当前位置:文档之家› 尼可霉素(Nikkomycins)多组分结构及其生物合成相关基因的研究进展

尼可霉素(Nikkomycins)多组分结构及其生物合成相关基因的研究进展

!"卷#期

$%%%年&月生物工程学报!"#$%&%’()*$+,(-.#(/%0"$(,(12’()*!"+(*#,-.

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!/-01-2$%%%收稿日期:$%%%3%!3%#,修回日期:$%%%3%43%#

。基金项目:国家自然科学基金重点资助项目(4&54%%!%

)。"通讯联系人。

尼可霉素(!"##$%&

’"())多组分结构及其生物合成相关基因的研究进展

陈蔚谭华荣"

(中国科学院微生物研究所北京!%%%5%

)摘要尼可霉素是一种新的抗真菌抗生素,在分离到的$%多种活性单组分中,6、7、8、9为主要生物活性组分。

本文介绍了尼可霉素的结构,结构与活性的关系及其生物合成途径中有关基因的研究进展。关键词尼可霉素,结构与活性,基因

中图分类号:5!$文献标识码;文章编号!%%%34%"!($%%%)%#3%#<53%4

抗生素是以低微浓度能抑制或影响活机体生命过程的次级代谢产物。目前已知的天然抗生素约!万余种,包括抗

细菌、抗肿瘤、抗真菌、抗病毒、抗原虫、抗藻类、抗寄生虫等

抗生素。其产生菌主要来源是微生物,特别是土壤微生物,

其中从放线菌目链霉菌属中找到的抗生素累计已达#%%%多

种,占放线菌目所产生抗生素的5%=以上,

占微生物来源抗生素的#%=以上。抗生素的种类繁多,

按其化学结构大致可分为!%类:(!)!

3内酰胺类抗生素;如青霉素、头孢菌素及其衍生物等。($

)氨基糖甙类抗生素;如链霉素、卡那霉素。(4

)大环内酯类抗生素;如红霉素、竹桃霉素、螺旋霉素等。(<)肽类抗生素;如杆菌肽、多粘菌素等。(#

)苯烃基胺类抗生素;如氯霉素。("

)四环素类抗生素;如四环素、土霉素、金霉素。(>)多烯类抗生素;如制霉菌素、两性霉素?。(5

)蒽环类抗生素;如道诺霉素。(&

)核苷类抗生素;如多氧菌素、尼可霉素。(!%

)其他;如磷霉素和硫霉素等。核苷类抗生素是包括核苷、核苷酸及其衍生物的一大类

抗生素。由于核苷、核苷酸在许多重要的细胞生理代谢中的

多效作用如作为能量供体、二级信使、代谢物运载体等而表

现出抗细菌、抗真菌、抗锥虫、抗肿瘤、抗病毒等多种生物活

性。目前已发现的!%%多种核苷类抗生素依其结构不同划

分为<大类:@*碱基类似物,1*简单的核苷,A *

酰基和糖基核苷,B *

核苷酸[!]。本文所讨论的尼可霉素即是酰基和糖基核苷中的一种———核苷肽基抗生素。它是由德国的7C D E -2等

首先从唐德链霉菌的发酵液中分离的[$]。由于它同几丁质合成酶的天然底物F G H 3+3乙酰葡萄糖胺具有结构类似性而竞争性地抑制真菌、昆虫、酵母(包括人体致病菌白色念珠菌!+$3#3++,4#0+$&)的几丁质合成酶,因而表现出抗真菌、杀昆虫、杀螨虫的活性[4,<]。同时,它对哺乳动物、蜜蜂、植物、细菌等无毒害作用或毒性极低,并在自然界中易被降解,而被认为是一种理想的农用抗生素。还有研究表明,尼可霉

素对鼠的球孢子菌病、网状内皮细胞真菌病和酵母病都有很

好的疗效[#]。因此作为一种新型医用抗真菌抗生素亦有良好的应用前景。从>%年代中期尼可霉素被发现至今,已开展了广泛的研究。本文主要从以下两个方面进行介绍,希望对本领域的同仁起到抛砖引玉的作用。*尼可霉素的结构与生物活性的关系尼可霉素是一类两性水溶性核苷类物质,到目前为止已从野生株及突变株的发酵液中分离到$%多种活性单组分,其中+I J J (0K A I E6,7,8,9为主要生物活性组分,其结构如图!所示。尼可霉素是由肽基和核苷两部分组成。肽基组分为一种不常见的氨基酸———羟基吡啶同型苏氨酸(L K B 2(M K .K 2I B K )D (0(/D 2-(E I E -,L H L N ,又称+I J J (0K A I EG );核苷组分称为+I J J (0K A I E;,在+I J J (0K A I E6和7中同"3氨基己糖醛酸以+3;糖苷键相连的碱基分别为<3甲酰3<3咪唑3$3酮(O P Q )和尿嘧啶,相应称为+I J J (0K A I E;M ,;R 。+I J J (0K A I E ;,G 均为"3氨基酸结构,它们通过肽键相连形成了二肽+I J J (0K A I E 6和7。三肽+I J J (0K A I E 8,9分别是+I J J (0K A I E6和7中的氨基己糖醛酸的"S 3羧基同谷氨酸形成肽键而成。早期采用了紫外线(F ’)、甲基磺酸乙酯(T P ,)、亚硝基胍(+N U )等物理化学方法或用酶法[",>]获得一系列的尼可霉素产生阻断突变株,它们能产生许多新的尼可霉素组分,

