当前位置:文档之家› 新型分离技术习题解答第10章.doc

新型分离技术习题解答第10章.doc

新型分离技术习题解答第10章.doc
新型分离技术习题解答第10章.doc

第十章其它分离技术(习题解答)

10-1泡沫分离的原理是什么?适用哪类体系的分离?

答:泡沫分离是以气泡作分离介质來浓集表面活性物质的一种新型分离技术。其原理为:当溶液中需要分 离的溶质本身为表面活性组分时,利用惰性气体在溶液中形成的泡沫,即可将溶质富集到泡沫上,然后将 这些泡沫收集起来,消泡后即可得到溶质含暈比原料液高的泡沫液。适用于热敏性及化学不稳定性物质的 分离和溶液中低浓度组分的分离回收。

10-2影响泡沫分离的因素有哪些?

答:影响泡沫分离效率的因素很多,而每种影响因素的重要性则取决于具体的分离体系。各种影响因素又 可以分为基本因素(如表面活性剂、辅助试剂的性质、浓度、溶液PH 值、黏度、温度等)及操作变数(如 气体流速、料液流速、回流比、泡沫层高度、密度、泡的大小以及设备的设计等)。

10-3推导泡沫分离塔设计中的“平衡线”方程式(10-12),说明平衡线方程的物理意义。

一 csr

解:根据式(10T1): c = c ------ U

如果表面浓度「与c 的关系是:r=kc,代入式(10-11)可得:

10-4使用简单的连续泡沫分馅塔脱除废水中某中离子。废水处理量为3.785m 3/h,鼓泡池中气泡直径为 O.lcmo 若塔底排出液中离子浓度为进料的V10,塔顶破泡液的体积不大于0.189m7h,求所需气体流速和 塔径。假定用于吸附离子的表面活性剂的高梯度磁分离技术浓度控制在线性等温吸附范围内,平衡常数为 0.09cm,如果要将鼓泡池

内表面活性剂浓度控制在2X10_4mol/l,表面活性剂的加入速度应为多少?

解:丑=1,塔顶破泡液的体积不大于0.189m 3

/h GSkc

U

在平衡状态下,

U = D^c = GSk 、 ~D~)

(°一卬)尸_ (?/即一1)Fd _ (10/1— 1)x3.785x103x0.1

⑹〃)V w6「w / c w 6 x 0.09

= 6308.3L//z 近似用水的黏度为10'5g/(51m),密度为乜/ cm,,表面黏度一般取10—7g/(sQ初)

0.189X106厂

.地歼ro^"x98OxO.I - ? G纽

6308.3x10'

3600 514.5 人

9 ------ A = 16.76 A 230.7

xlO-8

式中A 单位为c/2?,用示差法求得A,后即可求得加入速度;

10-5直径为7cm 的精馆型泡沫塔,在室温下从水溶液中脱除表面活性剂-200,吸附平衡关系可表示成厶 p w =0.009c w ,进料速率为54cm 3/s,塔底通气速率为90crr?/s,求残液脱除率(气泡直径为0?lcm )o

R 1

- 解:根据精耀段方程C =——C +——C D R = 0^C = C D

R + l R + l 在泡沫层浓度保持不变,没有分离,整个塔相当于一块板的泡沫塔

6 59 90x^^x0.009 —[ + GSx0.009 = [ + _oj ______________ “

c w F 54

即脱除率为2;

10-6用一多级提馅型泡沫塔脱除废水中表面活性物,废水处理量为10m7h,其中表面活性物浓度为 500mg/l,塔顶泡沫液流量为0.9m 3/h (以脱气体计),通气量为lcm7h,吸附平衡常数为0.25cm,求该泡 沫塔的级数。 解:F = 10m 3//? G = \m 3/h F = 0 = u c,. = 50mg /L

:.W = F-D = 9Am 3/h

FC*、= D C D + Wc w

F(GSK-W )空+ FW

:-N ^GSK-W in GSK^GSK^F-W)(代入数据即可求解;

10-7何谓高梯度磁分离技术,适用于哪些分离体系?

答:高梯度磁分离技术是利用不同物质在磁场中具有不同的磁性的特点来分离混合物的技术。可用于强磁 性物质的分离,如磁铁矿富集、某些原料中含铁物质的去除等;也可用于弱磁性物质的分离,如煤的脱硫、 脱灰,生活污水和工业废水的处理,化学工业中氧化钻催化剂的回收等。目前工业上应用最多的是细粒弱 磁性铁矿、钛铁矿等金屈矿物的选矿,以及高岭土、长石、石英等非金属矿物的提纯。

10-8什么叫聚磁感应介质?在高梯度磁分离中起什么作用?

