当前位置:文档之家› 数学建模作业 北工大薛毅 实验4

数学建模作业 北工大薛毅 实验4

第四次作业

解:

(1) 平方和最小的目标方程: ()

2

n

1

i i i 10

y -x min 1

0∑=+=βββ

β,

编程如下: model:

sets:

quantity/1..50/: x,y;

endsets

min=@sum(quantity: (B0+B1*x-y)^2);

data:

y=2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 32 48 52 56 64 66 54 70 92 93 120 85;

x=4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25;

enddata

@free(B0); @free(B1);

End

得到结果如下:

Local optimal solution found.

Objective value: 11353.52

Infeasibilities: 0.000000

Extended solver steps: 5

Total solver iterations: 18

Model Class: NLP

Total variables: 3

Nonlinear variables: 2

Integer variables: 0

Total constraints: 2

Nonlinear constraints: 1

Total nonzeros: 3

Nonlinear nonzeros: 2

Variable Value Reduced Cost

B0 -17.57909 0.000000

B1 3.932409 0.000000

X( 1) 4.000000 0.000000

X( 2) 4.000000 0.000000

X( 3) 7.000000 0.000000

X( 4) 7.000000 0.000000

X( 5) 8.000000 0.000000

X( 6) 9.000000 0.000000

X( 7) 10.00000 0.000000

X( 8) 10.00000 0.000000

X( 9) 10.00000 0.000000

X( 10) 11.00000 0.000000

X( 11) 11.00000 0.000000 X( 12) 12.00000 0.000000 X( 13) 12.00000 0.000000 X( 14) 12.00000 0.000000 X( 15) 12.00000 0.000000 X( 16) 13.00000 0.000000 X( 17) 13.00000 0.000000 X( 18) 13.00000 0.000000 X( 19) 13.00000 0.000000 X( 20) 14.00000 0.000000 X( 21) 14.00000 0.000000 X( 22) 14.00000 0.000000 X( 23) 14.00000 0.000000 X( 24) 15.00000 0.000000 X( 25) 15.00000 0.000000 X( 26) 15.00000 0.000000 X( 27) 16.00000 0.000000 X( 28) 16.00000 0.000000 X( 29) 17.00000 0.000000 X( 30) 17.00000 0.000000 X( 31) 17.00000 0.000000 X( 32) 18.00000 0.000000 X( 33) 18.00000 0.000000 X( 34) 18.00000 0.000000 X( 35) 18.00000 0.000000 X( 36) 19.00000 0.000000 X( 37) 19.00000 0.000000 X( 38) 19.00000 0.000000 X( 39) 20.00000 0.000000 X( 40) 20.00000 0.000000 X( 41) 20.00000 0.000000 X( 42) 20.00000 0.000000 X( 43) 20.00000 0.000000 X( 44) 22.00000 0.000000 X( 45) 23.00000 0.000000 X( 46) 24.00000 0.000000 X( 47) 24.00000 0.000000 X( 48) 24.00000 0.000000 X( 49) 24.00000 0.000000 X( 50) 25.00000 0.000000 Y( 1) 2.000000 0.000000 Y( 2) 10.00000 0.000000 Y( 3) 4.000000 0.000000 Y( 4) 22.00000 0.000000

Y( 5) 16.00000 0.000000 Y( 6) 10.00000 0.000000 Y( 7) 18.00000 0.000000 Y( 8) 26.00000 0.000000 Y( 9) 34.00000 0.000000 Y( 10) 17.00000 0.000000 Y( 11) 28.00000 0.000000 Y( 12) 14.00000 0.000000 Y( 13) 20.00000 0.000000 Y( 14) 24.00000 0.000000 Y( 15) 28.00000 0.000000 Y( 16) 26.00000 0.000000 Y( 17) 34.00000 0.000000 Y( 18) 34.00000 0.000000 Y( 19) 46.00000 0.000000 Y( 20) 26.00000 0.000000 Y( 21) 36.00000 0.000000 Y( 22) 60.00000 0.000000 Y( 23) 80.00000 0.000000 Y( 24) 20.00000 0.000000 Y( 25) 26.00000 0.000000 Y( 26) 54.00000 0.000000 Y( 27) 32.00000 0.000000 Y( 28) 40.00000 0.000000 Y( 29) 32.00000 0.000000 Y( 30) 40.00000 0.000000 Y( 31) 50.00000 0.000000 Y( 32) 42.00000 0.000000 Y( 33) 56.00000 0.000000 Y( 34) 76.00000 0.000000 Y( 35) 84.00000 0.000000 Y( 36) 36.00000 0.000000 Y( 37) 46.00000 0.000000 Y( 38) 68.00000 0.000000 Y( 39) 32.00000 0.000000 Y( 40) 48.00000 0.000000 Y( 41) 52.00000 0.000000 Y( 42) 56.00000 0.000000 Y( 43) 64.00000 0.000000 Y( 44) 66.00000 0.000000 Y( 45) 54.00000 0.000000 Y( 46) 70.00000 0.000000 Y( 47) 92.00000 0.000000 Y( 48) 93.00000 0.000000

Y( 49) 120.0000 0.000000

Y( 50) 85.00000 0.000000

Row Slack or Surplus Dual Price

1 11353.5

2 -1.000000 所以得到平方和最小时的β0为-17.57909,β1为3.932409。

(2)绝对偏差最小的目标方程:

∑=+

=

n

i1

i

i

1

y

-

x

min

1

ββ

β

β,

使用Lingo软件进行计算并取最优解,编程如下:

model:

sets:

size/1..50/: x,y;

endsets

min=@sum(size:@abs(B0+B1*x-y));

data:

y=2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 32 48 52 56 64 66 54 70 92 93 120 85;

x=4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25;

enddata

@free(B0); @free(B1);

End

得到结果如下:

Linearization components added:

Constraints: 200

Variables: 200

Integers: 50

Global optimal solution found.

Objective value: 563.8000

Objective bound: 563.8000

Infeasibilities: 0.000000

Extended solver steps: 0

Total solver iterations: 82

Model Class: MILP

Total variables: 203

Nonlinear variables: 0

Integer variables: 50

Total constraints: 202

Nonlinear constraints: 0

Total nonzeros: 601

Nonlinear nonzeros: 0

Variable Value

B0 -11.60000

B1 3.400000

X( 1) 4.000000

X( 2) 4.000000

X( 3) 7.000000

X( 4) 7.000000

X( 5) 8.000000

X( 6) 9.000000

X( 7) 10.00000

X( 8) 10.00000

X( 9) 10.00000

X( 10) 11.00000

X( 11) 11.00000

X( 12) 12.00000

X( 13) 12.00000

X( 14) 12.00000

X( 15) 12.00000

X( 16) 13.00000

X( 17) 13.00000

X( 18) 13.00000

X( 19) 13.00000

X( 20) 14.00000

X( 21) 14.00000

X( 22) 14.00000

X( 23) 14.00000

X( 24) 15.00000

X( 25) 15.00000

X( 26) 15.00000

X( 27) 16.00000

X( 28) 16.00000

X( 29) 17.00000

X( 30) 17.00000

X( 31) 17.00000

X( 32) 18.00000

X( 33) 18.00000

X( 34) 18.00000 X( 35) 18.00000 X( 36) 19.00000 X( 37) 19.00000 X( 38) 19.00000 X( 39) 20.00000 X( 40) 20.00000 X( 41) 20.00000 X( 42) 20.00000 X( 43) 20.00000 X( 44) 22.00000 X( 45) 23.00000 X( 46) 24.00000 X( 47) 24.00000 X( 48) 24.00000 X( 49) 24.00000 X( 50) 25.00000 Y( 1) 2.000000 Y( 2) 10.00000 Y( 3) 4.000000 Y( 4) 22.00000 Y( 5) 16.00000 Y( 6) 10.00000 Y( 7) 18.00000 Y( 8) 26.00000 Y( 9) 34.00000 Y( 10) 17.00000 Y( 11) 28.00000 Y( 12) 14.00000 Y( 13) 20.00000 Y( 14) 24.00000 Y( 15) 28.00000 Y( 16) 26.00000 Y( 17) 34.00000 Y( 18) 34.00000 Y( 19) 46.00000 Y( 20) 26.00000 Y( 21) 36.00000 Y( 22) 60.00000 Y( 23) 80.00000 Y( 24) 20.00000 Y( 25) 26.00000 Y( 26) 54.00000 Y( 27) 32.00000