如+I J J (0K

A I EQ M ,Q R ,V M ,V R ,:M ,:R ,,M ,,R ,W M ,W R ,H M ,X M ,X R ,#7,#9等。这些组分的生物活性因其结构的改变而

异,如W M 、W R 中由Y 3酪氨酸代替了6,7中的L H L N 则表

现为对!(5

*#$)&0#$%*%)&有强抑制作用,但对真菌和酵母无抑制作用。+I J J (0K

A I EQ M ,Q R ,V M ,V R 由于肽基组分中的甲基缺失而抗真菌活性明显下降。+I J J (0K A I E #7,#9

中核苷

考文献

[!]"#$%$&,!"#$%&%’$,!’((,!"(!)):!*!!!!*+’[)],-./0,123

4/526471,18./41($)*+",-./%-,’&%’*,!’*9,"#$:!:+!!9;[+]<64=>471?,&@7A .B ,,4>C 47D ($)*+!0.(12(-.#’*3%’$(-.#’*,!’(),%&:)*!!)(;

[:]E 2F 6FG ,"#$%1%-,’&"4

(#$50.(1’$.(,,!’’!,%’:!*;!!*+[H ]14I A 87B<,J 65547KL ,?2M M 2362/6N ,O "#$%1%-,’&"4

(#$50.(1’$.(,,!’’;,%!:H (*!H ’+[9]K 8752//E ,J -./471,1@./PO !"#$%&%’$,!’(H ,%((!):’!!9

[*],4I Q 471,?R 4R R 47>40,K 8752//E ($)*+!"#$%&%’$,!’’!,!!:9)9!9+:

[(]K 8752//E ,&->5-/I C .4>S

6T ,#U F 5@A .B ($)*+!"#$%&%’$,!’’’,’&:!;)!!;([’]K 8752//EL 2@47K ,&->5-/I C .4>S

6T ($)*+!"#$%&%’$,!’’’,’&:H ()!H (H [!;]K 8752//E ,V 2A A 47/##I .745M

R 1($)*+!"#$%&%’$,!’(’,!&:’!+!’!([!!]K 8752//E ,T F 47>4&,<64=>471?($)*+"66

*/%-,’&%’*3%’$(-.#’*,!’’;,%&::):!:+;[!)]D "TD ,L "P ,E 1G %P ($)*+7-%(#-(%#0.%#)(7(,%(50),);;;,!#(!):+;!+(

[!+]G /34>?,P 763

.A #VO 89/7/%-,’&%’*:($$,!’’+,"#):)H *!)9)*+,-+.//,012345./,67588,9:

;5012+3;23+.<041,9.=.0./>.?<2.42,7588,9:;50@5,/:

02A ./5/E 1G %P 46W T %1@2X B 8/3

(;#5$%$<$(’=/%-,’&%’*’4>,2.(0.%#(5("-)?(1>’=7-%(#-(5,3(%@%#4!

;;;(;)B C /2+<;2%6Q Q 85S I 6/6N 2Q 6/=8R /4Y 2/A 6R @/32>2/A 6F 68A 6I N O V 874A .2/);F 68>836I 2>>S 2I A 6Z 4/6Q Q 85S

I 6/N A 7@I A @74N .2Z 4F 44/6N 8>2A 4=2/=A .4526/2I A 6Z 4N A 7@I A @74N 274/6Q Q 85S

I 6/N [,J ,",D O 1474,Y 46/A 78=@I 4A .4M 78374N N 8/A .4N A @=64N 8R /6Q Q 85S

I 6/N A 7@I A @74N ,A .474>2A 68/N .6M NF 4A Y 44//6Q Q 85S I 6/N A 7@I A @742/=F 68>836I 2>2I A 6Z 6A S ,2/=34/4N74>2A 4=A 8/6Q Q 85S I 6/F 68N S

/A .4N 6N O D .:E ,+4/%6Q Q 85S I 6/,N A 7@I A @742/=F 68>836I 2>2I A 6Z 6A S ,34/4N 74>2A 4=A 8/6Q Q 85S I 6/F 68N S /A .4N 6N ;H H 生物工程学报!9卷