答:聚磁感应介质是指强磁性的细丝,该介质的直径越细,磁场梯度越大,半径越小,产生的磁场力越大。 在磁场中加入聚磁感应介质,可形成非均匀磁力线,产生高梯度磁场。

U 3G 比gpA

(10* x

(6308.3X103 3600 、 ----- 丿 (10_8)2x980xlxA 0.179

A 物料横算:c\v =c>- —

GSx0.009c w F

C F GS X O.009

10-9某钢铁厂用HGMS处理排气的洗涤废水,分离罐直径2.0m,罐内磁介质的厚度为0.15m,磁感应强度为0.3T,给料速度可为60-160mm/s,试计算料液停留时间、设备处理能力以及电磁线圈的安匝数。

解:己知分离罐直径2.0m,罐内磁介质的厚度为0.15m,磁感应强度为0.3T

给料速度可为60-160mm/s,所以v = ---------------- = 110mm/s

2

:.0=-D2V =-X22X OA\O= 0.3454m3 / h

4 4

???料液停留时间t = - =卫丄丄= 1.365

v 0.110

??? H =如=―。?響/虫_ =2.4X105A/HI

u()4TTX\0 Wb/mA

:.(M)' =Hd = 2.4xlO5 x0」5 = 3.6x10, A

??? M=(M)(1+0)=3.6X1O4X(1+O.2)=4.32X1O°4

10-10用HGMS从反应液中回收氧化钻催化剂,料液流速为10mm/s,停留时间15s,料液流量为0.1m7min, 磁场强度为lOkOe,试求分离罐应有的高度、直径,以及电磁线圈的安匝数。

解:已知料液流速为10mm/s,停留时间15s,料液流量为0.lm3/min,磁场强度为lOkOe

???分离罐高度d = rv = 10x15 = 150/wn = 0.15m

=0.46/?? B Q = \Wb/m2

40__4x0」

7tv V ^x0.01x60

???磁场强度日亡二洁

(W) = W^=8X105X0.15=1.2X105A

磁漏因子P均为0.2,产生的实际安匝数为

N/= (M)'(1+ 〃)= 1.2x10’x(1+0.2) = 1.44x10’4

什么是分子印迹技术,其制备过程包括哪些步骤?

答:分子印迹技术是指釆用共价结合方式在交联聚合物屮制备岀分子印迹聚合物的技术。在印迹分子存在的条件下,单体和基质的共聚形成-定形式的多孔性受体通道或识别位点,从而达到所制备的聚合物具有分子识别的功能。具体制备步骤包括模板聚合、造粒或制膜、洗脱、干燥及应用。

10-12影响分子印迹分离效果的因素有哪些?

答:包括功能基的抑制剂、功能基空间取向的改变、静电斥力和空间位阻效应以及溶剂的影响。

10-13举例说明分子印迹技术的应用。

答:利用分子印迹技术制备的人工抗体具有类似生物抗体的高亲和性和高专一性,同时又耐热、耐酸、耐

碱且长期稳定,已引起人们的极大兴趣。以蛋白质为模板进行分子印迹得到的纳米''孔穴”结构生物材料.可以作为抗体、酶或其它天然生物结构的替代物及细胞支架材料,在生物技术和庚学领域显示出广阔的应用前景。利用分子印迹技术制备了卵清白蛋白的人工抗体,研究了其对抗原的特异性吸附能力,在此基础上, 模拟竞争型免疫反应,并建立了卵清白蛋白的仿生荧光免疫分析方法。

将MIP应用于膜分离的物质有氨基酸及其衍生物、肽、除草剂等。Kobayashi等采用相转化法制备了茶碱的MIP薄膜,该薄膜是丙烯月青、丙烯酸的共聚物。吸附实验发现,茶碱的吸附量远大于咖啡因,这表明在相转化的过程中,MIP "记忆”下了茶碱分子的形状。对薄膜的表征提供了茶碱和共聚物间相互作用的证据。Yoshikawa LHj制备了四肽H-Asp(0CHEX)?lie?Asp(OCHEX)-Glu(Obzl)-CH:J的MIP薄膜,通过N-DL-Ac-Tryptophan的电渗析实验发现该薄膜对L异构体有选择性。Shea等…则研究了能选择性地透过某些天然分子的MIP薄膜。

