图像的阈值分割方法探讨

二值图像的阈值分割方法探讨 摘要图像分割的目的是将图像划分成互不交迭区域的集合,将图像中有意义的部分提取出来。图像分割的用途非常广泛,分割通常用来时图像进行进一步的分析,识别及压缩编码等。分割的准确性直接影响后续任务的有效性,因此具有十分重要的意义。文中通过对常用的图像二值化确定阈值方法的对比,经实验验证总结了合适的二值图像的阈值分割方法。 关键词二值图,阀值分割,算法。 0引言 图像分割的目的是将图像划分成互不交迭区域的集合,将图像中有意义的部分提取出来。这些区域的划分是有意义的,它们或者代表不同的物体,或者代表物体的不同部分,是进一步进行图像识别、分析和理解的基础。图像分割的用途非常广泛,几乎涉及图像处理的所有领域,应用于各种类型的图像。分割通常用来对图像进行进一步的分析、识别及压缩编码等,分割的准确性直接影响后续任务的有效性,因此具有十分重要的意义。 按照通用的分割定义,分割出的区域需同时满足均匀性和连通性的条件。其中均匀性是指该区域中的所有像素点都满足基于灰度、纹理、颜色等特征的某种相似性准则,而连通性是指在该区域内任意两点存在相互连通的路径。完全符合上述定义的分割计算十分复杂,目前大部分研究都是针对某一类型图像或者某一具体应用的分割。 阈值分割是最常见的直接检测区域的分割方法,它就是简单的用一个或几个阈值将图像的灰度直方图分成几个类。如果只需选取一个阈值称为单阈值分割,它将图像分成目标和背景两大类。如果选取多个阈值称为多阈值分割,将图像分割成多个目标和背景。在本研究从事的CCD标定研究中采用的是较为简单的单阈值分割方法,将图像二值化。为以后的目标识别、特征点提取打下基础。在阈值分割技术中较为重要的是阈值的确定,合理的阈值能有效地去除多余信息、提取出有用信息,它直接影响分割后效果,影响有效信息经提取后的保留程度,决定着标定角点的提取位置精度,对标定精度至关重要。 常用的图像二值化确定阈值方法有:迭代法,最大直方图阈值分割法(EN日,最大类间方差法(OTSU)。

根据阈值的图像分割方法

课程结业论文 课题名称基于阈值的图像分割方法姓名湛宇峥 学号1412202-24 学院信息与电子工程学院专业电子信息工程 指导教师崔治副教授

2017年6月12日 湖南城市学院课程结业论文诚信声明 本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担

目录 摘要 (1) 关键词 (1) ABSTRACT (2) KEY WORDS (2) 引言 (3) 1基于点的全局阈值选取方法 (4) 1.1最大类间交叉熵法 (5) 1.2迭代法 (6) 2基于区域的全局阈值选取方法 (7)

2.1简单统计法 (8) 2.3 直方图变化法 (9) 3局部阈值法和多阈值法 (10) 3.1水线阈值算法 (11) 3.2变化阈值法 (12) 4仿真实验 结论 (12) 参考文献 (13) 附录

基于阈值的图像分割方法 摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。在日常生活中,人们对图片的要求也是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些有关部分分离提取出来,因此就要应用到图像分割技术。 关键词:图像分割;阈值;matlab

数字图像处理报告 图像二值化

数字图像处理实验报告 实验二灰度变换 实验目的:通过实验掌握灰度变换的基本概念和方法 实验内容: 掌握基本的灰度变换:图像反转、对数变换、幂次变换和二值化1.图像反转、对数变换、幂次变换 I=imread('fengjing.jpg'); J=im2double(I); subplot(2,3,1),imshow(J); title('原图'); K=255-I; subplot(2,3,2),imshow(K); title('图象反转'); L=3.*log(1+J); subplot(2,3,3),imshow(L);title('图象对数,系数为3'); M=10.*log(1+J); subplot(2,3,4),imshow(M);title('图象对数,系数为10'); N=10.*(J.^0.2); subplot(2,3,5),imshow(N);title('图象指数变换,γ=0.2'); P=10.*(J.^2.5); subplot(2,3,6),imshow(P);title('图象指数变换,γ=2.5'); 2.图象二值化 方法一:

