当前位置:文档之家› 人教中考数学 锐角三角函数 综合题含详细答案

人教中考数学 锐角三角函数 综合题含详细答案

人教中考数学 锐角三角函数 综合题含详细答案
人教中考数学 锐角三角函数 综合题含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.

(1)求证:直线CP是⊙O的切线.

(2)若BC=2,sin∠BCP=,求点B到AC的距离.

(3)在第(2)的条件下,求△ACP的周长.

【答案】(1)证明见解析(2)4(3)20

【解析】

试题分析:(1)利用直径所对的圆周角为直角,2∠CAN=∠CAB,∠CAB=2∠BCP判断出∠ACP=90°即可;

(2)利用锐角三角函数,即勾股定理即可.

试题解析:(1)∵∠ABC=∠ACB,

∴AB=AC,

∵AC为⊙O的直径,

∴∠ANC=90°,

∴∠CAN+∠ACN=90°,2∠BAN=2∠CAN=∠CAB,

∵∠CAB=2∠BCP,

∴∠BCP=∠CAN,

∴∠ACP=∠ACN+∠BCP=∠ACN+∠CAN=90°,

∵点D在⊙O上,

∴直线CP是⊙O的切线;

(2)如图,作BF⊥AC

∵AB=AC,∠ANC=90°,

∴CN=CB=,

∵∠BCP=∠CAN,sin∠BCP=,

∴sin∠CAN=,

∴AC=5,

∴AB=AC=5,

设AF=x,则CF=5﹣x,

在Rt△ABF中,BF2=AB2﹣AF2=25﹣x2,

在Rt△CBF中,BF2=BC2﹣CF2=2O﹣(5﹣x)2,

∴25﹣x2=2O﹣(5﹣x)2,

∴x=3,

∴BF2=25﹣32=16,

∴BF=4,

即点B到AC的距离为4.

考点:切线的判定

2.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴BE=CE?cot30°=12×3=123,

在Rt△BDE中,由∠DBE=45°,

得DE=BE=123.

∴CD=CE+DE=12(3+1)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

3.已知:如图,在Rt△ABC中,∠ACB=90°,点M是斜边AB的中点,MD∥BC,且MD=CM,DE⊥AB于点E,连结AD、CD.

(1)求证:△MED∽△BCA;

(2)求证:△AMD≌△CMD;

(3)设△MDE的面积为S1,四边形BCMD的面积为S2,当S2=17

5

S1时,求cos∠ABC的

值.

【答案】(1)证明见解析;(2)证明见解析;(3)cos ∠ABC=57

. 【解析】 【分析】

(1)易证∠DME=∠CBA ,∠ACB=∠MED=90°,从而可证明△MED ∽△BCA ; (2)由∠ACB=90°,点M 是斜边AB 的中点,可知MB=MC=AM ,从而可证明∠AMD=∠CMD ,从而可利用全等三角形的判定证明△AMD ≌△CMD ; (3)易证MD=2AB ,由(1)可知:△MED ∽△BCA ,所以

2

114

ACB S MD S

AB ??== ???,所以S △MCB =12S △ACB =2S 1,从而可求出S △EBD =S 2﹣S △MCB ﹣S 1=25S 1,由于1EBD

S ME S EB =,从而可知

52ME EB =,设ME=5x ,EB=2x ,从而可求出AB=14x ,BC=7

2,最后根据锐角三角函数的定义即可求出答案. 【详解】

(1)∵MD ∥BC , ∴∠DME=∠CBA , ∵∠ACB=∠MED=90°, ∴△MED ∽△BCA ;

(2)∵∠ACB=90°,点M 是斜边AB 的中点, ∴MB=MC=AM , ∴∠MCB=∠MBC , ∵∠DMB=∠MBC ,

∴∠MCB=∠DMB=∠MBC , ∵∠AMD=180°﹣∠DMB ,

∠CMD=180°﹣∠MCB ﹣∠MBC+∠DMB=180°﹣∠MBC , ∴∠AMD=∠CMD , 在△AMD 与△CMD 中,

MD MD AMD CMD AM CM =??

∠=∠??=?

, ∴△AMD ≌△CMD (SAS ); (3)∵MD=CM , ∴AM=MC=MD=MB , ∴MD=2AB ,

由(1)可知:△MED ∽△BCA , ∴

2

114

ACB S MD S

AB ??== ???,

∴S△ACB=4S1,

∵CM是△ACB的中线,

∴S△MCB =1

2

S△ACB=2S1,

∴S△EBD=S 2﹣S △MCB ﹣S1=2

5

S1,

∵1

EBD

S ME

S EB

=,

∴1

1

2

5

S ME

EB

S

=

∴5

2

ME

EB

=,

设ME=5x ,EB=2x ,

∴MB=7x,

∴AB=2MB=14x,

∵1

2

MD ME

AB BC

==,

∴BC=10x,

∴cos∠ABC=105

147

BC x

AB x

==.

【点睛】

本题考查相似三角形的综合问题,涉及直角三角形斜边中线的性质,全等三角形的性质与判定,相似三角形的判定与性质,三角形面积的面积比,锐角三角函数的定义等知识,综合程度较高,熟练掌握和灵活运用相关的性质及定理进行解题是关键.

4.如图13,矩形的对角线,相交于点,关于的对称图形为.

(1)求证:四边形是菱形;

(2)连接,若,.

①求的值;

②若点为线段上一动点(不与点重合),连接,一动点从点出发,以

的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点

,到达点后停止运动.当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.

【答案】(1)详见解析;(2)①②和走完全程所需时间为

【解析】

试题分析:(1)利用四边相等的四边形是菱形;(2)①构造直角三角形求;

②先确定点沿上述路线运动到点所需要的时间最短时的位置,再计算运到的时间.

试题解析:解:(1)证明:四边形是矩形.

与交于点O,且关于对称

四边形是菱形.

(2)①连接,直线分别交于点,交于点

关于的对称图形为

在矩形中,为的中点,且O为AC的中点

为的中位线

同理可得:为的中点,

②过点P作交于点

由运动到所需的时间为3s

由①可得,

点O以的速度从P到A所需的时间等于以从M运动到A

即:

由O运动到P所需的时间就是OP+MA和最小.

如下图,当P运动到,即时,所用时间最短.