Y( 28) 40.00000 Y( 29) 32.00000 Y( 30) 40.00000 Y( 31) 50.00000 Y( 32) 42.00000 Y( 33) 56.00000 Y( 34) 76.00000 Y( 35) 84.00000 Y( 36) 36.00000 Y( 37) 46.00000 Y( 38) 68.00000 Y( 39) 32.00000 Y( 40) 48.00000 Y( 41) 52.00000 Y( 42) 56.00000 Y( 43) 64.00000 Y( 44) 66.00000 Y( 45) 54.00000 Y( 46) 70.00000 Y( 47) 92.00000 Y( 48) 93.00000 Y( 49) 120.0000 Y( 50) 85.00000

Row Slack or Surplus Dual Price 1 563.8000 -1.000000

所以得到绝对偏差和最小时的β0为-11.60000,β1为3.400000。

(3) 最大偏差最小的目标方程:

i

i 101y -x max m in 1

0βββ

β+=≤≤n

i ,

编程如下: model: sets:

size/1..50/: x,y; endsets

min=@max(size:@abs(B0+B1*x-y)); data:

y=2 10 4 22 16 10 18 26 34 17 28 14 20 24 28 26 34 34 46 26 36 60 80 20 26 54 32 40 32 40 50 42 56 76 84 36 46 68 32 48 52 56 64 66 54 70 92 93 120 85;

x=4 4 7 7 8 9 10 10 10 11 11 12 12 12 12 13 13 13 13 14 14 14 14 15 15 15 16 16 17 17 17 18 18 18 18 19 19 19 20 20 20 20 20 22 23 24 24 24 24 25; enddata

@free(B0); @free(B1);

End

得到结果如下:

Objective value: 36.00000

Objective bound: 36.00000

Infeasibilities: 0.000000

Extended solver steps: 135

Total solver iterations: 3057

Model Class: MILP

Total variables: 254

Nonlinear variables: 0

Integer variables: 100

Total constraints: 303

Nonlinear constraints: 0

Total nonzeros: 852

Nonlinear nonzeros: 0

Variable Value

B0 -12.00000

B1 4.000000

X( 1) 4.000000

X( 2) 4.000000

X( 3) 7.000000

X( 4) 7.000000

X( 5) 8.000000

X( 6) 9.000000

X( 7) 10.00000

X( 8) 10.00000

X( 9) 10.00000

X( 10) 11.00000

X( 11) 11.00000

X( 12) 12.00000

X( 13) 12.00000

X( 14) 12.00000

X( 15) 12.00000

X( 16) 13.00000

X( 17) 13.00000

X( 18) 13.00000

X( 19) 13.00000

X( 20) 14.00000

X( 21) 14.00000 X( 22) 14.00000 X( 23) 14.00000 X( 24) 15.00000 X( 25) 15.00000 X( 26) 15.00000 X( 27) 16.00000 X( 28) 16.00000 X( 29) 17.00000 X( 30) 17.00000 X( 31) 17.00000 X( 32) 18.00000 X( 33) 18.00000 X( 34) 18.00000 X( 35) 18.00000 X( 36) 19.00000 X( 37) 19.00000 X( 38) 19.00000 X( 39) 20.00000 X( 40) 20.00000 X( 41) 20.00000 X( 42) 20.00000 X( 43) 20.00000 X( 44) 22.00000 X( 45) 23.00000 X( 46) 24.00000 X( 47) 24.00000 X( 48) 24.00000 X( 49) 24.00000 X( 50) 25.00000 Y( 1) 2.000000 Y( 2) 10.00000 Y( 3) 4.000000 Y( 4) 22.00000 Y( 5) 16.00000 Y( 6) 10.00000 Y( 7) 18.00000 Y( 8) 26.00000 Y( 9) 34.00000 Y( 10) 17.00000 Y( 11) 28.00000 Y( 12) 14.00000 Y( 13) 20.00000 Y( 14) 24.00000

Y( 15) 28.00000

Y( 16) 26.00000

Y( 17) 34.00000

Y( 18) 34.00000

Y( 19) 46.00000

Y( 20) 26.00000

Y( 21) 36.00000

Y( 22) 60.00000

Y( 23) 80.00000

Y( 24) 20.00000

Y( 25) 26.00000

Y( 26) 54.00000

Y( 27) 32.00000

Y( 28) 40.00000

Y( 29) 32.00000

Y( 30) 40.00000

Y( 31) 50.00000

Y( 32) 42.00000

Y( 33) 56.00000

Y( 34) 76.00000

Y( 35) 84.00000

Y( 36) 36.00000

Y( 37) 46.00000

Y( 38) 68.00000

Y( 39) 32.00000

Y( 40) 48.00000

Y( 41) 52.00000

Y( 42) 56.00000

Y( 43) 64.00000

Y( 44) 66.00000

Y( 45) 54.00000

Y( 46) 70.00000

Y( 47) 92.00000

Y( 48) 93.00000

Y( 49) 120.0000

Y( 50) 85.00000

Row Slack or Surplus Dual Price

1 36.00000 -1.000000 绝对偏差和最小时的β0为-12.00000,β1为4.000000。

根据y=β0+β1x,得到的三个解析方程式为:

y=-17.57909+3.932409x

y=-11.60000+3.400000x

y=-12.00000+4.000000x

利用Matlab求得所有数据的线性回归方程:

输入

x=0:0.1:25;

y1=-17.57909+3.932409*x;

y2=-11.60000+3.400000*x;

y3=-12.00000+4.000000*x;

plot(x,y1,'b-',x,y2,'r--',x,y2,'c:')

legend('y1=-17.57909+3.932409x','y2=-11.60000+3.400000x','y3=-12.00000+4.000000x',0) xlabel('x');ylabel('y')

图像:

由图像已经可以观察出青和红色回归线最为贴近,计算得到其R2约为0.6742,所以由绝对偏差和最小得到的结果y=-11.60000+3.400000x更为贴近。

解:

Lingo程序如下:

min=2*3.14159*R*h+5*3.14159*R*R;

3.14159*R*R*h=340;

h>=0;

h<=4*R;

@free(R); @free(h);

运行结果:

Solution is locally infeasible

Infeasibilities: 0.2545705E-03

Extended solver steps: 1

Total solver iterations: 6

Model Class: NLP

Total variables: 2

Nonlinear variables: 2

Integer variables: 0

Total constraints: 4

Nonlinear constraints: 2

Total nonzeros: 7

Nonlinear nonzeros: 4

Variable Value Reduced Cost

R 3.002085 0.000000

H 12.00834 0.000000

Row Slack or Surplus Dual Price

1 368.077

2 -1.000000

2 -0.2545705E-0

3 -0.7217205

3 12.0083

4 0.000000

4 0.000000 1.571887 结果分析:

半径r=3.002086;高为h=12.00834;

解:机场的位置为Xj和Yj(j=1,2)机场给作业点的运油量为Cij(i=1,2,3),每个作业点的需油量为di(i=1,2,3)

所以目标函数为

23

221/2 11

min[()()]

ij j i j i

j i

c x a y b

==

-+-

∑∑

此时认为作业点1的坐标为(0,0),作业点2的坐标为(75,330),作业点3的坐标为(-225,-40);

Lingo程序为:

sets:

demand/1..3/:a,b,d;

supply/1..2/:x,y;

link(demand,supply):c;

endsets

min=@sum(link(i,j):c(i,j)*((x(j)-a(i))^2+(y(j)-b(i))^2)^(1/2));

@for(demand(i):[Demand_Com]@sum(supply(j):c(i,j))=d(i););

@for(supply:@free(x);@free(y););

data:

a=0,75,-225;

b=0,330,-40;

d=25,14,34;

enddata

end

运行结果为:

Local optimal solution found.

Objective value: 4737.816

Infeasibilities: 0.000000

Total solver iterations: 39

Model Class: NLP

Total variables: 10

Nonlinear variables: 10

Integer variables: 0

Total constraints: 4

Nonlinear constraints: 1

Total nonzeros: 16

Nonlinear nonzeros: 10

Variable Value Reduced Cost

A( 1) 0.000000 0.000000

A( 2) 75.00000 0.000000

A( 3) -225.0000 0.000000

B( 1) 0.000000 0.000000

B( 2) 330.0000 0.000000

B( 3) -40.00000 0.000000

D( 1) 25.00000 0.000000

D( 2) 14.00000 0.000000

D( 3) 34.00000 0.000000

X( 1) 0.4387874E-08 0.000000

X( 2) -225.0000 0.000000

Y( 1) 0.1930665E-07 0.000000

Y( 2) -40.00000 0.000000

C( 1, 1) 25.00000 0.000000

C( 1, 2) 0.000000 228.5279

C( 2, 1) 14.00000 0.000000

C( 2, 2) 0.000000 137.9248

C( 3, 1) 0.000000 228.5279

C( 3, 2) 34.00000 0.000000

Row Slack or Surplus Dual Price

1 4737.816 -1.000000

DEMAND_COM( 1) 0.000000 0.000000

DEMAND_COM( 2) 0.000000 -338.4154

DEMAND_COM( 3) 0.000000 0.000000 结果分析

由结果可知,机场位置为1为(0,0)机场位置2(-225,-40)。

机场1给作业点1运货25t,给作业点2运货14t,机场2给作业点3运货34t

总吨公里数为4737.816;

解:

一、模型假设

1.光强公式

2

sin

r

p

k

I

α

=

( k为路灯光照强度系数,P为路灯的功率,α为路灯光线与

地面的夹角,r为路灯到路面上某点的距离)

2.令两只路灯的k=1;

3.假设路灯正常工作且忽略对路灯光照强度其他因素的影响;

4.建立坐标系,如图。

二、建模

(1)、由题意得,

设Q(x,0)点为两盏路灯连线上的任意一点,则两盏路灯在Q点的照度分别为I1和I2

利用MATLAB 求得0)('=x I 时x 的值

代码:

s=solve('(-30*x)/((25+x^2)^(5/2))+(54*(20-x))/((36+(20-x)^2)^(5/2))'); s1=vpa(s,8); s1

结果: s1 =

19.97669581 9.338299136 8.538304309-11.61579012*i .2848997038e-1 8.538304309+11.61579012*i 三、结果分析

因为x>=0,排除复数,

所以距离2Kw 的路灯的水平位移x=9.33m 时,为最暗点; 距离2KW 的路灯水平位移x=19.97m 时,为最亮点。

(2) 3KW 的路灯的高度可以在3M 到9M 之间变化变化时,Q 点的照度为关于x 和h 2的二元函数:

32222

3

22)

)20((3)

25(10

),(x h h x h x I -++

+=

求出函数I(x,h 2)的极值即为最暗点和最亮点

2

=??h I

利用matlab 求出极值点x :

x1=20+2^(1/2)*h (舍去) x2=20-2^(1/2)*h

)

)20(()20(9)25()220(30-))(()(3)(35222252522222522111=-+-++-=-+-++-=??x h x h x h x s h x s h P x h x h P x I 用matlab 求解h 2,

solve('-30*(20-2^(1/2)*h)/((25+(20-2^(1/2)*h)^2)^(5/2))+9*h*(20-(20-2^(1/2)*h))/((h^2+(20-(20-2^(1/2)*h))^2)^(5/2))=0') ans =

7.4223928896768612557104509932965

14.120774098526835657369742179215(舍去) 因为h 在3到9之间,所以h 2=7.42239m 再利用matlab 求解x 和亮度I h=7.42239; x=20-2^(1/2)*h

I=10/((25+x^2)^(3/2))+(3*h)/((h^2+(20-x)^2)^(3/2)) x =

9.5032 I =

0.0186

可得,x=9.5032 ,h2=7.42239时,最暗点的亮度最大,为0.0186w。

解:

数学建模作业

郑重声明: 本作业仅供参考,可能会有错误,请自己甄别。 应用运筹学作业 6.某工厂生产A,B,C,D四种产品,加工这些产品一般需要经刨、磨、钻、镗四道工序,每种产品在各工序加工时所需设备台时如表1-18所示,设每月工作25天,每天工作8小时,且该厂有刨床、磨床、钻床、镗床各一台。问:如何安排生产,才能使月利润最大?又如A,B,C,D四种产品,每月最大的销售量分别为300件、350件、200件和400件,则该问题的线性规划问题又该如何? 1234 四种产品的数量,则得目标函数: Max=(200?150)x1+(130?100)x2+(150?120)x3+(230?200)x4 =50x1+30x2+30x3+30x4 生产四种产品所用时间: (0.3+0.9+0.7+0.4)x1+(0.5+0.5+0.5+0.5)x2+(0.2+0.7+0.4+ 0.8)x3+(0.4+0.8+0.6+0.7)x4≤25×8 即:2.3x1+2.0x2+2.1x3+2.5x4≤200 又产品数量不可能为负,所以:x i≥0(i=1,2,3,4) 综上,该问题的线性规划模型如下: Max Z=50x1+30x2+30x3+30x4 S.T.{2.3x1+2.0x2+2.1x3+2.5x4≤200 x i≥0(i=1,2,3,4) 下求解目标函数的最优解: max=50*x1+30*x2+30*x3+30*x4; 2.3*x1+2.0*x2+2.1*x3+2.5*x4<200; Global optimal solution found. Objective value: 4347.826 Total solver iterations: 0 Variable Value Reduced Cost X1 86.95652 0.000000 X2 0.000000 13.47826 X3 0.000000 15.65217