I=imread('fengjing.jpg'); % 确定大小subplot(1,2,1),imshow(I);title('原图象'); [m,n]=size(I); for i=1:m for j=1:n if I(i,j)<128 I(i,j)=0; else I(i,j)>=128 & I(i,j)<256 I(i,j)=255; end end end subplot(1,2,2),imshow(I);title('图象二值化');方法二: I=imread('fengjing.jpg'); % 确定大小subplot(1,2,1),imshow(I);title('原图象'); J=find(I<128); I(J)=0; J=find(I>=128); I(J)=255; title('图像二值化(阈值为128)'); subplot(1,2,2),imshow(I);title('图象二值化');

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

图像分割阈值选取技术综述

图像分割阈值选取技术综述 中科院成都计算所刘平2004-2-26 摘要 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域.本文是在阅读大量国内外相关文献地基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法地评估做简要介绍. 关键词 图像分割阈值选取全局阈值局部阈值直方图二值化 1.引言 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交地区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显地不同[37].简单地讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理.图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用地图像分割方法,也不存在一种判断是否分割成功地客观标准. 阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域,例如,在红外技术应用中,红外无损检测中红外热图像地分割,红外成像跟踪系统中目标地分割;在遥感应用中,合成孔径雷达图像中目标地分割等;在医学应用中,血液细胞图像地分割,磁共振图像地分割;在农业项目应用中,水果品质无损检测过程中水果图像与背景地分割.在工业生产中,机器视觉运用于产品质量检测等等.在这些应用中,分割是对图像进一步分析、识别地前提,分割地准确性将直接影响后续任务地有效性,其中阈值地选取是图像阈值分割方法中地关键技术. 2.阈值分割地基本概念 图像阈值化分割是一种最常用,同时也是最简单地图像分割方法,它特别适用于目标和背景占据不同灰度级范围地图像[1].它不仅可以极大地压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前地必要地图像预处理过程.图像阈值化地目地是要按照灰度级,对像素集合进行一个划分,得到地每个子集形成一个与现实景物相对应地区域,各个区域内部具有一致地属性,而相邻区域布局有这种一致属性.这样地划分可以通过从灰度级出发选取一个或多个阈值来实现. 阈值分割法是一种基于区域地图像分割技术,其基本原理是:通过设定不同地特征阈值,把图像像素点分为若干类.常用地特征包括:直接来自原始图像地灰度或彩色特征;由原始灰度或彩色值变换得到地特征.设原始图像为f(x,y>,按照一定地准则在f(x,y>中找到特征值T,将图像分割为两个部分,分割后地图像为 若取:b0=0<黑),b1=1<白),即为我们通常所说地图像二值化. <原始图像)<阈值分割后地二值化图像) 一般意义下,阈值运算可以看作是对图像中某点地灰度、该点地某种局部特性以及该点在图像中地位置地一种函数,这种阈值函数可记作 T(x,y,N(x,y>,f(x,y>> 式中,f(x,y>是点(x,y>地灰度值;N(x,y>是点(x,y>地局部邻域特性.根据对T地不同约束,可以得到3种不同类型地阈值[37],即 点相关地全局阈值T=T(f(x,y>> (只与点地灰度值有关> 区域相关地全局阈值T=T(N(x,y>,f(x,y>> (与点地灰度值和该点地局部邻域特征有关> 局部阈值或动态阈值T=T(x,y,N(x,y>,f(x,y>> (与点地位置、该点地灰度值和该点邻域特征有关> 图像阈值化这个看似简单地问题,在过去地四十年里受到国内外学者地广泛关注,产生了数以百计地阈值选取方法[2-9],但是遗憾地是,如同其他图像分割算法一样,没有一个现有方法对各种各样地图像都能得到令人满意地结果,甚至也没有一个理论指导我们选择特定方法处理特定图像. 所有这些阈值化方法,根据使用地是图像地局部信息还是整体信息,可以分为上下文无关(non-