在中,设

解得:

和走完全程所需时间为

考点:菱形的判定方法;构造直角三角形求三角函数值;确定极值时动点的特殊位置

5.如图,二次函数y=x2+bx﹣3的图象与x轴分别相交于A、B两点,点B的坐标为(3,0),与y轴的交点为C,动点T在射线AB上运动,在抛物线的对称轴l上有一定点D,其纵坐标为3,l与x轴的交点为E,经过A、T、D三点作⊙M.

(1)求二次函数的表达式;

(2)在点T的运动过程中,

①∠DMT的度数是否为定值?若是,请求出该定值:若不是,请说明理由;

②若MT=1

2

AD,求点M的坐标;

(3)当动点T在射线EB上运动时,过点M作MH⊥x轴于点H,设HT=a,当OH≤x≤OT 时,求y的最大值与最小值(用含a的式子表示).

【答案】(1)y=x2﹣2x﹣3(2)①在点T的运动过程中,∠DMT的度数是定值②(0,3)(3)见解析

【解析】

【分析】

(1)把点B的坐标代入抛物线解析式求得系数b的值即可;

(2)①如图1,连接AD.构造Rt△AED,由锐角三角函数的定义知,tan∠DAE=3.即∠DAE=60°,由圆周角定理推知∠DMT=2∠DAE=120°;

②如图2,由已知条件MT=1

2

AD,MT=MD,推知MD=

1

2

AD,根据△ADT的外接圆圆

心M在AD的中垂线上,得到:点M是线段AD的中点时,此时AD为⊙M的直径时,MD

=1

2

AD.根据点A、D的坐标求得点M的坐标即可;

(3)如图3,作MH⊥x于点H,则AH=HT=1

2

AT.易得H(a﹣1,0),T(2a﹣1,

0).由限制性条件OH≤x≤OT、动点T在射线EB上运动可以得到:0≤a﹣1≤x≤2a﹣1.

需要分类讨论:(i)当

211

1(1)211

a

a a

-

?

?

----

?

,即

4

1

3

a<,根据抛物线的增减性求得y

的极值.

(ii)当

011

211

1(1)211

a

a

a a

<-

?

?

->

?

?--<--

?

,即

4

3

<a≤2时,根据抛物线的增减性求得y的极值.

(iii)当a﹣1>1,即a>2时,根据抛物线的增减性求得y的极值.【详解】

解:(1)把点B(3,0)代入y=x2+bx﹣3,得32+3b﹣3=0,

解得b=﹣2,

则该二次函数的解析式为:y=x2﹣2x﹣3;

(2)①∠DMT的度数是定值.理由如下:

如图1,连接AD .

∵抛物线y =x 2﹣2x ﹣3=(x ﹣1)2﹣4. ∴抛物线的对称轴是直线x =1. 又∵点D 的纵坐标为

∴D (1,

由y =x 2﹣2x ﹣3得到:y =(x ﹣3)(x+1), ∴A (﹣1,0),B (3,0). 在Rt △AED 中,tan ∠DAE

=2

DE AE ==. ∴∠DAE =60°.

∴∠DMT =2∠DAE =120°.

∴在点T 的运动过程中,∠DMT 的度数是定值; ②如图2,∵MT =1

2

AD .又MT =MD , ∴MD =

1

2

AD . ∵△ADT 的外接圆圆心M 在AD 的中垂线上,

∴点M 是线段AD 的中点时,此时AD 为⊙M 的直径时,MD =1

2

AD . ∵A (﹣1,0),D (1,

∴点M 的坐标是(0

(3)如图3,作MH ⊥x 于点H ,则AH =HT =1

2

AT . 又HT =a ,

∴H (a ﹣1,0),T (2a ﹣1,0). ∵OH≤x≤OT ,又动点T 在射线EB 上运动, ∴0≤a ﹣1≤x≤2a ﹣1. ∴0≤a ﹣1≤2a ﹣1. ∴a≥1, ∴2a ﹣1≥1. (i )当2111(1)211a a a -??

----?

,即14

a 3时,

当x =a ﹣1时,y 最大值=(a ﹣1)2﹣2(a ﹣1)﹣3=a 2﹣4a ; 当x =1时,y 最小值=4.

(ii )当0112111(1)211

a a a a <-??->??--<--?

,即4

3<a≤2时,

当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=1时,y最小值=﹣4.

(iii)当a﹣1>1,即a>2时,

当x=2a﹣1时,y最大值=(2a﹣1)2﹣2(2a﹣1)﹣3=4a2﹣8a.当x=a﹣1时,y最小值=(a﹣1)2﹣2(a﹣1)﹣3=a2﹣4a.

【点睛】

主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系;另外,解答(3)题时,一定要分类讨论,以防漏解或错解.

6.在平面直角坐标系中,四边形OABC 是矩形,点()0,0O ,点()3,0A ,点()0,4C

连接OB ,以点A 为中心,顺时针旋转矩形AOCB ,旋转角为()0360αα?<

(Ⅲ)α为何值时,FB FA =.(直接写出结果即可).

【答案】(Ⅰ)点D 的坐标为5472

(,)2525;(Ⅱ)①证明见解析;②点H 的坐标为(3,258

);(Ⅲ)60α=?或300?. 【解析】 【分析】

(Ⅰ) 过A D 、分别作,AM OB DN OA ⊥⊥,根据点A 、点C 的坐标可得出OA 、OC 的

长,根据矩形的性质可得AB 、OB 的长,在Rt △OAM 中,利用∠BOA 的余弦求出OM 的长,由旋转的性质可得OA=AD ,利用等腰三角形的性质可得OD=2OM ,在Rt △ODN 中,利用∠BOA 的正弦和余弦可求出DN 和ON 的长,即可得答案;(Ⅱ)①由等腰三角形性质可得∠DOA=∠ODA ,根据锐角互余的关系可得ABD BDE ∠∠=,利用SAS 即可证明△DBA ≌△BDE ;②根据△DBA ≌△BDE 可得∠BEH=∠DAH ,BE=AD ,即可证明

△BHE ≌△DHA ,可得DH=BH ,设AH=x ,在Rt △ADH 中,利用勾股定理求出x 的值即可得答案;(Ⅲ)如图,过F 作FO ⊥AB ,由性质性质可得∠BAF=α,分别讨论0<α≤180°时和180°<α<360°时两种情况,根据FB=FA 可得OA=OB ,利用勾股定理求出FO 的长,由余弦的定义即可求出∠BAF 的度数. 【详解】

(Ⅰ)∵点()30A ,

,点()04C ,, ∴3,4OA OC ==. ∵四边形OABC 是矩形, ∴AB=OC=4,

∵矩形DAFE 是由矩形AOBC 旋转得到的 ∴3AD AO ==.