数学建模实验答案-概率模型

数学建模实验答案-概率模型

实验10 概率模型(2学时) (第9章 概率模型) 1.(验证)报童的诀窍p302~304, 323(习题2) 关于每天报纸购进量的优化模型: 已知b 为每份报纸的购进价,a 为零售价,c 为退回价(a > b > c ),每天报纸的需求量为r 份的概率是f (r )(r =0,1,2,…)。 求每天购进量n 份,使日平均收入,即 1 ()[()()()]()()()n r r n G n a b r b c n r f r a b nf r ∞ ==+=----+ -∑∑ 达到最大。 视r 为连续变量,f (r )转化为概率密度函数p (r ),则所求n *满足 * ()n a b p r dr a c -= -? 已知b =, a =1, c =,r 服从均值μ=500(份),均方差σ=50(份)的正态分布。报童每天应购进多少份报纸才能使平均收入最高,这个最高收入是多少 [提示:normpdf, normcdf] 要求:

(1) 在同一图形窗口内绘制10 ()()n y n p r dr =?和2()a b y n a c -= -的图形,观察其交点。 [提示] 22 ()2()r p r μσ-- = ,0 ()()()n n p r dr p r dr p r dr -∞ -∞ =-?? ? ☆(1) 运行程序并给出结果: (2) 求方程0()n a b p r dr a c -= -?的根n *(四舍五入取整),并求G (n *)。

mu=500;sigma=50; a=1; b=; c=; r=n+1; while (a-b)*n*normpdf(r,mu,sigma)>1e-6 r=r+1; end r=n+1:r; G=sum((a-b)*n*normpdf(r,mu,sigma)); r=0:n; G=G+sum(((a-b)*r-(b-c)*(n-r)).*normpdf(r,mu,sigma)) ☆(2) 运行程序并给出结果: 2.(编程)轧钢中的浪费p307~310 设要轧制长l=的成品钢材,由粗轧设备等因素决定的粗轧冷却后钢材长度的均方差σ=,问这时钢材长度的均值m应调整到多少使浪费最少。 平均每得到一根成品材所需钢材的长度为 () () m J m P m = 其中, 2 2 () 2 ()(), () 2 x m l P m p x dx p xσ πσ - - ∞ == ? 求m使J(m)达到最小。 等价于求方程 () () z z z λ ? Φ =- 的根z*。 其中:

西南大学2016年春《数学建模》作业及答案(已整理)(共5次)

西南大学2014年春《数学建模》作业及答案(已整理) 第一次作业 1:[填空题] 名词解释: 1.原型 2.模型 3.数学模型 4.机理分析 5.测试分析 6.理想方法 7.计算机模拟 8.蛛网模型 9.群体决策 10.直觉 11.灵感 12.想象力 13.洞察力 14.类比法 15.思维模型 16.符号模型 17.直观模型 18.物理模型19.2倍周期收敛20.灵敏度分析21.TSP问题22.随机存储策略23.随机模型24.概率模型25.混合整数规划26.灰色预测 参考答案: 1.原型:原型指人们在现实世界里关心、研究或者从事生产、管理的实际对象。2.模型:指为某个特定目的将原形的某一部分信息简缩、提炼而构造的原型替代物。3.数学模型:是由数字、字母或其它数字符号组成的,描述现实对象数量规律的数学公式、图形或算法。4.机理分析:根据对客观事物特性的认识,找出反映内部机理的数量规律,建立的模型常有明显的物理意义或现实意义。5.测试分析:将研究对象看作一个"黑箱”系统,通过对系统输入、输出数据的测量和统计分析,按照一定的准则找出与数据拟合得最好的模型。6.理想方法:是从观察和经验中通过想象和逻辑思维,把对象简化、纯化,使其升华到理状态,以其更本质地揭示对象的固有规律。7.计算机模拟:根据实际系统或过程的特性,按照一定的数学规律用计算机程序语言模拟实际运行情况,并依据大量模拟结构对系统或过程进行定量分析。8.蛛网模型:用需求曲线和供应曲线分析市场经济稳定性的图示法在经济学中称为蛛网模型。9.群体决策:根据若干人对某些对象的决策结果,综合出这个群体的决策结果的过程称为群体决策。10.直觉:直觉是人们对新事物本质的极敏锐的领悟、理解或推断。11.灵感:灵感是指在人有意识或下意识思考过程中迸发出来的猜测、思路或判断。12.想象力:指人们在原有知识基础上,将新感知的形象与记忆中的形象相互比较、重新组合、加工、处理,创造出新形象,是一种形象思维活动。13.洞察力:指人们在充分占有资料的基础上,经过初步分析能迅速抓住主要矛盾,舍弃次要因素,简化问题的层次,对可以用那些方法解决面临的问题,以及不同方法的优劣作出判断。14.类比法:类比法注意到研究对象与以熟悉的另一对象具有某些共性,比较二者相似之处以获得对研究对象的新认识。15.思维模型:指人们对原形的反复认识,将获取的知识以经验的形式直接储存于人脑中,从而可以根据思维或直觉作出相应的决策。16.符号模型:是在一定约束条件或假设下借助于专门的符号、线条等,按一定形式组合起来描述原型。17.直观模型:指那些供展览用的实物模型以及玩具、照片等,通常是把原型的尺寸按比例缩小或放大,主要追求外观上的逼真。18.物理模型:主要指科技工作者为一定的目的根据相似原理构造的模型,它不仅可以显示原型的外形或某些特征,而且可以用来进行模拟实验,间接地研究原型的某些规律。19.2倍周期收敛:在离散模型中,如果一个数列存在两个收敛子列就称为2倍周期收敛。20.灵敏度分析:系数的每个变化都会改变线性规划问题,随之也会影响原来求得的最优解。为制定一个应付各种偶然情况的全能方法,必须研究以求得的最优解是怎样随输入系数的变化而变化的。这叫灵敏性分析。21.TSP问题:在加权图中寻求最佳推销员回路的问题可以转化为在一个完备加权图中寻求最佳哈密顿圈的问题,称为TSP问题。22.随机存储策略:商店在订购货物时采用的一种简单的策略,是制定一个下界s和一个上界S,当周末存货不小于s时就不定货;当存货少于s 时就订货,且定货量使得下周初的存量达到S,这种策略称为随机存储策略。23.随机模型:如果随机因素对研究对象的影响必须考虑,就应该建立随机性的数学模型,简称为随机模型。24.概

《数学建模与数学实验》本科教学日历

《数学建模与数学实验》本科教学日历 数学建模部分 开设课程课程名称数学建模课程编号0701107 施教单位理学院 课内学时 总课时36 课程性质公共基础讲授课时28 修读要求选修实践课时8 选用教材教材名称数学建模教程出版社名称高等教育出版社 出版时间 及版次 2011年出版,第一版印刷时间2011年 其他情况 教学安排 班次授课对象及人数任教教员(指导教员)姓名及职称数学建模A 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 数学建模B 各专业本科学员 吴孟达教授 段晓君教授 毛紫阳讲师 王丹讲师 课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验 1 1 (1)什么是数学建模?数学建模的一般概念 (2)几个数学建模问题 讲授 1 2 (1)数学建模的一般步骤 (2)敏感问题调查案例 讲授 1 2 3 (1)行走步长问题 (2)雨中行走淋雨量最小问题 (3)道路是越多越通畅吗? 讲授 1 4 (1)有奖销售的抽奖策略问题 (2)“非诚勿扰”女生最佳选择问题 (3)网络文章流行度预测和招聘匹配 讲授 1 3 5 (1)线性规划模型基本概念 (2)整数规划模型 (3)0-1规划模型 讲授 1 6 (1)非线性规划 (2)多目标规划 讲授 1 4 7 (1)最短路算法 (2)最小生成树算法 讲授 1 8 (1)最大流算法 (2)PageRank算法 讲授 1 5 9 规划模型上机实践实践 1