图像二值化算法研究与实现

图像二值化算法研究与实现 摘要:图像二值化是图像预处理中的一项重要技术,在模式识别、光学字符识别、医学成像等方面都有重要应用。论文介绍了图像及数字图像处理技术的一些概念和相关知识;对VC++ 软件的发展和软件在图像处理中的应用做了简要介绍;还介绍了图像二值化算法以及利用VC++软件工具进行算法的实现。论文重点实现了图像分割技术中常用灰度图像二值化算法,如Otsu算法、Bernsen算法,并对这些算法运行的实验结果进行分析与比较。 关键词:图像处理;二值化;VC++; 1.引言 1.1 图像与数字图像 图像就是用各种观测系统观测客观世界获得的且可以直接或间接作用与人眼而产生视觉的实体。视觉是人类从大自然中获取信息的最主要的手段。拒统计,在人类获取的信息中,视觉信息约占60%,听觉信息约占20%,其他方式加起来才约占20%。由此可见,视觉信息对人类非常重要。同时,图像又是人类获取视觉信息的主要途径,是人类能体验的最重要、最丰富、信息量最大的信息源。通常,客观事物在空间上都是三维的(3D)的,但是从客观景物获得的图像却是属于二维(2D)平面的。 数字图像:数字图像是将连续的模拟图像经过离散化处理后得到的计算机能够辨识的点阵图像。在严格意义上讲,数字图像是经过等距离矩形网格采样,对幅度进行等间隔量化的二维函数。因此,数字图像实际上就是被量化的二维采样数组。 1.2 数字图像处理技术内容与发展现状 数字图像处理就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。图像处理的基础是数字,主要任务是进行各种算法设计和算法实现。 图像处理技术的发展大致经历了初创期、发展期、普及期和实用化期4个阶段。初创期开始与20世纪60年代,当时的图像采用像素型光栅进行少秒显示,大多采用中、大型机对其处理。在这一时期,由于图像存储成本高、处理设备昂贵,其应用面很窄。进入20世纪70年代的发展期,开始大量采用中、小型机进行处理,图像处理也逐渐改用光栅扫描方式,特别是CT和卫星遥感图像的出现,对图像处理技术的发展起到了很好的推动作用。到了20世纪80年代,图像处理技术进入普及期,此时的微机已经能够担当起图形图像处理的任务。超大规模集成电路(Very Large Scale Integration, VLSI)的出现更使处理速度大大提高,设备造价也进一步降低,极大地促进了图形图像系统的普及和应用。20世纪90年代是图像处理技术的实用化时期,图像处理的信息量巨大,对处理速度的要求极高。 1.3 图像二值化原理及意义 图像二值化是指用灰度变换来研究灰度图像的一种常用方法,即设定某一阈值将灰度

数字图像灰度阈值的图像分割技术matlab

1.课程设计的目的 (1)使学生通过实验体会一些主要的分割算子对图像处理的效果,以及各 种因素对分割效果的影响 (2)使用Matlab软件进行图像的分割 (3)能够进行自行评价各主要算子在无噪声条件下和噪声条件下的分割 性能 (4)能够掌握分割条件(阈值等)的选择 (5)完成规定图像的处理并要求正确评价处理结果,能够从理论上做出合 理的解释 2.课程设计的要求 (1)能对图像文件(bmp,jpg,tiff,gif)进行打开,保存,退出等功能操作 (2)包含功能模块:图像的边缘检测(使用不同梯度算子和拉普拉斯算子)(3)封闭轮廓边界 (4)区域分割算法:阈值分割,区域生长等

3.前言 3.1图像阈值分割技术基本原理 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理。图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要的领域之一,它是对图像进行视觉分析和模式识别的基本前提。同时它也是一个经典难题,到目前为止既不存在一种通用的图像分割方法,也不存在一种判断是否分割成功的客观标准]5[。 在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。现有的图像分割算法有:阈值分割、边缘检测和区域提取法。本文着重研究基于阈值法的图像分割技术。 若图像中目标和背景具有不同的灰度集合:目标灰度集合与背景灰度集合,且两个灰度集合可用一个灰度级阈值T进行分割。这样就可以用阈值分割灰度级的方法在图像中分割出目标区域与背景区域,这种方法称为灰度阈值分割方法。 在物体与背景有较强的对比度的图像中,此种方法应用特别有效。比如说物体内部灰度分布均匀一致,背景在另一个灰度级上也分布均匀,这时利用阈值可以将目标与背景分割得很好。如果目标和背景的差别是某些其他特征而不是灰度特征时,那么先将这些特征差别转化为灰度差别,然后再应用阈值分割方法进行处理,这样使用阈值分割技术也可能是有效的