在Rt OAB ?中,5OB =, 过A D 、分别作B,DN OA AM O ⊥⊥ 在Rt ΔOAM 中,OM OA 3

cos BOA OA OB 5

∠===, ∴9OM 5

=

∵AD=OA ,AM ⊥OB , ∴18OD 2OM 5

==

. 在Rt ΔODN 中:DN 4sin BOA OD 5∠==,cos ∠BOA=ON OD =3

5

, ∴72DN 25=

,54ON 25

=

. ∴点D 的坐标为5472,2525??

??

?.

(Ⅱ)①∵矩形DAFE 是由矩形AOBC 旋转得到的, ∴OA AD 3,ADE 90,DE AB 4∠===?==. ∴OD AD =.

DOA ODA ∠∠=.

又∵DOA OBA 90∠∠+=?,BDH ADO 90∠∠+=? ∴ABD BDE ∠∠=.

又∵BD BD =, ∴ΔBDE ΔDBA ?.

②由ΔBDE ΔDBA ?,得BEH DAH ∠∠=,BE AD 3==, 又∵

BHE DHA ∠∠=,

∴ΔBHE ΔDHA ?. ∴DH=BH ,

设AH x =,则DH BH 4x ==-, 在Rt ΔADH 中,222AH AD DH =+, 即()2

22x 34x =+-,得25x 8

=, ∴25AH 8

=

. ∴点H 的坐标为253,

8?? ???

. (Ⅲ)如图,过F 作FO ⊥AB , 当0<α≤180°时,

∵点B 与点F 是对应点,A 为旋转中心, ∴∠BAF 为旋转角,即∠BAF=α,AB=AF=4, ∵FA=FB ,FO ⊥AB , ∴OA=

1

2

AB=2, ∴cos ∠BAF=

OA AF =1

2

, ∴∠BAF=60°,即α=60°, 当180°<α<360°时,

同理解得:∠BAF′=60°,

∴旋转角α=360°-60°=300°.

=?或300?.

综上所述:α60

【点睛】

本题考查矩形的性质、旋转变换、全等三角形的判定与性质、锐角三角函数的定义等知识,正确找出对应边与旋转角并熟记特殊角的三角函数值是解题关键.

7.在正方形ABCD中,AC是一条对角线,点E是边BC上的一点(不与点C重合),连接AE,将△ABE沿BC方向平移,使点B与点C重合,得到△DCF,过点E作EG⊥AC于点G,连接DG,FG.

(1)如图,①依题意补全图;②判断线段FG与DG之间的数量关系与位置关系,并证明;

(2)已知正方形的边长为6,当∠AGD=60°时,求BE的长.

BE=

【答案】(1)①见解析,②FG=DG,FG⊥DG,见解析;(2)3

【解析】

【分析】

(1)①补全图形即可,

②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于点H.由等腰直角三角形的性质得出DH=AH=2FG=DG=2GH=6,得出DF2DG=3Rt△DCF中,由勾股定理得出CF=3

得出结果.

【详解】

解:(1)①补全图形如图1所示,

②FG=DG,FG⊥DG,理由如下,

连接BG,如图2所示,

∵四边形ABCD是正方形,

∴∠ACB=45°,

∵EG⊥AC,

∴∠EGC=90°,

∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,

∴∠BEG=∠GCF=135°,

由平移的性质得:BE=CF,

在△BEG和△GCF中,

BE CF

BEG GCF EG CG

=

?

?

∠=∠

?

?=

?

∴△BEG≌△GCF(SAS),

∴BG=GF,

∵G在正方形ABCD对角线上,

∴BG=DG,

∴FG=DG,

∵∠CGF=∠BGE,∠BGE+∠AGB=90°,

∴∠CGF+∠AGB=90°,

∴∠AGD+∠CGF=90°,

∴∠DGF=90°,

∴FG⊥DG.

(2)过点D作DH⊥AC,交AC于点H.如图3所示,在Rt△ADG中,

∵∠DAC=45°,

∴DH=AH=2

在Rt△DHG中,∵∠AGD=60°,

∴GH

332

3

6,

∴DG=2GH=6,

∴DF=2DG=43,

在Rt△DCF中,CF=()22

-=23,

436

∴BE=CF=23.

【点睛】

本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.

8.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为t秒.

(1)用含t的代数式表示线段DC的长:_________________;

(2)当t =__________时,点Q与点C重合时;

(3)当线段PQ的垂直平分线经过△ABC一边中点时,求出t的值.

【答案】(1);(2)1;(3)t的值为或或.

【解析】

【分析】

(1)先求出AC,用三角函数求出AD,即可得出结论;

(2)利用AQ=AC,即可得出结论;

(3)分三种情况,利用锐角三角函数,即可得出结论.

【详解】

(1)∵AP= , AB=4,∠A=30°

∴AC= , AD=

∴CD=;

(2)AQ=2AD=

当AQ=AC时,Q与C重合

即=

∴t=1;

(3)①如图,当PQ的垂直平分线过AB的中点F时,

∴∠PGF=90°,PG=PQ=AP=t,AF=AB=2.

∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG=2t,

∴AP+PF=2t+2t=2,∴t=

②如图,当PQ的垂直平分线过AC的中点N时,

∴∠QMN=90°,AN=AC=,QM=PQ=AP=t.

在Rt△NMQ中,

∵AN+NQ=AQ,∴

③如图,当PQ的垂直平分线过BC的中点F时,

∴BF=BC=1,PE=PQ=t,∠H=30°.

∵∠ABC=60°,∴∠BFH=30°=∠H,∴BH=BF=1.

在Rt△PEH中,PH=2PE=2t.

∵AH=AP+PH=AB+BH,∴2t+2t=5,∴t=.

即当线段PQ的垂直平分线经过△ABC一边中点时,t的值为或或.

【点睛】

此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,垂直平分线的性质,正确作出图形是解本题的关键.