课次节 次 授课内容 教学 方法 采用现代化教学手段(课时) 多媒体电教双语网络实验10 图论模型上机实践实践 1 6 11 (1)博弈模型基本概念 (2)Nash平衡和Pareto最优 (3)博弈论案例 讲授 1 12 (1)贝叶斯纳什均衡 (2)拍卖模型 讲授 1 7 13 社会选择理论中的选举问题数学模型-阿罗不可能定理讲授 1 14 越野长袍团体赛排名规则公平性问题讲授 1 8 15 军事作战模型-Lanchester作战模型讲授 1 16 自动化车床管理模型讲授 1 9 17 (1)“边际效应”基本概念 (2)实物交换模型,最佳消费模型、报童售报问题 讲授 1 18 (1)价格弹性模型 (2)合作效益的Shapley值分配模型 讲授 1 10 19 (1)聚类分析基本概念 (2)常用聚类算法 讲授 1 20 (1)方差分析基本概念 (2)单因素方差分析 (3)双因素方差分析 讲授 1 11 21 (1)主成分分析基本概念 (2)因子分析 讲授 1 22 (1)一元回归分析 (2)多元回归分析 (3)多元回归模型的检验与优化 讲授 1 12 23 聚类分析和方差分析上机实践实践 1 24 主成分分析和多元回归分析上机实践实践 1 13 25 (1)遗传算法基本思想 (2)算法步骤 讲授 1 26 遗传算法计算实例讲授 1 14 27 (1)模拟退火算法基本思想 (2)算法步骤 讲授 1 28 模拟退火算法计算实例讲授 1 15 29 (1)蚁群算法基本思想 (2)算法步骤 讲授 1 30 (1)数学建模中的计算机仿真 (2)不可召回的秘书招聘问题 (3)车灯光源优化设计 (4)生命游戏 讲授 1 16 31 遗传算法上机实践实践 1 32 模拟退火算法上机实践实践 1

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

数学建模作业——实验1

数学建模作业——实验1 学院:软件学院 姓名: 学号: 班级:软件工程2015级 GCT班 邮箱: 电话: 日期:2016年5月10日

基本实验 1.椅子放平问题 依照1.2.1节中的“椅子问题”的方法,将假设中的“四腿长相同并且四脚连线呈正方形”,改为“四腿长相同并且四脚连线呈长方形”,其余假设不变,问椅子还能放平吗?如果能,请证明;如果不能,请举出相应的例子。 答:能放平,证明如下: 如上图,以椅子的中心点建立坐标,O为原点,A、B、C、D为椅子四脚的初始位置,通过旋转椅子到A’、B’、C’、D’,旋转的角度为α,记A、B两脚,C、D两脚距离地面的距离为f(α)和g(α),由于椅子的四脚在任何位置至少有3脚着地,且f(α)、g(α)是α的连续函数,则f(α)和g(α)至少有一个的值为0,即f(α)g(α)=0,f(α)≥ 0,g(α)≥0,若f(0)>0,g(0)=0,

则一定存在α’∈(0,π),使得 f(α’)=g(α’)=0 令α=π(即椅子旋转180°,AB 边与CD 边互换),则 f(π)=0,g(π)>0 定义h(α)= f(α)-g(α),得到 h(0)=f(0)-g(0)>0 h(π)=f(π)-g(π) <0 根据连续函数的零点定理,则存在α’∈( 0,π),使得 h(α’)= f(α’)-g(α’)=0 结合条件f(α’)g(α’)=0,从而得到 f(α’)=g(α’)=0,即四脚着地,椅子放平。 2. 过河问题 依照1.2.2节中的“商人安全过河”的方法,完成下面的智力游戏:人带着猫、鸡、米过河,船除需要人划之外,至多能载猫、鸡、米之一,而当人不在场时,猫要吃鸡、鸡要吃米,试设计一个安全过河的方案,并使渡河的次数尽量的少。 答: 用i =1,2,3,4分别代表人,猫,鸡,米。1=i x 在此岸,0 =i x 在对岸,()4321,,,x x x x s =此岸状态,()43211,1,1, 1x x x x D ----=对岸状态。安全状态集合为 :

数学建模实验答案初等模型

实验02 初等模型(4学时) (第2章初等模型) 1.(编程)光盘的数据容量p23~27 表1 3种光盘的基本数据 CAV光盘:恒定角速度的光盘。 CLV光盘:恒定线速度的光盘。 R2=58 mm, R1=22.5 mm,d, ρ见表1。

CLV光盘的信息总长度(mm) L CLV 22 21 () R R d π- ≈ CLV光盘的信息容量(MB) C CLV = ρL CLV / (10^6) CLV光盘的影像时间(min) T CLV = C CLV / (0.62×60) CAV光盘的信息总长度(mm) L CAV 2 2 2 R d π≈ CAV光盘的信息容量(MB) C CAV = ρL CAV / (10^6) CAV光盘的影像时间(min ) T CAV = C CAV / (0.62×60) 1.1(验证、编程)模型求解 要求: ①(验证)分别计算出LCLV, CCLV和TCLV三个3行1列的列向量,仍后输出结果,并与P26的表2(教材)比较。 程序如下:

②(编程)对于LCAV, CCAV和TCAV,编写类似①的程序,并运行,结果与P26的表3(教材)比较。 ★要求①的程序的运行结果: ★要求②的程序及其运行结果:

1.2(编程)结果分析 信道长度LCLV 的精确计算:21 2R CLV R L d π=? 模型给出的是近似值:2221() CLV R R L L d π-= ≈ 相对误差为:CLV L L L δ-= 要求:

①取R2=58 mm, R1=22.5 mm,d, ρ见表1(题1)。 分别计算出LCLV, L和delta三个3行1列的列向量,仍后将它组合起来输出一个3行3列的结果。 ②结果与P26的表2和P27(教材)的结果比较。 [提示] 定积分计算用quad、quadl或trapz函数,注意要分别取d的元素来计算。要用数组d参与计算,可用quadv(用help查看其用法)。 ★编写的程序和运行结果: 程序:

数学建模与数学实验课后习题答案

P59 4.学校共1002名学生,237人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍。学生要组织一个10人的委员会,使用Q 值法分配各宿舍的委员数。 解:设P 表示人数,N 表示要分配的总席位数。i 表示各个宿舍(分别取A,B,C ),i p 表示i 宿舍现有住宿人数,i n 表示i 宿舍分配到的委员席位。 首先,我们先按比例分配委员席位。 A 宿舍为:A n = 365.21002 10237=? B 宿舍为:B n =323.31002 10333=? C 宿舍为:C n =311.4100210432=? 现已分完9人,剩1人用Q 值法分配。 5.93613 22372 =?=A Q 7.92404 33332 =?=B Q 2.93315 44322 =?=C Q 经比较可得,最后一席位应分给A 宿舍。 所以,总的席位分配应为:A 宿舍3个席位,B 宿舍3个席位,C 宿舍4个席位。