阈值的自动选取

图像分割中阈值的自动选取的研究及其算法实现 图像分割是图像处理这门学科中的基础难题,基于阈值的分割则又是图像分割的最基本的难题之一,其难点在于阈值的选取。事实证明,阈值的选择的恰当与否对分割的效果起着决定性的作用。由于阈值选取对图像分割的基础性,本文主要在【1】、【2】、【3】、【4】等的基础上,对一些当前流行的阈值选取算法做了探讨、实现和比较。多阈值分割虽然能进一步提高图像分割的质量,但由于它只是分割技巧的处理问题,而与单阈值分割并无本质的区别。因此本文并不对多阈值分割进行讨论,而只考虑单阈值分割的情形。 1.双峰法 双峰法的原理及其简单:它认为图像由前景和背景组成,在灰度直方图上,前后二景都形成高峰,在双峰之间的最低谷处就是图像的阈值所在。根据这一原理,我们给出了它的实现,部分代码如下(Pascal语言描述,以下同)://intPeak、intPeak2、intValley:峰值和直方图值 //intIndx::相应的灰度值 intPeak,intIndx,intPeak2,intIndx2,intValley,intValleyIndx:integer ; //初始双峰值 intPeak:=0; intPeak2:=0; //取得第一峰值 for intLoop:=0 to 255 do if intPeak<=intGrayLevel[intLoop] then begin intPeak:=intGrayLevel[intLoop]; intIndx:=intLoop; end; //取得第二峰值

for intLoop:=0 to 255 do Begin if (intPeak2<=intGrayLevel[intLoop]) and (intLoop<>intIndx) then begin intPeak2:=intGrayLevel[intLoop]; intIndx2:=intLoop; end end; //取得双峰之间的谷值 intValley:=intSize; if intIndx2intGrayLevel[intLoop] then begin intValley:=intGrayLevel[intLoop]; intValleyIndx:=intLoop; end; 从分割的效果来看,当前后景的对比较为强烈时,分割效果较好;否则基本无效。 2.迭代法 迭代法是基于逼近的思想,其步骤如下: 1.求出图象的最大灰度值和最小灰度值,分别记为ZMAX和ZMIN,令初始阈值T0=(ZMAX+ZMIN)/2; 2.根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值ZO 和ZB; 3.求出新阈值TK+1=(ZO+ZB)/2; 4.若TK=TK+1,则所得即为阈值;否则转2,迭代计算。

基于迭代法的图像二值化

基于迭代法的图像二值化 一、实验要求: ①运用迭代法求最佳阈值 ②根据所求阈值对灰度图进行二值化处理 ③使用matlab实现上述功能,并显示各步骤处理结果 二、主要原理: 图像的二值化最常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。 迭代法求阈值:预先设置一个阈值T,对图像中灰度值>T的像素点求出灰度平均值T1,图像中灰度值

四、程序及简单分析: %迭代法图像分割,迭代思想是将每次基于阈值获得的两部分灰度值的均值之差是否小于预先设定的极限,若不小于,则继续迭代,否则迭代停止 clear Init=imread('lena.jpg'); Im=rgb2gray(Init); subplot(1,3,1),imhist(Im),title('直方图') subplot(1,3,2),imshow(Im) , title('原始图像') [x,y]=size(Im); % 求出图象大小 b=double(Im); zd=double(max(max(Im))) % 求出图象中最大的灰度 zx=double(min(min(Im))) % 最小的灰度 T=double((zd+zx))/2; % T赋初值,为最大值和最小值的平均值 count=double(0); % 记录几次循环 while 1 % 迭代最佳阈值分割算法 count=count+1; S0=0.0; n0=0.0; %为计算灰度大于阈值的元素的灰度总值、个数赋值 S1=0.0; n1=0.0; %为计算灰度小于阈值的元素的灰度总值、个数赋值 for i=1:x for j=1:y if double(Im(i,j))>=T S1=S1+double(Im(i,j)); %大于阈域值图像点灰度值累加 n1=n1+1; %大于阈域值图像点个数累加 else S0=S0+double(Im(i,j)); %小于阈域值图像点灰度值累加 n0=n0+1; %小于阀域值图像点个数累加 end end end T0=S0/n0; %求小于阀域值均值 T1=S1/n1; %求大于阀域值均值 if abs(T-((T0+T1)/2))<0.1 %迭代至前后两次阀域值相差几乎为0时停止迭代。 break; else T=(T0+T1)/2; %在阈值T下,迭代阈值的计算过程end end count %显示运行次数