10-14将以(S)?(1 ?荼乙基)?丙烯酰胺作为手性功能单体,⑸?邻氯扁桃酸为模板分子合成的分子印迹聚合物制备成色谱固定相,检测分子印迹聚合物对混旋物的拆分能力。已知该色谱柱对⑸和(R)■邻氯扁桃酸的保留时间分别为122.76min> 92.22min,空白保留时间为18.12min,求该色谱柱对该混旋物的分离因子。

解:分离因子a(-=

"丿122.76-18.12

92.22-18.12

104.64

74.1

生物大分子分离技术综述

生物大分子分离技术综述 摘要:生物大分子包括核酸DNA和RNA、多糖、酶、蛋白质以及多肽等。生物大分子分离技术是生物研究中的核心技术之一,当前医学,药学及生命科学学科之间的交叉渗透为大分子分离技术的发展提供了更多的契机。本文对以沉淀、透析、超滤和溶剂萃取为代表的传统分离技术, 以及色谱, 电泳等现代分离技术的发展概况、方法、特点及应用进行了综述。 关键字:分离技术生物大分子 1前言 生命科学的发展给生物大分子的分离技术提出了新的要求。各种生化、分子研究要求提取分离高纯度,结构完整和具有生物活性的活性的生物大分子样品,这就使得分离技术在各项研究中起着至关重要的作用。对生物大分子分离技术的研究也就随之产生。同时,随着各学科之间的交叉渗透,纳米材料、计算机自动化等技术的发展也为生物大分子技术的发展提供了更多的空间。 生物大分子的制备具有如下特点:生物样品的组成极其复杂,许多生物大分子在生物样品中的含量极微,分离纯化的步骤繁多,耗时长;许多生物大分子在分离过程中就非常容易失活,因此分离过程中如何保证生物大分子的活性,也是提取制备的困难之处;生物大分子的制备几乎都是在溶液中进行的,温度、PH值、离子强度等各种参数对溶液中各种组成的综合影响,很难准确估计和判断。这些都要求生物大分子的分离技术以此为依据,突破这些难点,优化分离程序以获得符合要求的生物大分子试剂。 2传统分离技术 被广泛应用传统的生物大分子分离方法有透析、溶剂萃取、沉淀和超滤等,它们都是一些较早就建立起来比较完善的的分离方法。 2.1透析法 1861年Thomas Graham发明透析方法,已成为生物化学实验中最简易常用的分离纯化技术之一。在生物大分子的分离过程中,除盐、少量有机溶剂、生物小分子杂质和浓缩样品等都需用到透析。现在,除半透膜的材料更加多样化,透析方式也更加多样。透析法主要是利用小分子物质在溶液中可通过半透膜,而大分子物质不能通过半透膜的性质,达到分离的方法。例如分离和纯化DNA、蛋白质、多肽、多糖等物质时,可用透析法以除去无机盐、单糖、双糖等杂质。反之也可将大分子的杂质留在半透膜内,而将小分子的物质通过半透膜进入膜外溶液中,而加以分离精制:透析是否成功与透析膜的规格关系极大。透析膜的膜孔有大有小,要根据欲分离成分的具体情况而选择。透析膜有动物性膜、火棉胶膜、羊皮纸膜、蛋白质胶膜、玻璃纸膜等。分离时,加入欲透析的样品溶液,悬挂在纯化水容器中,经常更换水加大膜内外溶液浓度压,必要时适当加热,并加以搅拌,以利透析更快。最后,透析是否完全,须对透析膜内溶液进行检测。

84万吨年PX联合装置技术问答

惠州炼油项目 84万吨/年PX联合装置技术问答 目录 第一章安全与环保 第一节安全管理制度、法令、法规 第二节防火防爆 第三节职业卫生及劳动保护 第四节电气安全知识 第二章石油化工基础知识 第三章 PX联合装置工艺问答 第一节二甲苯分馏单元 第二节歧化与烷基转移单元 第三节吸附分离单元 第四节异构化单元 第五节芳烃抽提单元 第四章 PX联合装置设备问答 第一节动设备211 第二节静设备298 第五章仪表与控制