商人们怎样安全过河

由上题可求:4个商人,4个随从安全过河的方案。 解:用最多乘两人的船,无法安全过河。所以需要改乘最多三人乘坐的船。 如图所示,图中实线表示为从开始的岸边到河对岸,虚线表示从河对岸回来。商人只需要按照图中的步骤走,即可安全渡河。总共需要9步。

P60 液体在水平等直径的管内流动,设两点的压强差ΔP 与下列变量有关:管径d,ρ,v,l,μ,管壁粗糙度Δ,试求ΔP 的表达式 解:物理量之间的关系写为为()?=?,,,,,μρ?l v d p 。 各个物理量的量纲分别为 []32-=?MT L p ,[]L d =,[]M L 3-=ρ,[]1-=LT v ,[]L l =,[]11--=MT L μ,Δ是一个无量纲量。 ???? ??????-----=?0310100011110010021113173A 其中0=Ay 解得 ()T y 00012111---=, ()T y 00101102--=, ()T y 01003103--=, ()T y 10000004= 所以 l v d 2111---=ρπ,μρπ112--=v ,p v ?=--313ρπ,?=4π 因为()0,,,,,,=??p l v d f μρ与()0,,,4321=ππππF 是等价的,所以ΔP 的表达式为: ()213,ππψρv p =?

数学建模第三次作业——追击问题

数 学 建 模 实验报告 机械工程及自动化75班

丁鑫 四人追击问题 问题: 在一个边长为1的正方形跑道的四个顶点上各站有一人,他们同时开始以等速顺时针追逐下一人,在追逐过程中,每个人时刻对准目标,试模拟追击路线。并讨论: (1) 四个人能否追到一起? (2)若能追到一起,则每个人跑过多少路程? (3)追到一起所需要的时间(设速率为1)? (4)如果四个人追逐的速度不一样,情况又如何呢 分析: 先建立坐标系,设计程序使从A,B,C,D 四个点同时出发,画出图形并判断。 程序设计流程: 四个人追击的速度相等,则有14321=====v v v v v 。针对这种情形,可有以下的程序。 hold on axis([0 2 0 2]); grid A=[0,0];B=[0,1];C=[1,1];D=[1,0]; k=0; s1=0;s2=0;s3=0;s4=0; %四个人分别走过的路程 t=0; v=1;dt=0.002; while k<10000 k=k+1; plot(A(1),A(2),'r.','markersize',15); plot(B(1),B(2),'b.','markersize',15); plot(C(1),C(2),'m.','markersize',15);

plot(D(1),D(2),'k.','markersize',15); e1=B-A;d1=norm(e1); e2=C-B;d2=norm(e2); e3=D-C;d3=norm(e3); e4=A-D;d4=norm(e4); fprintf('k=%.0f ',k) fprintf('A(%.2f,%.2f) d1=%.2f ',A(1),A(2),d1) fprintf('B(%.2f,%.2f) d2=%.2f ',B(1),B(2),d2) fprintf('C(%.2f,%.2f) d3=%.2f ',C(1),C(2),d3) fprintf('D(%.2f,%.2f) d4=%.2f\n',D(1),D(2),d4) A=A+v*dt*e1/d1; B=B+v*dt*e2/d2; C=C+v*dt*e3/d3; D=D+v*dt*e4/d4; t=t+dt; s1=s1+v*dt; s2=s2+v*dt; s3=s3+v*dt; s4=s4+v*dt; if norm(A-C)<=5.0e-3&norm(B-D)<=5.0e-3 break end end t s1 s2 s3 s4

数学建模实验报告

数学建模实验报告

一、实验目的 1、通过具体的题目实例,使学生理解数学建模的基本思想和方法,掌握 数学建模分析和解决的基本过程。 2、培养学生主动探索、努力进取的的学风,增强学生的应用意识和创新 能力,为今后从事科研工作打下初步的基础。 二、实验题目 (一)题目一 1、题目:电梯问题有r个人在一楼进入电梯,楼上有n层。设每个 乘客在任何一层楼出电梯的概率相同,试建立一个概率模型,求直 到电梯中的乘客下完时,电梯需停次数的数学期望。 2、问题分析 (1)由于每位乘客在任何一层楼出电梯的概率相同,且各种可能的情况众多且复杂,难于推导。所以选择采用计算机模拟的 方法,求得近似结果。 (2)通过增加试验次数,使近似解越来越接近真实情况。 3、模型建立 建立一个n*r的二维随机矩阵,该矩阵每列元素中只有一个为1,其余都为0,这代表每个乘客在对应的楼层下电梯(因为每 个乘客只会在某一层下,故没列只有一个1)。而每行中1的个数 代表在该楼层下的乘客的人数。 再建立一个有n个元素的一位数组,数组中只有0和1,其中1代表该层有人下,0代表该层没人下。 例如: 给定n=8;r=6(楼8层,乘了6个人),则建立的二维随机矩阵及与之相关的应建立的一维数组为: m = 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 c = 1 1 0 1 0 1 1 1 4、解决方法(MATLAB程序代码):

n=10;r=10;d=1000; a=0; for l=1:d m=full(sparse(randint(1,r,[1,n]),1:r,1,n,r)); c=zeros(n,1); for i=1:n for j=1:r if m(i,j)==1 c(j)=1; break; end continue; end end s=0; for x=1:n if c(x)==1 s=s+1; end continue; end a=a+s; end a/d 5、实验结果 ans = 6.5150 那么,当楼高11层,乘坐10人时,电梯需停次数的数学期望为6.5150。 (二)题目二 1、问题:某厂生产甲乙两种口味的饮料,每百箱甲饮料需用原料6 千克,工人10名,可获利10万元;每百箱乙饮料需用原料5千 克,工人20名,可获利9万元.今工厂共有原料60千克,工人 150名,又由于其他条件所限甲饮料产量不超过8百箱.问如何 安排生产计划,即两种饮料各生产多少使获利最大.进一步讨 论: 1)若投资0.8万元可增加原料1千克,问应否作这项投资. 2)若每百箱甲饮料获利可增加1万元,问应否改变生产计划. 2、问题分析 (1)题目中共有3个约束条件,分别来自原料量、工人数与甲饮料产量的限制。 (2)目标函数是求获利最大时的生产分配,应用MATLAB时要转换

数学建模与数学实验试卷及答案

数学建模与数学实验试卷及答案 二、本题10分(写出程序和结果) 蚌埠学院2010—2011学年第二学期 2,x在 [-5 ,5] 区间内的最小值,并作图加以验证。求函数yxe,,,3《数学建模与数学实验》补考试卷答案 f1=inline('x.^2 +exp(-x)-3') 注意事项:1、适用班级:09数学与应用数学本科1,2班 2、本试卷共1页,附答题纸1页。满分100分。 x=fmin(f1,-5,5) 3、考查时间100分钟。 y=f1(x) 4、考查方式:开卷 fplot(f1,[-5,5]) 一、填空:(每空4分,共60分) x = 0.3517,y== -2.1728 123111,,,,, ,,,,三、本题15分(写出程序和结果) 1. 已知,,则A的秩为 3 ,A的特征值为 A,612B,234,,,, ,,,,,215531,,,,,360000xx,,,12,max2.5fxx,,求解:, stxx..250000,,,1212-1.9766 4.4883 + 0.7734i 4.4883 - 0.7734i ,若令 A([1,3],:)= B([2,3],:),则,x,150001,A(2,:)= 6 1 2 ; 解: xxx,,,22,123,model: 2. 的解为 1.25 ,0.25 0.5 ; xxx,,,521,123max=2.5*x1+x2; ,242xxx,,,123,3*x1+x2<=60000; 装订线内不要答题 2*x1+x2<=50000; 3. 将1234521 分解成质因数乘积的命令为_factor(sym(‘1234521’)),