9.现有一个“Z“型的工件(工件厚度忽略不计),如图所示,其中AB为20cm,BC为

60cm,∠ABC=90,∠BCD=60°,求该工件如图摆放时的高度(即A到CD的距

离).(结果精确到0.1m,参考数据:≈1.73)

【答案】工件如图摆放时的高度约为61.9cm.

【解析】

【分析】

过点A作AP⊥CD于点P,交BC于点Q,由∠CQP=∠AQB、∠CPQ=∠B=90°知∠A=∠C =60°,在△ABQ中求得分别求得AQ、BQ的长,结合BC知CQ的长,在△CPQ中可得PQ,根据AP=AQ+PQ得出答案.

【详解】

解:如图,过点A作AP⊥CD于点P,交BC于点Q,

∵∠CQP=∠AQB,∠CPQ=∠B=90°,

∴∠A=∠C=60°,

在△ABQ中,∵AQ=(cm),

BQ=AB tan A=20tan60°=20(cm),

∴CQ=BC﹣BQ=60﹣20(cm),

在△CPQ中,∵PQ=CQ sin C=(60﹣20)sin60°=30(﹣1)cm,

∴AP=AQ+PQ=40+30(﹣1)≈61.9(cm),

答:工件如图摆放时的高度约为61.9cm.

【点睛】

本题主要考查解直角三角形的应用,熟练掌握三角函数的定义求得相关线段的长度是解题的关键.

10.如图,直线与轴交于点,与轴交于点,抛物线经过点,.点为轴上一动点,过点且垂直于轴的直线分别交直线及抛物线于点,.

(1)填空:点的坐标为,抛物线的解析式为;

(2)当点在线段上运动时(不与点,重合),

①当为何值时,线段最大值,并求出的最大值;

②求出使为直角三角形时的值;

(3)若抛物线上有且只有三个点到直线的距离是,请直接写出此时由点,,,构成的四边形的面积.

【答案】(1),;

(2)①当时,有最大值是3;②使为直角三角形时的值为3或;

(3)点,,,构成的四边形的面积为:6或或.

【解析】

【分析】

(1)把点A坐标代入直线表达式y=,求出a=?3,把点A、B的坐标代入二次函数表达式,即可求解;

(2)①设:点P(m,),N(m,)求出PN值的表达式,即可求解;②分∠BNP=90°、∠NBP=90°、∠BPN=90°三种情况,求解即可;

(3)若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB上方的交点有两个,分别求解即可.

【详解】

解:(1)把点坐标代入直线表达式,

解得:,则:直线表达式为:,令,则:,

则点坐标为,

将点的坐标代入二次函数表达式得:,

把点的坐标代入二次函数表达式得:,

解得:,

故:抛物线的解析式为:,

故:答案为:,;

(2)①∵在线段上,且轴,

∴点,,

∴,

∵,

∴抛物线开口向下,

∴当时,有最大值是3,

②当时,点的纵坐标为-3,

把代入抛物线的表达式得:,解得:或0(舍去),∴;

当时,∵,两直线垂直,其值相乘为-1,

设:直线的表达式为:,

把点的坐标代入上式,解得:,则:直线的表达式为:,

将上式与抛物线的表达式联立并解得:或0(舍去),

当时,不合题意舍去,

故:使为直角三角形时的值为3或;

(3)∵,,

在中,,则:,,

∵轴,

∴,

人教数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A ,B 两个港口,B 港口在A 港口北偏西30°方向上,距A 港口60海里,有一艘船从A 港口出发,沿东北方向行驶一段距离后,到达位于B 港口南偏东75°方向的C 处,求该船与B 港口之间的距离即CB 的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD ⊥BC 于D ,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据 正切的定义求出CD 的长,得到答案. 试题解析:作AD ⊥BC 于D ,∵∠EAB=30°,AE ∥BF ,∴∠FBA=30°,又∠FBC=75°,∴∠ABD=45°,又AB=60,∴AD=BD= ,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt △ACD 中,∠C=60°,AD=,则tanC= ,∴CD= =, ∴BC= .故该船与B 港口之间的距离CB 的长为 海里. 考点:解直角三角形的应用-方向角问题. 2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为 1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=, 2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm)? 【答案】 【解析】 于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证过A作AF CD 四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可. 3.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm. (1)AE的长为 cm; (2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值; (3)求点D′到BC的距离. 【答案】(1);(2)12cm;(3)cm. 【解析】 试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.

(人教版初中数学)锐角三角函数

锐角三角函数 一.〖基础训练〗 1、在△ABC 中,∠C =90°,则sinA= ,cosA= tanA= cotA= . 2、根据直角三角形的 元素(至少有一个边),求出 其它所有元素的过程,即解直角三角形 3.Rt △ABC 中,若sinA =45 ,AB =10,那么BC = ,tanB = 4.写出适合条件的锐角α Sin600= , tan300= ,cos α=32 ,α= , 5、在△ABC 中,∠C =90°,AC=6,BC=8,那么sinA= 6、sin300+tan450= . 7、若sin α=cos70°,则角α等于 A .70°; B .60°; C .45°; D .20°. 8、(讲解)若∠A 为锐角,且cosA ≤ 12 ,那么( ) A 、00≤A ≤600 B 、600≤A ≤900 C 、00≤A ≤300 D 、300≤A ≤90 0 二.〖中考在线〗(讲解) 1、(2004年中考题).在△ABC 中,∠C =90°,sinA =35 ,则cosA 的值是( ) (A ) 35 (B )45 (C )925 (D )1625 2、如图,(2003年第21题)在△ABC 中,AD 是BC 边上的高,tanB=cos ∠DAC. (1)求证:AC=BD (2)若sinC=1213 ,BC=12,求AD 的长. 三.〖考点训练〗 1.Rt △ABC 中,∠C =90°,AB =6,AC =2,则sinA =( ) (A ) 13 (B )23 (C )23 2 (D )23 2.已知∠A +∠B =90°,则下列各式中正确的是( ) A B C D

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

数学 锐角三角函数的专项 培优练习题含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°, ∴∠C=60°,在Rt△ACD中,∠C=60°,AD=,则tanC=,∴CD==, ∴BC=.故该船与B港口之间的距离CB的长为海里. 考点:解直角三角形的应用-方向角问题. 2.如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D 时停止运动,点N到达点C时停止运动.设运动时间为t(s). (1)当t为何值时,点G刚好落在线段AD上?