第一章安全环保 第一节安全管理制度、法令、法规 1、安全教育的内容有哪些? 答:主要有: (1)安全思想和安全意识教育; (2)遵纪守法教育; (3)安全技术和安全知识教育; (4)安全技能和专业工种技术训练。 2、厂级安全教育的内容是什么? 答:内容是: (1)国家有关安全生产法令、法规和规定; (2)工厂的性质、生产特点及安全生产规章制度; (3)安全生产的基本知识、一般消防知识及气体防护常识; (4)典型事故及其教训。 3、二级安全教育的内容是什么? 答:内容是: (1)本单位概况或工作特点; (2)本单位安全生产制度及安全技术操作规程; (3)安全设施、工具、个人防护用品、急救器材、消防器材的性能和使用方法等; (4)以往的事故教训。 4、班组安全教育的内容是什么? 答:内容是: (1)本岗位(工种)的生产流程、工作特点和注意事项; (2)本岗位(工种)的安全操作规程; (3)本岗位(工种)设备、工具的性能和安全装置、安全设施、安全监测、监控仪器的作用、防护用品的使用和保管办法;

(4)本岗位(工种)事故教训及危险因素的预防措施。 5、安全活动日的内容是什么? 答:内容是: (1)学习安全文件、通报和安全规程及安全技术知识; (2)结合典型事故汇编,讨论分析典型事故,总结吸取事故教训; (3)开展事故预想和岗位练兵,组织各种安全技术表演; (4)检查安全全规章制度执行情况和消除事故隐患; (5)开展安全技术座谈、攻关和其它安全科研活动。 6、简述“三级安全教育”的程序如何进行? 答:新工人经厂级安全教育、考试合格后,由厂安全部门填写安全教育卡交厂劳动人事部门作分配到车间的依据;经车间级安全教育考试合格后,由车间安全员填写好安全教育卡,由车间分配到班组进行班组安全教育;由班组安全员填写好安全教育卡,交车间安全员汇总交厂安全部门存档备查。 7、何谓安全技术作业证? 答:安全技术作业证是对职工进行安全教育和职工安全作业情况的考核证。新工人入厂经三级安全教育和考试合格后方准其上岗学习,经上岗学习期满后,由班组鉴定学习情况和车间组织考试合格,方可持安全教育卡到安全部门办理领取安全技术作业证,取得安全技术作业证后财具备独立上岗操作资格。 8、什么是事故处理的“四不放过”原则? 答:原则: (1)事故原因分析不清不放过; (2)事故责任者和群众没有受到教育不放过; (3)没有防范措施不放过。 (4)事故责任人没有受到处理不放过。 9、发生事故后必须严肃处理的情况有哪些? 答:主要有: (1)对工作不负责任,违反劳动纪律,不严格执行各项规章制度,造成事故的主要责任者; (2)对已列入安全技术措施项目,不能按期实施又不采取应急措施而造成事故的主要责任者;

三种新型分离技术的综述

1引言 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 2超临界流体萃取技术及其应用 超临界流体萃取是_种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术。其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具 作者简介:周芙蓉,女,中北大学化工与环境学院研究生有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 超临界流体萃取技术特点 ⑴由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使萃取后溶剂与溶质容易分离。 ⑵由于超临界流体具有与液体接近的溶解能力,同时又保持了气体所具有的传递性,有利于高效分离的实现。 (3)利用超临界流体可在较低温度下溶解或选择性地提取出相应难挥发的物质,更好地保护热敏性物质。 (4)萃取效率高,萃取时间短。可以省却清除溶剂的程序,彻底解决了工艺繁杂、纯度不够且易残留有害物质等问题。 (5)萃取剂只需再经压缩便可循环使用,可大大降低成本。 (6)超临界流体萃取能耗低,集萃取、蒸馏、分离于_体,工艺简单,操作方便。 (7)超临界流体萃取能与多种分析技术,包括气相色谱、高效液相色谱、质谱等联用,省去了传统方法中蒸馏、浓缩溶剂的步骤。避免样品的损失、降解或污染,因而可以实现自动化。