真核细胞的基因结构

真核细胞的基因结构 在遗传学上通常将能编码蛋白质的基因称为结构基因。真核生物的结构基因是断裂的基因。一个断裂基因能够含有若干段编码序列,这些可以编码的序列称为外显子。在两个外显子之间被一段不编码的间隔序列隔开,这些间隔序列称为内含子。每个断裂基因在第一个和最后一个外显子的外侧各有一段非编码区,有人称其为侧翼序列。在侧翼序列上有一系列调控序列(图1)。 调控序列主要有以下几种:①在5′端转录起始点上游约20~30个核苷酸的地方,有TA TA框(TATA box)。TA TA框是一个短的核苷酸序列,其碱基顺序为TATAATAAT。TA TA 框是启动子中的一个顺序,它是RNA聚合酶的重要的接触点,它能够使酶准确地识别转录的起始点并开始转录。当TATA框中的碱基顺序有所改变时,mRNA的转录就会从不正常的位置开始。②在5′端转录起始点上游约70~80个核苷酸的地方,有CAAT框(CAAT box)。CAAT框是启动子中另一个短的核苷酸序列,其碱基顺序为GGCTCAATCT。CAAT框是RNA 聚合酶的另一个结合点,它的作用还不很肯定,但一般认为它控制着转录的起始频率,而不影响转录的起始点。当这段顺序被改变后,mRNA的形成量会明显减少。③在5′端转录起始点上游约100个核苷酸以远的位置,有些顺序可以起到增强转录活性的作用,它能使转录活性增强上百倍,因此被称为增强子。当这些顺序不存在时,可大大降低转录水平。研究表明,增强子通常有组织特异性,这是因为不同细胞核有不同的特异因子与增强子结合,从而对不同组织、器官的基因表达有不同的调控作用。例如,人类胰岛素基因5′末端上游约250个核苷酸处有一组织特异性增强子,在胰岛素β细胞中有一种特异性蛋白因子,可以作用于这个区域以增强胰岛素基因的转录。在其他组织细胞中没有这种蛋白因子,所以也就没有此作用。这就是为什么胰岛素基因只有在胰岛素β细胞中才能很好表达的重要原因。④在3′端终止密码的下游有一个核苷酸顺序为AA TAAA,这一顺序可能对mRNA的加尾(mRNA尾部添加多聚A)有重要作用。这个顺序的下游是一个反向重复顺序。这个顺序经转录后可形成一个发卡结构(图2)。发卡结构阻碍了RNA聚合酶的移动。发卡结构末尾的一串U与转录模板DNA中的一串A之间,因形成的氢键结合力较弱,使mRNA与DNA杂交部分的结合不稳定,mRNA就会从模板上脱落下来,同时,RNA聚合酶也从DNA上解离下来,转录终止。AA TAAA顺序和它下游的反向重复顺序合称为终止子,是转录终止的信号。

高中生物dna的结构知识点

高中生物dna 的结构知识点 高中生物dna 的结构知识点( 一) 1、DNA的元素组成:C、H O N、P 2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对 ( 氢键) 碱基互补配对原则。 3、模型图解: 4、DNA分子的结构特性 (1) 稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变; 两条链间碱基互补配对的方式不变。 (2) 多样性:DNA分子中碱基时排列顺序多种多样。 (3) 特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。 高中生物dna的结构知识点(二) 1. 基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A) 、鸟嘌呤(G) 、胸腺嘧啶(T) 和胞嘧啶(C) ,因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2. 分子结构

DNA分子的立体结构为规则的双螺旋结构,具体为:由 两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架; 碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分 子脱氧核苷酸的 5 号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5' 端; 另一端的的3 号碳原子端称为3' 端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'?5',另一条为5'~?3'。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T, C=G(^指数目), A%=T% C%=G%可据此得出: ① A+G=T+C即嘌呤碱基数与嘧啶碱基数相等; ② A+C(G)=T+G(C)即任意两不互补碱基的数目相等; ③ A%+C%=T%+G%= A%+ G%= T%+ C%即任意两不互补碱基含量之和相等,占碱基总数的50%; ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C= T/ G :即双链DNA及其任一条链的(A+T)/(C+G)为一定值;

高中生物《DNA分子的结构》教案

高中生物《DNA分子的结构》教案 一、教学目标 【知识与技能】 概述DNA分子结构的主要特点。 【过程与方法】 在建构DNA双螺旋结构模型的过程中,提高分析能力和动手能力。 【情感态度与价值观】 认同人类对遗传物质的认识是不断深化、不断完善的过程。 二、教学重难点 【重点】 DNA分子结构的主要特点。 【难点】 DNA双螺旋结构模型的建构过程。 三、教学过程 (一)导入新课 首先回忆上一节课的内容(DNA是主要的遗传物质),之后设疑:DNA是遗传物质,那DNA分子必然携带着大量的遗传信息。现在大家来当科学家,在了解了DNA分子的功能以后,大家想要进一步了解什么(DNA分子时如何携带遗传信息的DNA分子的遗传功能是如何实现的)要解决这些问题首先要了解什么从而导入新课。 (二)新课讲授 1.师:DNA分子的组成单位是什么请用课前准备好的材料展现出来。