(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S关于t的函数关系式并写出自变量t的取值范围. (3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时, △CPD是等腰三角形? 【答案】(1)3;(2);(3)t=9s或t=(15﹣6)s. 【解析】 试题分析:(1)求出ED的距离即可求出相对应的时间t. (2)先求出t的取值范围,分为H在AB上时,此时BM的距离,进而求出相应的时间.同样当G在AC上时,求出MN的长度,继而算出EN的长度即可求出时间,再通过正方形的面积公式求出正方形的面积. (3)分DP=PC和DC=PC两种情况,分别由EN的长度便可求出t的值. 试题解析:∵∠BAC=90°,∠B=60°,BC=16cm ∴AB=8cm,BD=4cm,AC=8cm,DC=12cm,AD=4cm. (1)∵当G刚好落在线段AD上时,ED=BD﹣BE=3cm ∴t=s=3s. (2)∵当MH没有到达AD时,此时正方形MNGH是边长为1的正方形,令H点在AB 上, 则∠HMB=90°,∠B=60°,MH=1 ∴BM=cm.∴t=s. 当MH到达AD时,那么此时的正方形MNGH的边长随着N点的继续运动而增大,令G点在AC上, 设MN=xcm,则GH=DH=x,AH=x, ∵AD=AH+DH=x+x=x=4, ∴x=3. 当≤t≤4时,S MNGN=1cm2. 当4<t≤6时,S MNGH=(t﹣3)2cm2

锐角三角函数的图文解析

锐角三角函数的图文解析 一、选择题 1.如图,菱形ABCD 中,AC 交BD 于点O ,DE ⊥BC 于点E ,连接OE ,∠DOE =120°,DE =1,则BD =( ) A .3 B .23 C .63 D .33 【答案】B 【解析】 【分析】 证明△OBE 是等边三角形,然后解直角三角形即可. 【详解】 ∵四边形ABCD 是菱形,∴OD =OB ,CD =BC . ∵DE ⊥BC ,∴∠DEB =90°,∴OE =OD =OB . ∵∠DOE =120°,∴∠BOE =60°,∴△OBE 是等边三角形,∴∠DBC =60°. ∵∠DEB =90°,∴BD = 23sin603 DE =?. 故选B . 【点睛】 本题考查了解直角三角形,菱形的性质,等边三角形的判定和性质,直角三角形斜边的中线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 2.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A ,C ,E 成一直线,那么开挖点E 离点D 的距离是( ) A .500sin55m o B .500cos55m o C .500tan55m o D .500cos55m o 【答案】B 【解析】 【分析】 根据已知利用∠D 的余弦函数表示即可. 【详解】

在Rt△BDE中,cosD=DE BD , ∴DE=BD?cosD=500cos55°. 故选B. 【点睛】 本题主要考查了解直角三角形的应用,正确记忆三角函数的定义是解决本题的关键. 3.菱形ABCD的周长为20cm,DE⊥AB,垂足为E,sinA=3 5 ,则下列结论正确的个数有() ①DE=3cm; ②BE=1cm; ③菱形的面积为15cm2; ④BD=210cm. A.1个B.2个C.3个D.4个【答案】C 【解析】 【分析】 根据菱形的性质及已知对各个选项进行分析,从而得到答案 【详解】 ∵菱形ABCD的周长为20cm ∴AD=5cm ∵sinA=3 5 ∴DE=3cm(①正确) ∴AE=4cm ∵AB=5cm ∴BE=5﹣4=1cm(②正确) ∴菱形的面积=AB×DE=5×3=15cm2(③正确) ∵DE=3cm,BE=1cm ∴10(④不正确) 所以正确的有三个. 故选C. 【点睛】 本题考查了菱形的性质及锐角三角函数的定义,熟练掌握性质是解题的关键 4.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()

人教版初中数学锐角三角函数的难题汇编及解析

人教版初中数学锐角三角函数的难题汇编及解析 一、选择题 1.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( ) A .60海里 B .45海里 C .3 D .3 【答案】D 【解析】 【分析】 根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP 的长,求出答案. 【详解】 解:由题意可得:∠B=30°,AP=30海里,∠APB=90°, 故AB=2AP=60(海里), 则此时轮船所在位置B 处与灯塔P 之间的距离为:22303AB AP -= 故选:D . 【点睛】 此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键. 2.在半径为1的O e 中,弦AB 、AC 32,则BAC ∠为( )度. A .75 B .15或30 C .75或15 D .15或45 【答案】C 【解析】 【分析】 根据题意画出草图,因为C 点位置待定,所以分情况讨论求解. 【详解】 利用垂径定理可知:32 2 AE = .

sin∠AOD= 3 2 ,∴∠AOD=60°; sin∠AOE= 2 2 ,∴∠AOE=45°; ∴∠BAC=75°. 当两弦共弧的时候就是15°. 故选:C. 【点睛】 此题考查垂径定理,特殊三角函数的值,解题关键在于画出图形. 3.如图,在△ABC中,AC⊥BC,∠ABC=30°,点D是CB延长线上的一点,且BD=BA,则tan∠DAC的值为() A.23B.3C.33D.3 【答案】A 【解析】 【分析】 【详解】 设AC=x,在Rt△ABC中,∠ABC=30°,即可得AB=2x,3, 所以BD=BA=2x,即可得33)x, 在Rt△ACD中,tan∠DAC= (32) 32 CD x AC + ==, 故选A. 4.直角三角形纸片的两直角边长分别为6,8,现将ABC V如图那样折叠,使点A与点B 重合,折痕为DE,则tan CBE ∠的值是()