新型分离技术

新型分离技术 化学专业学生:汤婷(11130225) 指导教师:彭钢 摘要:目前运用较多且有很大发展前景的新型分离技术有超临界流萃取技术、分子蒸馏技术和膜分离技术,在中药制药、农产品加工和工程中都得到了广泛应用。 关键词:C5 馏分分离技术超临界流体萃取分子蒸馏膜分离技术分离技术 引言 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,决定了分离技术的多样性。按机理划分,可大致分为五类:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有分子蒸馏技术、超临界流体萃取技术和膜分离技术。[1] C5馏分分离技术 传统技术虽经历了时间的考验,但也存在一些问题,像流程、能耗、二烯烃的损失、吸收剂的合理配置等方面,都需要研究者或使用者进行近一步合理的改善,以满足企业发展及工艺先进化的需要。下面的几种新技术都在研究中尚未进入工业化,也是 C5馏分分离技术未来的发展趋势。 1.1 催化加氢除炔技术 该技术是为了克服第二吸收单元的能耗高、溶剂损失多的缺点而设计的,这也就是现在常说的一段吸收工艺。来自第一吸收单元的化学级异戊二烯进入选择性加氢反应器中,在多金属催化剂的作用下,将占总量的0.1% ~2%异戊烯炔和2 -丁炔等炔烃加氢除去,在经过脱轻塔、脱重塔的处理,最终在塔顶得到聚合级异戊二烯。北京化工研究院[2]经过模拟加氢前后的流程,得出结论: 加氢后的异戊二烯的收率和质量都要高于加氢前的,而且能耗和生产成本都大幅降低,提高了整个分离过程的经济效益。美国专利显示[3],催化加氢反应器中的适合温度为 20~ 80 ℃,压力为 0.3 ~ 4.0 MPa,其中的一种催化剂的配方为:3% 铜+ 0.03% 银 + 0.03% 钯 + 0.3% 钾。 1. 2 反应精馏技术 该技术的核心就是集原有的二聚反应器和其配套的蒸馏塔为一体的反应精馏塔。在该塔中,既可以选择性的发生环戊二烯的二聚反应,又能分出粗环戊二烯。北京化工总院[4]采用此技术做相关实验,与现有技术比较,发现环戊二烯的转化率相应的提高了,而且双环戊二烯的纯度也要高于现有技术下的。该技术的的独特之处在于简化了流程及操作,从而降低

新型膜分离技术研究进展

新型膜分离技术研究进展 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。 关键词:膜分离;原理;应用;进展 膜分离技术主要是采用天然或人工合成高分子薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。 1膜分离技术的分离原理和特点 1.1纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200-1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技术,是国内外研究的热点。余跃等[1]废水进行了去除COD和脱色的研究。结果表明,纳滤技术可有效地去除印染废水中的色度和COD。 1.2超滤 超滤的截留相对分子质量在1000-100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。徐超等[2]在中试中采用浸没式超滤膜代替传统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果,设备费用降低了。 1.3微滤 微滤是发展最早、制备技术最成熟的膜形式之一,孔径在0.05-10μm之间,可以将细菌、微粒、亚微粒、胶团等不溶物除去,滤液纯净,国际上通称为绝对过滤。微滤分离的实质是利用膜的“筛分”作用来进行的。即:比膜孔大的颗粒的机械截留、颗粒间相互作用及颗粒与膜表面的吸附、颗粒间的桥架作用这三种方式来实现的。 1.4反渗透 反渗透又称逆渗透,一种以压力差为推动力,从溶液中分离出溶剂的膜分离操作。因为它和自然渗透的方向相反,故称反渗透。学界对于反渗透分离机理的解释主要流行以下理论:溶解一扩散模型、优先吸附一毛细孔流理论、氢键理论。 自从上个世纪90年代邓宇发明了非加压吸附渗透海水淡化法以来,反渗透用于海水淡化的研究得到了极大发展[3]。在重金属废水处理领域,美国芝加哥API工艺公司采用B一9芳香族聚酞胺中空纤维膜组件处理镀镍漂洗水,废水中Niz+的分离率为92%[4]。 1.5电驱动膜

精细化工产品 的分离与设备模拟考试题目 (2)