学生分组展示脱氧核苷酸的结构: 2.师:我们知道了DNA是脱氧核苷酸长链,请同学们试着把自己制作的四个脱氧核苷酸连成长链,请几个同学说明脱氧核苷酸之间是如何连接的、四个核苷酸是怎样排序的 学生分组用实物进行展示,并用语言描述。 教师点评,并强调相邻的脱氧核苷酸之间的磷酸和脱氧核糖形成新的化学键,形成磷酸和脱氧核糖交替连接的长链。 3.师:不同组的同学展示的脱氧核苷酸链的碱基排列顺序不同,请问碱基排列顺序不通过的DNA分子时同一个DNA分子吗组成DNA的碱基(脱氧核苷酸)排列顺序的千变万化有什么意义 (碱基排列顺序不同,DNA分子也不同,每个DNA分子具有其独特的碱基排列顺序。) 4.师:脱氧核苷酸单链是无法稳定存在的,那么由这样的长链组成的DNA 分子要具有怎样的结构才能稳定存在并且遗传给后代呢请结合教材,尝试构建DNA双链结构。(备注:预设有两种情况,见下图,设置纠错环节) (情况一中的两条链无法连接在一起,科学家已否定;情况二可行,两条链之间的碱基通过化学键结合,但是碱基如何结合能稳定存在吗) [page] 5.师:1952年春天,奥地利的生物化学家査戈夫访问了剑桥大学,沃森和克里克从他那里得到了一个重要的信息:A的量等于T的量,G的量等于C 的量,这给了沃森和克里克很大的启示,同学们,你们获得了什么启发吗请组内讨论,然后修正本组的模型。 (得出下图,碱基间有固定的配对方式:一条链中的A与另一条链上的T 配对,G与C配对)

高中生物-DNA是主要的遗传物质、DNA的结构和复制-同步练习题

高二生物 DNA是主要的遗传物质、DNA的结构和复制同步练习 一、选择题 1.科学家将含人的α-抗胰蛋白酶基因的DNA片段,注射到羊的受精卵中,该受精卵发育的羊能分泌含α-抗胰蛋白酶的奶,这一过程没有涉及 按照碱基互补配对原则自我复制以其一条链为模板合成RNA 以自身为模板自我复制 D.按照RNA密码子的排列顺序合成蛋白质 2.有3个核酸分子,经分析共有5种碱基,8种核苷酸,4条多核苷酸链,它的组成是 A.一个DNA分子,两个RNA分子 B.三个DNA分子,一个RNA分子 C.三个DNA分子 D.三个RNA分子 3.信使RNA的核苷酸序列与哪条核苷酸序列互补 : 分子两条链的核苷酸序列互补分子一条链的核苷酸序列互补 C.某一转运RNA分子的核苷酸序列互补 D.所有的转运RNA分子的核苷酸序列互补 4.经分析测定,在T2噬菌体的化学成分中,60%是蛋白质,40%是DNA;S仅存在于蛋白质分子中,99%的P存在于DNA分子中。现欲做T2噬菌体侵染细菌的实验,以证明DNA是亲子代之间具有连续性的物质,用于标记噬菌体的同位素是 C.14C和18O 和35S 分子中一条链的碱基摩尔数之比为A∶C∶G∶T=1∶∶2∶,则其互补链中嘌呤碱基与嘧啶碱基的摩尔数之比为∶4 ∶3 ∶2 ∶4 6.下面关于转运RNA和氨基酸相互关系的说法正确的是 A.每种氨基酸都有它特定的一种转运RNA B.每种氨基酸都可由几种转运RNA携带 C.一种转运RNA可以携带几种结构相似的氨基酸 D.一种氨基酸可由一种或几种特定的转运RNA来将它带到核糖体上 7.某基因含有腺嘌呤的分子数为15%,含胞嘧啶的碱基对占全部碱基对的% % % % . 8.春天植物向外发出幼叶时要进行旺盛的细胞分裂,其细胞的分裂方式和DNA复制的情况是 A.无丝分裂,DNA不复制 B.减数分裂,DNA在细胞核中复制 C.有丝分裂,DNA在细胞核中复制 D.有丝分裂,DNA在细胞核、线粒体和叶绿体中都进行复制 9.下列关于遗传信息传递的叙述,不正确的是 A.遗传信息可通过细胞分裂向子细胞中传递 B.遗传信息可通过减数分裂和有性生殖向下代传递 C.通过有丝分裂和无性生殖,遗传信息也可以向下代传递 D.在同一生物个体中,遗传信息不能传递 10.下列叙述不正确的是 A.只含有RNA的生物,遗传物质是RNA B.只含有DNA的生物,遗传物质是DNA & C.既有DNA又有RNA的生物,遗传物质是DNA和RNA D.既有DNA又有RNA的生物,遗传物质是DNA不是RNA 分子复制时,解旋酶作用于下列哪一组结构 12.反应“ ,