人教版初中数学锐角三角函数的知识点复习

人教版初中数学锐角三角函数的知识点复习 一、选择题 1.南洞庭大桥是南益高速公路上的重要桥梁,小芳同学在校外实践活动中对此开展测量活动.如图,在桥外一点A 测得大桥主架与水面的交汇点C 的俯角为α,大桥主架的顶端D 的仰角为β,已知测量点与大桥主架的水平距离AB =a ,则此时大桥主架顶端离水面的高CD 为( ) A .asinα+asinβ B .acosα+acosβ C .atanα+atanβ D .tan tan a a αβ + 【答案】C 【解析】 【分析】 在Rt △ABD 和Rt △ABC 中,由三角函数得出BC =atanα,BD =atanβ,得出CD =BC+BD =atanα+atanβ即可. 【详解】 在Rt △ABD 和Rt △ABC 中,AB =a ,tanα= BC AB ,tanβ=BD AB , ∴BC =atanα,BD =atanβ, ∴CD =BC+BD =atanα+atanβ, 故选C . 【点睛】 本题考查了解直角三角形﹣仰角俯角问题;由三角函数得出BC 和BD 是解题的关键. 2.如图,△ABC 内接于半径为5的⊙O ,圆心O 到弦BC 的距离等于3,则∠A 的正切值等于( ) A .35 B .45 C .34 D .43 【答案】C 【解析】

试题分析:如答图,过点O作OD⊥BC,垂足为D,连接OB,OC,∵OB=5,OD=3,∴根据勾股定理得BD=4. ∵∠A=1 2 ∠BOC,∴∠A=∠BOD. ∴tanA=tan∠BOD= 4 3 BD OD . 故选D. 考点:1.垂径定理;2.圆周角定理;3.勾股定理;4.锐角三角函数定义. 3.同学们参加综合实践活动时,看到木工师傅用“三弧法”在板材边角处作直角,其作法是:如图: (1)作线段AB,分别以点A,B为圆心,AB长为半径作弧,两弧交于点C; (2)以点C为圆心,仍以AB长为半径作弧交AC的延长线于点D; (3)连接BD,BC. 根据以上作图过程及所作图形,下列结论中错误的是() A.∠ABD=90°B.CA=CB=CD C.sinA= 3 2 D.cosD= 1 2 【答案】D 【解析】 【分析】 由作法得CA=CB=CD=AB,根据圆周角定理得到∠ABD=90°,点C是△ABD的外心,根据三角函数的定义计算出∠D=30°,则∠A=60°,利用特殊角的三角函数值即可得到结论. 【详解】 由作法得CA=CB=CD=AB,故B正确; ∴点B在以AD为直径的圆上, ∴∠ABD=90°,故A正确; ∴点C是△ABD的外心,

人教版初中数学锐角三角函数的经典测试题附答案

人教版初中数学锐角三角函数的经典测试题附答案 一、选择题 1.如图,在矩形ABCD 中,4,AB DE AC =⊥,垂足为E ,设ADE α∠=,且 3 cos 5 α= ,则AC 的长为( ) A .3 B . 163 C . 203 D . 165 【答案】C 【解析】 【分析】 根据同角的余角相等求出∠ADE=∠ACD ,再根据两直线平行,内错角相等可得∠BAC=∠ACD ,然后求出AC . 【详解】 解:∵DE ⊥AC , ∴∠ADE+∠CAD=90°, ∵∠ACD+∠CAD=90°, ∴∠ACD=∠ADE=α, ∵矩形ABCD 的对边AB ∥CD , ∴∠BAC=∠ACD , ∵cos α=3 5,35 AB AC ∴ =, ∴AC= 520433?=. 故选:C . 【点睛】 本题考查了矩形的性质,勾股定理,锐角三角函数的定义,同角的余角相等的性质,熟记各性质并求出BC 是解题的关键. 2.如图,4个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点,己知菱形的一个内角为60°,A 、B 、C 都是格点,则tan ABC ∠=( )

A . 39 B . 36 C . 33 D . 32 【答案】A 【解析】 【分析】 直接利用菱形的对角线平分每组对角,结合锐角三角函数关系得出EF,的长,进而利用 EC tan ABC BE ∠= 得出答案. 【详解】 解:连接DC ,交AB 于点E . 由题意可得:∠AFC=30°, DC ⊥AF, 设EC=x,则EF= x =3x tan 30? , ∴BF AF 2EF 23x === EC 3 tan ABC BE 23x 3x 33= === +∠, 故选:A 【点睛】 此题主要考查了菱形的性质以及解直角三角形,正确得出EF 的长是解题关键. 3.如图,为了加快开凿隧道的施工进度,要在小山的两端同时施工.在AC 上找一点 B ,取145ABD ∠=o ,500BD m =,55D ∠=o ,要使A , C ,E 成一直线,那么开挖 点E 离点D 的距离是( )

锐角三角函数综合测试题

第28章锐角三角函数综合测试题 姓名 学号 成绩 一、选择题 1. 三角形在正方形网格纸中的位置如图1所示,则sin α的值是( ) A.34? B .43? C .35 D.4 5 2.一人乘雪橇沿如图2所示的斜坡笔直滑下,滑下的距离S (米)与时间t (秒)间的关系式为210S t t =+,若滑到坡底的时间为2秒,则此人下滑的高度为( ) A .24米 B.12米? C.123米 D.6米 3.下列计算错误的是( ) A.sin60sin30sin30?-?=? B.22sin 45cos 451?+?= C.sin 60cos60cos60??= ? D.cos30cos30sin 30?? =? 4.如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点处.已知 8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34? B.43??C .35 ?D.4 5 5.如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =, D 为AC 上一点,若1 tan 5DBA ∠= ,则AD 的长为( ) A.2 B.2 C .1 D.22 二、填空题 6.如图7,在坡度为1﹕2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是________米. α 图1 A D E C B F 图4

7.如图9,在ABC ?中,90C ∠=,2BC =,1 sin 3 A = , 则AB =______.. 8.如图11所示,在高2米、坡角为30?的楼梯表面铺地毯,地毯的长度至少需 ______米.(3 1.732≈,精确到0.1米) 9.某人沿着山脚到山顶共走了1000m ,他上升的高度为500m ,这个山坡的坡度i为____. 10.等腰三角形的顶角是120?,底边上的高为30,则三角形的周长是______. 三、解答题 11.计算: (1)22sin30cos60tan 60tan30cos 45+-?+?.(2)22sin 45cos30tan 45+- 12.在一次数学活动课上,海桂学校初三数学老师带领学生去测万泉河河宽,如图13所示,某学生在河东岸点A 处观测到河对岸水边有一点C ,测得C 在A 北偏西31?的方向上,沿河岸向北前行20米到达B 处,测得C 在B 北偏西45?的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度. (参考数值:t an31°≈53,sin31°≈2 1) .