图像二值化中阈值选取方法研究

目录 摘要 ................................................................. III Abstract............................................................... IV 第一章绪论. (1) 1.1 图像与数字图像 (1) 1.2 数字图像处理技术内容与发展现状 (2) 1.3 灰度图像二值化原理及意义 (4) 第二章软件工具——MATLAB (6) 2.1 MATLAB概述 (6) 2.2 MATLAB的工作环境 (6) 2.3 MATLAB图像处理工具箱 (8) 2.4 工具箱实现的常用功能 (9) 第三章图像二值化方法 (11) 3.1 课题研究对象 (11) 3.2 二值化方法研究动态 (13) 3.3 全局阈值法 (18) 3.4 局部阈值法 (18) 第四章 Otsu方法和Bernsen方法 (20) 4.1 Otsu算法分析 (20) 4.2 Otsu方法流程图 (22) 4.3 Bernsen算法分析 (23) 4.4 Bernsen方法流程图 (23) 第五章 Otsu方法和Bernsen方法实验比较 (25) 5.1 Otsu方法实验结果分析 (25)

5.2 Bernsen方法结果分析 (27) 5.3 0tsu方法和Bernsen方法实验结果比较 (28) 5.4 结论 (29) 结束语 (31) 参考文献 (32) 致谢 (33) 附录:源代码 (34)

摘要 在人类获取的信息中,视觉信息约占60%,听觉约占20%,其它约占20%。由此可见,视觉信息对人类非常重要。同时,图像是人类获取视觉信息的主要途径。图像二值化是图像预处理中的一项重要技术,在模式识别、光学字符识别、医学成像等方面都有重要应用。论文介绍了图像及数字图像处理技术的一些概念和相关知识;对Matlab7.0 软件的发展和软件在图像处理中的应用做了简要介绍;还介绍了灰度图像二值化方法以及利用Matlab7.0软件工具进行算法的实现。课题重点实现了图像分割技术中灰度图像二值化方法,如Otsu算法、Bernsen算法,并对这些算法运行的实验结果进行分析与比较。 关键词:图像处理,二值化,Matlab,Otsu算法,Bernsen算法

灰度图像二值化方法matlab代码

OTSU算法代码: I=imread('****'); th=graythresh(I); J=im2bw(I,th); subplot(121) imshow(I); subplot(122) imshow(J); Bernsen算法代码: clc; clear all close all I=imread('****'); [m,n] = size(I); I_gray=double(I); T=zeros(m,n); M=3; N=3; for i=M+1:m-M for j=N+1:n-N max=1;min=255; for k=i-M:i+M for l=j-N:j+N if I_gray(k,l)>max max=I_gray(k,l); end if I_gray(k,l)

for i=1:m for j=1:n if I_gray(i,j)>T(i,j) I_bw(i,j)=255; else I_bw(i,j)=0; end end end subplot(121),imshow(I); subplot(122),imshow(I_bw); 改进的Bernsen算法代码:clc; clear all close all I=imread('****'); I_gray=double(I); [m,n] = size(I); a=0.3; A=0;T1=0;S=0; for i=1:m for j=1:n A=A+I_gray(i,j) ; end end A=A*0.9; while(S

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点, 本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。 2 传统的图像分割方法 2.1 基于阀值的图像分割方法 阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。 灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