最新人教版高中生物必修2《DNA分子的结构》教案

第2节DNA分子的结构 一、学习目标 1.概述DNA分子的结构的主要特点; 2.制作DNA分子的双螺旋结构模型; 3.讨论DNA双螺旋结构模型构建历程。 二、教学重点和难点 1.教学重点:制作DNA分子双螺旋结构模型。 2.教学难点:DNA分子结构的主要特点 三、教学方法:讨论法、演示法 四、教学课时:2 五、教学过程 教学内容教师组织和引导学生活动教学意图 问题探讨引导学生思考讨论回答,老师提示。思考讨论回 答 收集资料 的能力。 一、DNA 双螺旋结构模型的构建成 引导学生阅读课文P47—49。 〖提示〗1.(1)当时科学界已经发现的证 据有:组成DNA分子的单位是脱氧核苷酸; DNA分子是由含4种碱基的脱氧核苷酸长 链构成的;(2)英国科学家威尔金斯和富 兰克林提供的DNA的X射线衍射图谱;(3) 美国生物化学家鲍林揭示生物大分子结构 的方法(1950年),即按照X射线衍射分 析的实验数据建立模型的方法(因为模型能 使生物大分子非常复杂的空间结构,以完整 的、简明扼要的形象表示出来),为此,沃 森和克里克像摆积木一样,用自制的硬纸板 构建DNA结构模型;(4)奥地利著名生 物化学家查哥夫的研究成果:腺嘌呤(A)的 量总是等于胸腺嘧啶(T)的量,鸟嘌呤(G) 阅读思考 完成旁栏思 考题目和思 考与讨论 培养学生 的自学能 力与自我 探究能 力。

的量总是等于胞嘧啶(C)的量这一碱基之间的数量关系。 2.沃森和克里克根据当时掌握的资料,最初尝试了很多种不同的双螺旋和三螺旋结构模型,在这些模型中,他们将碱基置于螺旋的外部。在威尔金斯为首的一批科学家的帮助下,他们否定了最初建立的模型。在失败面前,沃森和克里克没有气馁,他们又重新构建了一个将磷酸—核糖骨架安排在螺旋外部,碱基安排在螺旋内部的双链螺旋。 沃森和克里克最初构建的模型,连接双链结构的碱基之间是以相同碱基进行配对的,即A与A、T与T配对。但是,有化学家指出这种配对方式违反了化学规律。1952年,沃森和克里克从奥地利生物化学家查哥夫那里得到了一个重要的信息:腺嘌呤(A)的量总是等于胸腺嘧啶(T)的量,鸟嘌呤(G)的量总是等于胞嘧啶(C)的量。于是,沃森和克里克改变了碱基配对的方式,让A与T配对,G与C配对,最终,构建出了正确的DNA模型。 〖提示〗1.略。2.主要涉及物理学(主要是晶体学)、生物化学、数学和分子生物学等学科的知识。涉及的方法主要有:X射线衍射结构分析方法,其中包括数学计算法;建构模型的方法等。现代科学技术中许多成果的取得,都是多学科交叉运用的结果;反过来,多学科交叉的运用,又会促进学科的发展,诞生新的边缘学科,如生物化学、生物思考、讨论和合作能力

病毒、真核和原核生物的基因组结构特点

病毒、真核和原核生物的基因组结构特点 病毒基因组结构特点: 1.病毒基因组所含核酸类型不同 2.不同病毒基因组大小相差较大 3.病毒基因组可以是连续的也可以是不连续的 4.病毒基因组的编码序列大 5.基因可以是连续的也可以是间断的 6.病毒基因组都是单倍体和单拷贝 7.基因重叠 8.病毒基因组功能单位或转录单位 9.病毒基因组含有不规则结构基因 (1)几个结构基因的编码区无间隔 (2)结构基因本身没有翻译起始序列 (3) mRNA没有 5’端的帽结构 原核生物基因组结构特点: 1.细菌等原核生物的基因组是一条双链闭环的DNA分子 2.具有操纵子结构 3.原核基因组中只有1个复制起点 4.结构基因无重叠现象 5.基因序列是连续的,无内含子,因此转录后不需要剪切 6.编码区在基因组中所占的比例远远大于真核基因组,但又远远小于病毒基 因组。非编码区主要是一些调控序列

7.基因组中重复序列很少 8.具有编码同工酶的基因 9.细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子 10.在DNA分子中具有多种功能的识别区域,如复制起始区、复制终止区、转 录启动区和终止区等。这些区域往往具有特殊的序列,并且含有反向重复序列 真核生物基因组结构特点: 1)真核基因组远远大于原核生物的基因组。 2)真核基因具有许多复制起点,每个复制子大小不一。每一种真核生物都有一定的染色体数目,除了配子为单倍体外,体细胞一般为双倍体, 即含两份同源的基因组。 3)真核基因都出一个结构基因与相关的调控区组成,转录产物的单顺反子,即一分子mRNA只能翻译成一种蛋白质。 4)真核生物基因组中含有大量重复顺序。 5)真核生物基因组内非编码的顺序(NCS)占90%以上。编码序列占5%。 6)真核基因产断列基因,即编码序列被非编码序列分隔开来,基因与基因内非编码序列为间隔DNA,基因内非编码序列为内含子,被内含子隔 开的编码序列则为外显子。 7)真核生物基因组功能相关的基因构成各种基因家族,它们可串联在一起,亦可相距很远,但即使串联在一起成族的基因也是分别转录的。 8)真核生物基因组中也存在一些可移动的遗传因素,这些DNA顺序并无明显生物学功能,似科为自己的目的而级织,故有自私DNA之称,其移 动多被RNA介导,也有被DNA介导的。