2020人教版中考数学《锐角三角函数》专题及答案详解

【2020】人教版中考数学《锐角三角函数》 专题及答案 一、选择题 1. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 2..如图,一块矩形木板ABCD 斜靠在墙边(OC ⊥OB ,点A ,B ,C ,D ,O 在同一平面内),已知AB=a ,AD=b ,∠BCO=x ,则点A 到OC 的距离等于( ) A .asinx+bsinx B .acosx+bcosx C .asinx+bcosx D .acosx+bsinx 【答案】D 【解析】作AE ⊥OC 于点E ,作AF ⊥OB 于点F ,∵四边形ABCD 是矩形,∴∠ABC=90°,∵∠ABC=∠AEC ,∠BCO=x ,∴∠EAB=x ,∴∠FBA=x ,∵AB=a ,AD=b ,∴FO=FB+BO=a ?cosx+b ?sinx ,故选D . 3.如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知坡角为20°,山高BC =2千米. A. B. C. D. BC AB 2 sin 20sin 20BC .故按键顺序为 20° 2

4.已知∠α为锐角,且sinα=1 2,则∠α=() A.30° B.45° C.60° D.90° 【答案】A 【解析】∵∠α为锐角,且sinα=1 2,∴∠α=30°.故选A. 5.矩形OABC 在平面直角坐标系中的位置如图所示,已知B (32,2),点A 在x 轴上,点C 在y 轴上,P 是对角线OB 上一动点(不与原点重合),连接PC ,过点P 作PD ⊥PC 交x 轴于点D ,下列结论:①OA=BC= 32;②当点D 运动到OA 的中点处时,PC 2+PD 2=7;③在运动过程中,∠CDP 是一个定值;④当△ODP 为等腰三角形时,点D 的坐标为(33 2,0),其中正确结论的个数是() A. 1个 B. 2个 C.3个 D. 4个 【答案】D 【解析】已知B (32,2),所以OA=BC=32,故①正确;当点D 运动到OA 的中点处时, OD=3,而OC=2,所以OC 2=7,在直角三角形CPD 中,PC 2+PD 2 =7,故②正确;过点P 作PD ⊥ PC 交x 轴于点D ,所以在运动过程中,∠CDP 是一个定值,故③正确;当△ODP 为等腰三角形时, OC ⊥BD ,∠CDO=60°所以3 OD OC ,即OD=332,所以点D 的坐标为(332,0). 6. 如图,在△ABC 中,CA = CB = 4,cos C=1 4,则sinB 的值为(▲) A . B . C . D . 【答案】D 【解析】过点A 作AD ⊥BC 于点D ,∵cosC=1 4,AC=4,∴CD=1,∴BD=3, AD= B

人教版初中数学锐角三角函数的图文解析

人教版初中数学锐角三角函数的图文解析 一、选择题 1.如图,已知△A 1B 1C 1的顶点C 1与平面直角坐标系的原点O 重合,顶点A 1、B 1分别位于x 轴与y 轴上,且C 1A 1=1,∠C 1A 1B 1=60°,将△A 1B 1C 1沿着x 轴做翻转运动,依次可得到△A 2B 2C 2,△A 3B 3C 3等等,则C 2019的坐标为( ) A .(30) B .(3,0) C .(4035233 D .(30) 【答案】B 【解析】 【分析】 根据题意可知三角形在x 轴上的位置每三次为一个循环,又因为20193673÷=,那么2019C 相当于第一个循环体的3673C 个即可算出. 【详解】 由题意知,111C A =,11160C A B ?∠=, 则11130C B A ?∠=,11222A B A B ==,1122333C B C B C B === 结合图形可知,三角形在x 轴上的位置每三次为一个循环, Q 20193673÷=, ∴2019673(123)20196733OC =+=+, ∴2019C (20196733,0)+, 故选B . 【点睛】 考查解直角三角形,平面直角坐标系中点的特征,结合找规律.理解题目中每三次是一个循环是解题关键. 2.在课外实践中,小明为了测量江中信号塔A 离河边的距离AB ,采取了如下措施:如图在江边D 处,测得信号塔A 的俯角为40?,若55DE =米,DE CE ⊥,36CE =米,CE 平行于AB ,BC 的坡度为1:0.75i =,坡长140BC =米,则AB 的长为( )(精确到0.1米,参考数据:sin 400.64?≈,cos400.77?≈,tan 400.84?≈)

中考数学锐角三角函数综合经典题含答案

中考数学锐角三角函数综合经典题含答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.(6分)某海域有A,B两个港口,B港口在A港口北偏西30°方向上,距A港口60海里,有一艘船从A港口出发,沿东北方向行驶一段距离后,到达位于B港口南偏东75°方向的C处,求该船与B港口之间的距离即CB的长(结果保留根号). 【答案】. 【解析】 试题分析:作AD⊥BC于D,于是有∠ABD=45°,得到AD=BD=,求出∠C=60°,根据正切的定义求出CD的长,得到答案. 试题解析:作AD⊥BC于D,∵∠EAB=30°,AE∥BF,∴∠FBA=30°,又∠FBC=75°, ∴∠ABD=45°,又AB=60,∴AD=BD=,∵∠BAC=∠BAE+∠CAE=75°,∠ABC=45°,

中考数学专题练习:锐角三角函数与解直角三角形(含答案)

锐角三角函数与解直角三角形 一、选择题 1. (2018·柳州)如图,在Rt ABC ?中,90C ∠=?,4,3BC AC ==,sin B 的值为( ) A. 35 B. 45 C. 37 D. 34 2. (2018·孝感)在Rt ABC ?中,90C ∠=?,10,8AB AC ==,则sin A 的值为( ) A. 35 B. 45 C. 34 D. 43 3. (2018·云南)在Rt ABC ?中,90C ∠=?,1,3AC BC ==,则A ∠的正切值为( ) A. 3 B. 1 3 C. D. 4. (2018·大庆)2cos60?的值为( ) A. 1 B. C. D. 1 2 5. (2018·天津) cos30?的值为( ) A. 2 B. C. 1 D. 6. ( 2018·日照)计算1 1 ()tan30sin 602 -+??g 的结果为( ) A. 32- B. 2 C. 52 D. 72 7. ( 2018·烟台)利用计算器求值时,小明将按键顺序为(sin 30)() 4x y -= 的显示结 果记为a ,26/3 x ab c =的显示结果记为b 。则,a b 的大小关系为( ) A. a b < B. a b > C . a b = D.不能比较 8. (2018·葫芦岛)如图,AB 是⊙O 的直径,,C D 是⊙O 上AB 两侧的点.若30D ∠=?, 则tan ABC ∠的值为( ) A. 1 2 B. C. D.