数学建模实验

数学建模课程实验报告 专题实验7 班级数财系1班学号2011040123 丛文 实验题目常微分方程数值解 实验目的 1.掌握用MATLAB求微分方程初值问题数值解的方法; 2.通过实例学习微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格库塔方法的基本思想。 实验容 (包括分 析过程、 方法、和 代码,结 果) 1. 用欧拉方法和龙格库塔方法求下列微分方程初值问题的数值 解,画出解的图形,对结果进行分析比较 解;M文件 function f=f(x,y) f=y+2*x; 程序; clc;clear; a=0;b=1; %求解区间 [x1,y_r]=ode45('f',[a b],1); %调用龙格库塔求解函数求解数值 解; %% 以下利用Euler方法求解 y(1)=1;N=100;h=(b-a)/N; x=a:h:b;

for i=1:N y(i+1)=y(i)+h*f(x(i),y(i)); end figure(1) plot(x1,y_r,'r*',x,y,'b+',x,3*exp(x)-2*x-2,'k-');%数值解与真解图 title('数值解与真解图'); legend('RK4','Euler','真解'); xlabel('x');ylabel('y'); figure(2)

plot(x1,abs(y_r-(3*exp(x1)-2*x1-2)),'k-');%龙格库塔方法的误差 title('龙格库塔方法的误差') xlabel('x');ylabel('Error'); figure(3) plot(x,abs(y-(3*exp(x)-2*x-2)),'r-')%Euler方法的误差 title('Euler方法的误差') xlabel('x');ylabel('Error');

数学建模作业

2016年数学建模作业 作业要求 1. 由于时间的原因,同学们只需将题目做在word上,不需要做在ppt上。 2. 详细的写出模型或方法、程序、程序运行的重要结果,并做结果分析。 3. 你做的答案将与全体同学分享。结业考试也是以你的答案为参考。如果因为你的不认真导致题目做错。从而误导了大家,你将负全部责任。切记要认真做题。如果你不会,那一定要虚心向学霸们请教。 第一部分优化与控制 2016-01 灵敏度分析 某公司计划生产I、II两种产品,每天生产条件如表,问: (1)该公司应如何安排生产计划才能使总利润最多? (2)若产品Ⅰ的利润降至1.5百元/单位,而产品Ⅱ的利润增至2百元/单位,最优生产计划有何变化? (3)若产品Ⅰ的利润不变,则产品Ⅱ的利润在什么范围内变化时,该公司的最优生产计划将不发生变化? (4)设备A和设备C每天能力不变,而设备B能力增加到32,问最优生产计划如何变化? 资源产品ⅠⅡ每天可用能力 设备A(h)0 5 15 设备B(h) 6 2 24 设备C(h) 1 1 5 利润(百元) 2 1 2016-02 投资问题 某银行经理计划用一笔资金进行有价证券的投资,可供购进的证券以及其信用等级、到期年限、收益如下表所示。按照规定,市政证券的收益可以免税,其它证券的收益需按50%的税率纳税。此外还有以下限制:①政府及代办机构的证券总共至少要购进400万元;②所购证券的平均信用等级不超过1.49,信用等级数字越小,信用程度越高;③所购证券的平均到期年限不超过3年;④不允许重复投资。 (1)若该经理有1000万元资金,应如何投资? (2)如果能够以2.75%的利率借到不超过100万元资金,该经理应如何操作?(3)在1000万元资金情况下,若证券A的税前收益增加为4.5%,投资应否改变?若证券C的税前收益减少为4.8%,投资应否改变?

数学建模与数学实验报告

数学建模与数学实验报告 指导教师__郑克龙___ 成绩____________ 组员1:班级______________ 姓名______________ 学号_____________ 组员2:班级______________ 姓名______________ 学号______________ 实验1.(1)绘制函数cos(tan())y x π=的图像,将其程序及图形粘贴在此。 >> x=-pi:0.01:pi; >> y=cos(tan(pi*x)); >> plot(x,y) -4 -3 -2 -1 1 2 3 4 -1-0.8-0.6-0.4-0.200.20.40.60.8 1 (2)用surf,mesh 命令绘制曲面2 2 2z x y =+,将其程序及图形粘贴在此。(注:图形注意拖放,不要太大)(20分) >> [x,y]=meshgrid([-2:0.1:2]); >> z=2*x.^2+y.^2; >> surf(x,y,z)

-2 2 >> mesh(x,y,z) -2 2 实验2. 1、某校60名学生的一次考试成绩如下:

93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55 1)计算均值、标准差、极差、偏度、峰度,画出直方图;2)检验分布的正态性;3)若检验符合正态分布,估计正态分布的参数并检验参数. (20分) 1) >> a=[93 75 83 93 91 85 84 82 77 76 77 95 94 89 91 88 86 83 96 81 79 97 78 75 67 69 68 84 83 81 75 66 85 70 94 84 83 82 80 78 74 73 76 70 86 76 90 89 71 66 86 73 80 94 79 78 77 63 53 55]; >> pjz=mean(a) pjz = 80.1000 >> bzhc=std(a) bzhc = 9.7106 >> jc=max(a)-min(a) jc = 44 >> bar(a)

数模作业4(讨论题)

姓名:晏福刚学号:班级:数学一班 一、问题描述 某部门现有资金10万元,五年内有以下投资 项目供选择: 项目A:从第一年到第四年每年初投资,次年末收回本金且获利15%; 项目B:第三年初投资,第五年末收回本金且获利25%,最大投资额为4万元; 项目C:第二年初投资,第五年末收回本金且获利40%,最大投资额为3万元; 项目D:每年初投资,年末收回本金且获利6%; 问如何确定投资策略使第五年末本息总额最大 二、问题分析 本题为投资组合问题,且属于数学规划问题。其中项目A前4年每年初都可以进行投资但只能在第二年末才能收回本利息。B、C在五年中只能进行投资一次,分别在第三年、第四年初进行投资均在第五年末收回且有金额限定。D项目每年初进行投资,每年末就能收回本利息。并且在本题中并没有涉及到风险的问题,所以不考虑有损失。在此题中首先目标是使第五年末的本息最大,约束条件为总的金额及个项目投资金额的限制。 三、模型假设 ①假设每项投资不存在风险,不会出现损失。 ②在投资中一旦投资,就在上面题中所说的时间收回本利息,不考虑中途撤销资金投资的情况。 四、符号假设 x1i 第i年用于A项目的投资金额 x2 第三年用于B项目的投资金额 x3 第二年用于C项目的投资金额

x4j 第j年用于D项目的投资金额 五、模型建立 1.约束条件和目标函数的建立 首先假设第i年用于投资A项目的资金为x1i(i=1、2、3、4)。第三年投资B项目的资金为x2(由于B项目投资条件的限定在五年内只能进行一次投资)。第2年投资C项目的金额为x3。D项目第i年投资金额为x4j(j=1、2、3、4、5)。那么五年内的投资情况及收益情况将如下表所示: 下面对上述表格进行具体的表述: 总的资金为10万。(以下单位均为:万元) 第一年初:可投资金额:10万可投资项目:A、D项目 A的投资金额:x11(将在第二年末收回) D的投资金额:x41则必有x11+x41=10 第一年错误!未指定书签。末:收回D项目的本利息:x41*(1+6%) 第二年初:可投资金额:x41*(1+6%) 可投资项目:A、C、D项目 A的投资金额:x12 (将在第三年末收回) C的投资金额:x3(将在第五年末收回且x3<3) D的投资金额:x42 则必有x12+x3+x42=x41(1+6%) 第二年末:收回第一年A项目的本利息:x11(1+15%) 第二年D的本利息:

《数学建模与数学实验》课程论文

10级信息《数学建模与数学实验(实践)》任务书 一、设计目的 通过《数学建模与数学实验(实践)》实践环节,掌握本门课程的众多数学建模方法和原理,并通过编写C语言或matlab程序,掌握各种基本算法在计算机中的具体表达方法,并逐一了解它们的优劣、稳定性以及收敛性。在熟练掌握C 语言或matlab语言编程的基础上,编写算法和稳定性均佳、通用性强、可读性好,输入输出方便的程序,以解决实际中的一些科学计算问题。 二、设计教学内容 1线性规划(掌握线性规划的模型、算法以及Matlab 实现)。整数线性规划(掌握整数线性规划形式和解法)。 2微分方程建模(掌握根据规律建立微分方程模型及解法;微分方程模型的Matlab 实现)。 3最短路问题(掌握最短路问题及算法,了解利用最短路问题解决实际问题)。 行遍性问题(了解行遍性问题,掌握其TSP算法)。 4回归分析(掌握一元线性回归和多元线性回归,掌握回归的Matlab实现)。 5计算机模拟(掌握Monte-carlo方法、了解随机数的产生;能够用Monte-carlo 解决实际问题)。 6插值与拟合(了解数据拟合基本原理,掌握用利用Matlab工具箱解决曲线拟合问题)。 三、设计时间 2012—2013学年第1学期:第16周共计一周 目录 一、10级信息《数学建模与数学实验(实践)》任务书 (1) 二、饭店餐桌的布局问题 (3) 摘要 (3)

问题重述 (3) 模型假设 (3) 模型分析 (4) 模型的建立和求解 (4) 模型推广 (9) 参考文献 (9) 三、白酒配比销售问题 (10) 摘要 (10) 问题重述 (11) 问题分析 (12) 模型假设 (12) 符号及变量说明 (12) 模型的建立与求解 (13) 模型的检验 (18) 模型的评价与推广 (19) 附录 (21) 饭店餐桌的布局问题 摘要 饭店餐桌的布局对于一个饭店有着很重要的作用。本文讨论的就是饭店餐桌的布局问题,根据实际需求及规定建立模型,同时考虑餐桌的类型及规格,尤其是餐桌的摆放技巧,保证使饭店能容纳的人数达到最大。根据所需餐桌的数量

数学建模章绍辉版第四章作业

第四章作业 第二题: 针对严重的交通情况,国家质量监督检验检疫局发布的国家标准,车辆驾驶人员血液中的酒精含量大于或等于20mg/100ml,小于80mg/100ml 为饮酒驾车,血液中的酒精含量大于或等于80mg/100ml 的为醉酒驾车。 下面分别考虑大李在很短时间内和较长时间内(如2个小时)喝了三瓶啤酒,多长时间内驾车就会违反新的国家标准。 1、 问题假设 大李在短时间内喝下三瓶啤酒后,酒精先从吸收室(肠胃)吸收进中心室(血液和体液),然后从中心室向体外排除,忽略喝酒的时间,根据生理学知识,假设 (1) 吸收室在初始时刻t=0时,酒精量立即为 32 D ;在任意时刻,酒精从吸收室吸收进中心室的速率(吸收室在单位时间内酒精含量的减少量)与吸收室的酒精含量成正比,比例系数为1k ; (2) 中心室的容积V 保持不变;在初始时刻t=0时,中心室的酒精含量为0;在任意时 刻,酒精从中心室向体外排除的速率(中心室在单位时间内酒精含量的减少量)与 中心室的酒精含量成正比,比例系数为2k ; (3) 在大李适度饮酒没有酒精中毒的前提下,假设1k 和2k 都是常量,与饮酒量无关。 2、 符号说明 酒精量是指纯酒精的质量,单位是毫克; 酒精含量是指纯酒精的浓度,单位是毫克/百毫升; ~t 时刻(小时) ; ()~x t 在时刻t 吸收室(肠胃)内的酒精量(毫克) ; 0~D 两瓶酒的酒精量(毫克); (t)~c 在时刻t 吸收室(血液和体液)的酒精含量(毫克/百毫升) ; 2()~c t 在时刻t 中心室(血液和体液)的酒精含量(毫克/百毫升); ~V 中心室的容积(百毫升) ; 1~k 酒精从吸收室吸收进中心室的速率系数(假设其为常数2.0079); 2~k 酒精从中心室向体外排除的速率系数(假设其为常数0.1855);

数学建模与数学实验

数学建模与数学实验 实验报告 班级: 数学师范153 姓名:付爽 学号:1502012060 实验名称: 数列极限与函数极限 基础实验 基础实验一数列极限与函数极限第一部分实验指导书解读

一、实验目的 从刘徽的割圆术、裴波那奇数列研究数列的收敛性并抽象出极限的定义;理解数列收敛的准则;理解函数极限与数列极限的关系。 二、实验使用软件 Mathematic 5、0 三.实验的基本理论即方法 1割圆术 中国古代数学家刘徽在《九章算术注》方田章圆田术中创造了割圆术计算圆周率π。刘徽先注意到圆内接正多边形的面积小于圆面积;其次,当将边数屡次加倍时,正多边形的面积增大,边数愈大则正多边形面积愈近于圆的面积。 “割之弥细,所失弥少。割之又割以至不可割,则与圆合体而无所失矣。”这几句话明确地表明了刘徽的极限思想。 以n S 表示单位圆的圆内接正1 23-?n 多边形面积,则其极限为 圆周率π。用下列Mathematica 程序可以从量与形两个角度考察数列{n S }的收敛情况: m=2;n=15;k=10; For[i=2,i<=n,i++, l[i_]:=N[2*Sin[Pi/(3*2^i)],k]; (圆

内接正1 23-?n 多边形边长) s[i_]:=N[3*2^(i-1)*l[i]*Sqrt[1-(l[i])^2/4],k]; (圆内接正1 23-?n 多边形面积) r[i_]:=Pi-s[i]; d[i_]:=s[i]-s[i-1]; Print[i," ",r[i]," ",l[i]," ",s[i]," ",d[i]] ] t=Table[{i,s[i]},{i,m,n}] (数组) ListPlot[t] (散点图) 2裴波那奇数列与黄金分割 由2110;1; 0--+===n n n F F F F F 有著名的裴波那奇数列}{n F 。 如果令n n n F F R 11 --=,由n F 递推公式可得出 11111/11---+=+=+=n n n n n n n R F F F F F R ,]251251[511 1 ++??? ? ??--??? ? ??+=n n n F ; 2 15lim lim 1 -==+∞ →∞ →n n n n n F F R 。 用下列Mathematica 程序可以从量与形两个角度考察数列{n R }的收敛情况: n=14,k=10; For[i=3,i<=n,i++, t1=(Sqrt[5]+1)/2; t2=(1-Sqrt[5])/2;

相关主题
文本预览
相关文档 最新文档