高中生物dna分子结构知识点

高中生物dna分子结构知识点 高中生物dna分子结构知识点 1953年,美国科学家沃森和英国科学家克里克共同提出了DNA 分子的双螺旋结构模型。 DNA分子的基本单位是脱氧核苷酸。一分子该基本单位由一分子磷酸、一分子脱氧核糖和一分子含氮碱基组成。由于组成脱氧核苷酸的碱基只有4种:腺嘌呤(A)、胸腺嘧啶(T)、鸟嘌呤(G)和胞嘧啶(C),因此,脱氧核苷酸有4种:腺嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸、鸟嘌呤脱氧核苷酸和胞嘧啶脱氧核苷酸。很多个脱氧核苷酸聚合成为多核苷酸链。 DNA分子的立体结构是双螺旋。DNA分子两条链上的碱基通过氢键连接成碱基对,并且碱基配对有一定的规律:A与T,C与G。碱基之间的这种一一对应关系,叫做碱基互补配对原则。 组成DNA分子的碱基只有4种,但碱基对的排列顺序却是千变万化的。碱基对的排列顺序代表了遗传信息。若含有碱基2019个,则排列方式有41000种。 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。

2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA 反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5’端和3’端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5’端;另一端的的3号碳原子端称为3’端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5’端与另一条链的3’端相对,即一条链是3’~5’,另一条为5’~~3’。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等; ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等; ③A%+C%=T%+G%= A%+ G%= T%+ C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%; ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C= T/

高中生物DNA的结构和复制知识点归纳

高中生物DNA的结构和复制知识点归纳 名词: 1、DNA的碱基互补配对原则:A与T配对,G与C配对。 2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA的过程。DNA的复制实质上是遗传信息的复制。 3、解旋:在ATP供能、解旋酶的作用下,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。 4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。 5、人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。 语句: 1、DNA的化学结构: ① DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。 ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 3、DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。 ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目) ③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。 ②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互

高中生物DNA分子的结构及其特点解析

高中生物DNA分子的结构及其特点解析高中生物DNA分子的结构及其特点解析 1953年4月25日发表在英国《自然》杂志上的一篇论文《核酸的分子结构——脱氧核糖核酸的一个结构模型》,揭开了DNA的结构之迷。沃森、克里克和维尔金斯三人也因此共同获得了1962年的诺贝尔生理学或医学奖。那么,DNA分子的结构到底是怎样的呢? 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构 DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架; 碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱

氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为 5'~~3'。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等; ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等; ③A%+C%=T%+G%= A%+ G%= T%+ C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%; ④(A1+T1)/(C1+G1)=(A2+T2)/(C2+G2)=(A+T)/(C+G)=A/C= T/ G:即双链DNA及其任一条链的(A+T)/(C+G)为一定值; ⑤(A1+C1)/(T1+G1)=(T2+G2)/(A2+C2)=1/[(A2+C2)/(T2+G2)]:DNA分子两条链中的(A+C)/(T+G)互为倒数;双链DNA分子的(A+C)/(T+G)=1。 根据以上推论,结合已知条件可方便的计算DNA分子中某种碱基的数量和含量。 3.结构特点

高中生物备课参考 DNA的结构和DNA的复制

第二节DNA的结构和DNA的复制 1.DNA的结构 (1)元素组成:C、H、O、N、P(不含S) (2)基本单位: 脱氧核苷酸. (3)脱氧核糖的结构简式如下图: 磷酸 脱氧核糖含氮碱基 磷酸 脱氧核糖含氮碱基 磷酸 脱氧核糖含氮碱基 磷酸 在脱氧核苷酸分子中,特别要注意三个小分子之间的连接,其中,脱氧核糖的l号碳原子与含氮碱基相连,5号碳原子与磷酸分了相连。 (4)一条脱氧核苷酸单链中,相邻脱氧核苷酸之间的连接如图所示。 一分子脱氧核苷酸中脱氧核糖的3号碳原子与另一分子脱氧核苷酸中的磷酸通过形成新的化学键(磷酸二酯键)相连接。 (5)两条单链之间形成的碱基对表示如下 ①碱基之间的配对方式有两种,即上图所示的A一定与T配对,G一定与C配对。 ②配对的碱基之间以氢键相连,A与T之间形成两条氢键.G与C之间 形成三条氢键。 ③配对的两个脱氧核苷酸方向相反,尤其要注意脱氧核糖的位置。 (6)DNA分子形成规则的双螺旋结构 ①两条链反向平行, ②外侧为脱氧核糖与磷酸交替排列; ③内部为碱基互补配对。 【画龙点睛】DNA的分子结构可用数学模型“点→线→面→体”表示即“脱氧核苷酸→脱氧核苷酸链→二条链连接成的平面→规则的双螺旋结构”。 (7) DNA分子结构的主要特点 1953年,美国生物学家沃森和英国物理学家克里克提出DNA分子双螺旋结构模型,其主要特点是: ①DNA分子是由两条链组成的。这两条链按反向平行方式盘旋成双螺旋结构。 ②DNA分子中的脱氧核糖和磷酸交替连接.排列在外侧,构成骨架;碱基排列在内侧。 ③两条链上的碱基通过氢键连接成碱基对.A(腺嘌呤)与T(胸腺嘧啶)配对;G(鸟嘌呤)与C(胞嘧啶)配对。碱基之间的这种一一对应关系,叫做碱基互补配对原则。 【画龙点睛】①DNA分子的双螺旋结构:DNA分子含有两条脱氧核苷酸链,两条链按照反向平行方式向右盘绕成双螺旋.螺旋直径2.0 nm,螺距为3. 4 nm,每个螺距有10对碱基.两个相邻碱基对平面的垂直距离为0. 34 nm。 ②双螺旋结构的外侧是脱氧核糖和磷酸通过磷酸二酯键交互连接而成的长链.构成DNA分子的骨架。 ③腺嘌呤(A)与胸腺嘧啶(T)之间通过2个氢键相连.鸟嘌呤(G)与胞嘧啶(C)之间通过3个氢键相连。 【例1】胸腺嘧啶脱氧核糖核苷(简称胸苷)在细胞内可以转化为胸腺嘧啶脱氧核苷酸,后者是合成DNA的原料,用含有3H——胸苷的营养液,处理活的小肠黏膜层,半小时后洗