基于分形维数的阈值选取方法

收稿日期:2005-05-31 作者简介:李庆峰(1980-),男,山东烟台人,硕士研究生,主要研究方向:图像处理、模式识别、机器视觉; 付忠良(1967-),男,重庆合川人,研究员,博士生导师,主要研究方向:高速图像处理、模式识别、工业机器视觉; 粟伟(1980-),男,四川成都人,硕士研究生,主要研究方向:信息安全、RF I D 安全与隐私保护. 文章编号:1001-9081(2005)11-2598-02 基于分形维数的阈值选取方法 李庆峰,付忠良,粟 伟 (中国科学院成都计算机应用研究所,四川成都610041) (lqf mailbox@https://www.doczj.com/doc/5d19054891.html, ) 摘 要:普通的阈值选取方法只注重图像的灰度信息,而很少考虑图像的空间信息。分形维数能很好地反映一幅图像的空间信息,在图像的处理与分析中得到了很好的应用。提出了一种基于分形维数的图像阈值选取方法,实验证明对于灰度图像的阈值选取具有很好的实用效果。 关键词:分形;阈值;分维数;盒维数中图分类号:TP391.41 文献标识码:A I mage threshold selecti on ba sed on fract a l d i m en si on L IQ ing 2feng,F U Zhong 2liang,S U W ei (Institute of Co m puter A pplications ,Chinese A cade m y of Sciences ,Chengdu S ichuan 610041,China ) Abstract:The common methods of threshold selecti on only use the gray inf or mati on of i m ages,notmaking good use of the s pace inf or mati on .Fractal di m ensi on is a good index of s pace inf or mati on of i m ages,widely used in digital i m age p r ocessing and analysis .A method of threshold selecti on based on fractal di m ensi on was p r oposed .Experi m ents show that it is effective t o the threshold selecti on . Key words:fractal;threshold;fractal di m ensi on;box 2counting di m ensi on 分形理论在数字图像处理中的应用,如基于分形理论的图像压缩方法与应用取得了不少成果[1~2] 。阈值选取方 法 [3~5] 可以分为基于点的全局阈值方法,基于区域的全局阈 值方法、局部阈值方法和多阈值方法,如p 2分位数法、类间方差阈值分割法、二维最大熵分割法、模糊阈值分割法、共生矩阵分割法、区域生长法等。这些方法大部分是以图像的灰度 统计信息为研究对象来进行阈值的选取。本文提出了一种利用分形维数求阈值的新方法,它利用目标对象的分维特征作为阈值选取的依据,而不只是从灰度统计信息出发考虑,因而具有很好的实用效果。 1 分形理论及图像盒维数的计算 大自然中的很多形状很不规则,甚至是支离破碎的,如天空中的云彩、地面上的海岸线、树皮等。为了研究这些大自然的几何学,就诞生了一门新的数学分支———分形几何学。 分形目前还没有明确的定义,一般称具有以下典型性质的集合F 为分形: 1)F 具有精细的结构,即具有任意小的比例细节;2)F 是如此的不规则以致于它的整体和局部都不能用 传统的几何语言来描述; 3)F 通常有某种自相似的形式,可能是近似的或是统计的; 4)一般地,F 的“分形维数” (以某种方式定义)大于它的拓扑维数; 5)在大多数令人感兴趣的情况下,F 以非常简单的方法 定义,可能由迭代产生。 曼德勃罗指出分形具有三个要素:形状、随机和维数。其中的维数是分维数,它不同于规则图形的整数维数。分维是 通过变换尺度得到的非规则图形的维数,它可以是分数。分维是几何图形的一个重要特征量,反映了图形的形状特征。 分形维数的定义很多,其中以豪斯道夫维数最为古老也最为重要。豪斯道夫维数具有对任何集合都可以定义的优点,由于它建立在相对容易处理的测度概念的基础上,因此,要理解分形的数学原理,豪斯道夫维数便是必要的,它也具有很强的应用普适性和方便性。但是,它在很多情况下用计算的方法很难计算或估计它的值。为了便于实际应用又提出了一种适合于数学计算及经验估计的计盒维数(也称盒维数)。 盒维数的定义: 设集F

相关主题
文本预览
相关文档 最新文档