9. (2018·贺州)如图,AB 是⊙O 的直径,且经过弦CD 的中点H ,已知3sin 5 CDB ∠= ,5BD =,则AH 的长为( ) A. 253 B. 163 C. 256 D. 16 6 10. (2018·自贡)如图,若ABC ?内接于半径为R 的⊙O ,且60A ∠=?,连接,OB OC , 则边BC 的长为( ) A. B. R C. R D. 11.(2018·娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的 面积为49,则sin cos αα-的值为( ) A. 513 B. 513- C. 713 D. 713 - 12. (2018·枣庄)如图,在矩形ABCD 中,E 是边BC 的中点,AE BD ⊥,垂足为F ,则 tan BDE ∠的值是( ) A. 4 B. 14 C. 1 3 D. 3 13. (2018·无锡)如图,E 是矩形ABCD 的对角线AC 上一动点,正方形EFGH 的顶点,G H 都在边AD 上.若3,4AB BC ==,则tan AFE ∠的值( ) A.等于3 7 B.等于3 C.等于 3 4 D.随点E 位置的变化而变化 14. (2018·贵阳)如图,,,A B C 是小正方形的顶点,且每个小正方形的边长为1,则t a n BAC ∠

人教版九年级锐角三角函数全章教案

第二十八章锐角三角函数 28.1 锐角三角函数(1) 教学目标: 1、知识与技能:通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。能根据正弦概念正确进行计算。 2、过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力. 3、情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 教学重点: 理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实. 教学难点: 引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实. 教学过程: 一、复习旧知、引入新课 【引入】操场里有一个旗杆,老师让小明去测 量旗杆高度。小明站在离旗杆底部10米远处,目 测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦 34 1米 10 米 ?

二、探索新知 【活动一】问题的引入 【问题一】为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行灌溉。现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m ,那么需要准备多长的水管? 分析:问题转化为,在Rt△ABC 中,∠C=90o ,∠A=30o ,BC=35m,求AB 根据“在直角三角形中,30o 角所对的边等于斜边的一半”,即 可得AB=2BC=70m.即需要准备70m 长的水管 结论:在一个直角三角形中,如果一个锐角等于30o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 2 1 【问题二】如图,任意画一个Rt △ABC ,使∠C=90o ,∠A=45o ,计算∠A 的对边与斜边的比 AB BC ,能得到什么结论?(学生思考) 结论:在一个直角三角形中,如果一个锐角等于45o ,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于 2 2。 【问题三】一般地,当∠A 取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值? 如图:Rt △ABC 与Rt △A 1B 1C 1中,∠C=∠C 1=90o , ∠A=∠A 1=α,那么与 有 什么关系 分析:由于∠C=∠C 1 =90o ,∠A=∠A 1=α,所以Rt△ABC∽Rt△A 1B 1C 1, ,即

人教版九年级锐角三角函数全章教案

九年级数学教案

第二十八章锐角三角函数 教材分析: 本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。 本章内容与已学"相似三角形""勾股定理"等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。 学情分析: 锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sinA 、 cosA 、 tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。 28.1 锐角三角函数(1) 第一课时 教学目标: 知识与技能: 1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。 2、能根据正弦概念正确进行计算 3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。 过程与方法: 通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力. 情感态度与价值观: 引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯. 重难点: 1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实. 2.难点与关键:难点:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实. 教学过程: 一、复习旧知、引入新课 【引入】操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片) 小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。 你想知道小明怎样算出的吗? ? 34 1 10

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

初中数学锐角三角函数的图文解析

初中数学锐角三角函数的图文解析 一、选择题 1.如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27?(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( ) (参考数据sin 270.45?≈,cos270.89?≈,tan 270.51?≈) A .65.8米 B .71.8米 C .73.8米 D .119.8米 【答案】B 【解析】 【分析】 过点E 作EM AB ⊥与点M ,根据斜坡CD 的坡度(或坡比)1:2.4i =可设CD x =,则2.4 CG x =,利用勾股定理求出x 的值,进而可得出CG 与DG 的长,故可得出EG 的长.由矩形的判定定理得出四边形EGBM 是矩形,故可得出EM BG =,BM EG =,再由锐角三角函数的定义求出AM 的长,进而可得出结论. 【详解】 解:过点E 作EM AB ⊥与点M ,延长ED 交BC 于G , ∵斜坡CD 的坡度(或坡比)1:2.4i =,52BC CD ==米, ∴设DG x =,则 2.4 CG x =. 在Rt CDG ?中, ∵222DG CG DC +=,即222 (2.4)52x x +=,解得20x =, ∴20DG =米,48CG =米, ∴200.820.8EG =+=米,5248100BG =+=米. ∵EM AB ⊥,AB BG ⊥,EG BG ⊥, ∴四边形EGBM 是矩形, ∴100EM BG ==米,20.8BM EG ==米. 在Rt AEM ?中, ∵27AEM ?∠=, ∴?tan 271000.5151AM EM ?=≈?=米, ∴5120.871.8AB AM BM =+=+=米. 故选B .

求锐角三角函数值的几种常用方法

求锐角三角函数值的几种常用方法 锐角三角函数是初中数学的重要内容,也是中考的热点之一.求锐角的三角函数值 方法较多,下面举例介绍求锐角三角函数值的几种常用方法,供参考. 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )135 分析 题目中已知乞A 的对边BC 和斜边AB 的长,可直接运用锐角三角函数的定义 求解. 解 ∵在△ABC 中, ∠C =90°,AB =13,BC =5, ∴sin A 513 BC AB =故选A 二、参数法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =512 ,那么sin B 的值是 . 分析 由已知条件∠A 的正切,可知直角三角形中两边的比值,据此可用参数法将 第三边表示出来,进而求出sin B 的值. 解如图2 ∵tan A =512 BC AC =, ∴设BC =5k ,AC =12k (k >O ). 由勾股定理,得AB =13k , ∴1212sin 1313 AC k B AB k === 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决.

相关主题
文本预览
相关文档 最新文档