高中生物DNA分子的结构教案

高中生物D N A分子的 结构教案 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

高中生物《DNA分子的结构》教案 一、教学目标 【知识与技能】 概述DNA分子结构的主要特点。 【过程与方法】 在建构DNA双螺旋结构模型的过程中,提高分析能力和动手能力。 【情感态度与价值观】 认同人类对遗传物质的认识是不断深化、不断完善的过程。 二、教学重难点 【重点】 DNA分子结构的主要特点。 【难点】 DNA双螺旋结构模型的建构过程。 三、教学过程 (一)导入新课 首先回忆上一节课的内容(DNA是主要的遗传物质),之后设疑:DNA 是遗传物质,那DNA分子必然携带着大量的遗传信息。现在大家来当科学家,在了解了DNA分子的功能以后,大家想要进一步了解什么(DNA分子时如何携带遗传信息的DNA分子的遗传功能是如何实现的)要解决这些问题首先要了解什么从而导入新课。 (二)新课讲授 1.师:DNA分子的组成单位是什么请用课前准备好的材料展现出来。 学生分组展示脱氧核苷酸的结构:

2.师:我们知道了DNA是脱氧核苷酸长链,请同学们试着把自己制作的四个脱氧核苷酸连成长链,请几个同学说明脱氧核苷酸之间是如何连接的、四个核苷酸是怎样排序的 学生分组用实物进行展示,并用语言描述。 教师点评,并强调相邻的脱氧核苷酸之间的磷酸和脱氧核糖形成新的化学键,形成磷酸和脱氧核糖交替连接的长链。 3.师:不同组的同学展示的脱氧核苷酸链的碱基排列顺序不同,请问碱基排列顺序不通过的DNA分子时同一个DNA分子吗组成DNA的碱基(脱氧核苷酸)排列顺序的千变万化有什么意义 (碱基排列顺序不同,DNA分子也不同,每个DNA分子具有其独特的碱基排列顺序。) 4.师:脱氧核苷酸单链是无法稳定存在的,那么由这样的长链组成的DNA分子要具有怎样的结构才能稳定存在并且遗传给后代呢请结合教材,尝试构建DNA双链结构。(备注:预设有两种情况,见下图,设置纠错环节) (情况一中的两条链无法连接在一起,科学家已否定;情况二可行,两条链之间的碱基通过化学键结合,但是碱基如何结合能稳定存在吗) [page] 5.师:1952年春天,奥地利的生物化学家査戈夫访问了剑桥大学,沃森和克里克从他那里得到了一个重要的信息:A的量等于T的量,G 的量等于C的量,这给了沃森和克里克很大的启示,同学们,你们获得了什么启发吗请组内讨论,然后修正本组的模型。 (得出下图,碱基间有固定的配对方式:一条链中的A与另一条链上的T配对,G与C配对) 教师肯定学生的发现,之后补充:配对方式的确如此,之后的研究发现碱基间通过氢键连在一起,而且A与T之间两个氢键,G与C之间

高中生物dna的结构知识点

高中生物dna的结构知识点 高中生物dna的结构知识点(一) 1、DNA的元素组成:C、H、O、N、P 2、DNA分子的结构:DNA的双螺旋结构,两条反向平行脱氧核苷酸链,外侧磷酸和脱氧核糖交替连结,内侧碱基对(氢键)碱基互补配对原则。 3、模型图解: 4、DNA分子的结构特性 (l)稳定性:DNA分子中脱氧核糖和磷酸交替连接的方式不变;两条链间碱基互补配对的方式不变。 (2)多样性:DNA分子中碱基时排列顺序多种多样。 (3)特异性:每种DNA有别于其他DNA的特定的碱基排列顺序。 高中生物dna的结构知识点(二) 1.基本单位 DNA分子的基本单位是脱氧核苷酸。每分子脱氧核苷酸由一分子含氮碱基、一分子磷酸和一分子脱氧核糖通过脱水缩合而成(右图)。由于构成DNA的含氮碱基有四种:腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和胞嘧啶(C),因而脱氧核苷酸也有四种,它们分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。 2.分子结构

DNA分子的立体结构为规则的双螺旋结构,具体为:由两条DNA反向平行的DNA链盘旋成双螺旋结构。DNA分子中的脱氧核糖和磷酸交替连接,排列在外侧,构成基本骨架;碱基排列在内侧。DNA分子两条链上的碱基通过氢键连接成碱基对(A与T通过两个氢键相连、C与G通过三个氢键相连),碱基配对遵循碱基互补配对原则。应注意以下几点: ⑴DNA链:由一分子脱氧核苷酸的3号碳原子与另一分子脱氧核苷酸的5号碳原子端的磷酸基团之间通过脱水缩合形成磷酸二脂键,由磷酸二脂键将脱氧核苷酸连接成链。 ⑵5'端和3'端:由于DNA链中的游离磷酸基团连接在5号碳原子上,称5'端;另一端的的3号碳原子端称为3'端。 ⑶反向平行:指构成DNA分子的两条链中,总是一条链的5'端与另一条链的3'端相对,即一条链是3'~5',另一条为5'~~3'。 ⑷碱基配对原则:两条链之间的碱基配对时,A与T配对、C与G配对。双链DNA分子中,A=T,C=G(指数目),A%=T%,C%=G%,可据此得出: ①A+G=T+C:即嘌呤碱基数与嘧啶碱基数相等; ②A+C(G)=T+G(C):即任意两不互补碱基的数目相等; ③A%+C%=T%+G%= A%+ G%= T%+ C%=50%:即任意两不互补碱基含量之和相等,占碱基总数的50%;

高中生物DNA的结构和复制知识点整理

高中生物DNA的结构和复制知识点整理 高中生物DNA的结构和复制知识点整理 名词: 1、DNA的碱基互补配对原则:A与T配对,G与C配对。 2、DNA复制:是指以亲代DNA分子为模板来合成子代DNA 的过程。DNA的复制实质上是遗传信息的复制。 3、解旋:在ATP供能、解旋酶的作用下高二,DNA分子两条多脱氧核苷酸链配对的碱基从氢键处断裂,于是部分双螺旋链解旋为二条平行双链,解开的两条单链叫母链(模板链)。 4、DNA的半保留复制:在子代双链中,有一条是亲代原有的链,另一条则是新合成的。 5、人类基因组是指人体DNA分子所携带的全部遗传信息。人类基因组计划就是分析测定人类基因组的核苷酸序列。 语句: 1、DNA的化学结构: ①DNA是高分子化合物:组成它的基本元素是C、H、O、N、P等。 ②组成DNA的基本单位——脱氧核苷酸。每个脱氧核苷酸由三部分组成:一个脱氧核糖、一个含氮碱基和一个磷酸 ③构成DNA的脱氧核苷酸有四种。DNA在水解酶的作用下,可以得到四种不同的核苷酸,即腺嘌呤(A)脱氧核苷酸;鸟嘌呤(G)

脱氧核苷酸;胞嘧啶(C)脱氧核苷酸;胸腺嘧啶(T)脱氧核苷酸;组成四种脱氧核苷酸的脱氧核糖和磷酸都是一样的,所不相同的是四种含氮碱基:ATGC。 ④DNA是由四种不同的脱氧核苷酸为单位,聚合而成的脱氧核苷酸链。 2、DNA的双螺旋结构:DNA的双螺旋结构,脱氧核糖与磷酸相间排列在外侧,形成两条主链(反向平行),构成DNA的基本骨架。两条主链之间的横档是碱基对,排列在内侧。相对应的两个碱基通过氢键连结形成碱基对,DNA一条链上的碱基排列顺序确定了,根据碱基互补配对原则,另一条链的碱基排列顺序也就确定了。 3、DNA的特性: ①稳定性:DNA分子两条长链上的脱氧核糖与磷酸交替排列的顺序和两条链之间碱基互补配对的方式是稳定不变的,从而导致DNA分子的稳定性。 ②多样性:DNA中的碱基对的排列顺序是千变万化的。碱基对的排列方式:4n(n为碱基对的数目) ③特异性:每个特定的DNA分子都具有特定的碱基排列顺序,这种特定的碱基排列顺序就构成了DNA分子自身严格的特异性。 4、碱基互补配对原则在碱基含量计算中的应用: ①在双链DNA分子中,不互补的两碱基含量之和是相等的,占整个分子碱基总量的50%。②在双链DNA分子中,一条链中的嘌呤之和与嘧啶之和的比值与其互补链中相应的比值互为倒数。

相关主题
文本预览
相关文档 最新文档