精细化工产品的分离与设备模拟考试题目 一、名词解释 1. 分离科学 研究从混合物中分离、纯化或富集某些组分以获得相对纯物质的过程的规律、仪器制造 2. 分离因子 两种物质被分离的程度技术及其应用的一门学科。 3. 协同萃取效应 混合萃取剂同时萃取某一物质时,其分配比显著大于相同浓度下各单一萃取剂分配比之和 4. 相对保留值 组分2与组分1调整保留值之比 5. 分配系数 在一定温度下,组分在两相间分配达到平衡时的浓度比,称为分配系数 6. 复合膜 复合膜由于可对起分离作用的表皮层和支撑层分别进行材料和结构的优化,可获得性能优良的分离膜。 7. 泡沫吸附分离 以泡沫作分离介质,并利用各种类型对象物质与泡沫表面的吸附相互作用,实现表面活性物质或能与表面活性剂结合的物质从溶液主体的分离。 8. 高效毛细管电泳色谱 在电解质溶液中,位于电场中的带电离子在电场力的作用下,以不同的速度向其所带电荷相反的电极方向迁移的现象,称之为电泳。由于不同离子所带电荷及性质的不同,迁移速率不同可实现分离 9.调整保留值 10. 峰底宽 在色谱峰两侧拐点处所作切线与峰底相交两点间的距离 11. 分离度 定量描述相邻两组分在色谱柱内分离情况的指标。 12.超分子分离二、问答题 1. 说明罗氏极性参数的含义,溶剂选择性三角形的作用和选择溶剂的一般步骤。 答:对于一种溶剂,可得到3种模型化合物在该溶剂中的相对溶解能He,Hd和Hn。 它们的和即为此种溶剂的总极性p :即:p =He +Hd +Hn;尽管溶剂种类很多,但可以归于有限的几个选择性组。在同一选择性组中的各种溶剂,都具有非常接近的3个选择性参数(Xe,Xd和Xn值),因此在分离过程中都有类似的性能,若要通过选择溶剂改善分离,就要选择不同组的溶剂;第一步:选择与溶质极性相等的溶剂,第二步:调整溶剂的选择性。 2.简要叙述反胶团萃取的原理和影响因素。 答:蛋白质亲水基团会倾向于被胶团包裹,居于“水池”中心,水壳层则保护了蛋白质,使生物活性不会改变;①表面活性剂的种类和浓度。②水相PH。③离子强度。 3.叙述超临界流体萃取的原理和影响因素 答:利用超临界流体的溶解能力与其密度密切相关,通过改变压力或温度使超临界流体的密度大幅改变。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和相对分子质量大小不同的成分萃取出来;①压力。②温度。③超临界流体物质与被萃取物质的极性。④提携剂。⑤超临界流体的流量。⑥原料颗粒的粒度。⑦提取时间。 4.简要说明高效毛细管电泳和电渗析分离的原理和特点。 答:高效毛细管电泳的原理:是以高压电场为驱动力,以毛细管为分离通道,依据样品中各组分之间淌度和分配行为上的差异而实现分离分析的液相分离方法。在电场作用下,电解质溶液中带电粒子向两极作定向移动的一种电迁移现象。特点:柱效高,分离速度快,溶剂和试样消耗极少,没有高压泵,仪器成本低,选择性强;电渗析法的原理:当阴阳电极上加上电压时,料液池中阳离子通过阳离子交换膜迁移到阴极池中;阴离子通过阴离子交换膜迁移到阳极池中;料液中的沉淀颗粒、胶体、非离子性物质不能通过(阴或阳)离子交换膜,留在料液中。特点:可以同时对电解质水溶液起淡化、浓缩、分离、提纯作用、可以用于蔗糖等非电解质的提纯,以除去其中的电解质、在原理上,电渗析器是一个带有隔膜的电解池,可以利用电极上的氧

第九章凝胶渗透色谱讲解

凝胶色谱分析二〇一一年九月九日

第九章凝胶色谱分析 凝胶渗透色谱(Gel Permeation Chromatography, GPC),又称尺寸排阻色谱(Size Exclusion Chromatography, SEC),其以有机溶剂为流动相,流经分离介质多孔填料(如多孔硅胶或多孔树脂)而实现物质的分离。GPC可用于小分子物质和化学性质相同而分子体积不同的高分子同系物等的分离和鉴定。凝胶渗透色谱是测定高分子材料分子量及其分布的最常用、快速和有效的方法[1]。凝胶渗透色谱(GPC)的创立历程如下[2,5]: 1953年Wheaton和Bauman用多孔离子交换树脂按分子量大小分离了苷、多元醇和其它非离子物质,观察到分子尺寸排除现象;1959年Porath和Flodin用葡聚糖交联制成凝胶来分离水溶液中不同分子量的样品;1964年J. C. Moore将高交联密度聚苯乙烯-二乙烯基苯树脂用作柱填料,以连续式高灵敏度的示差折光仪,并以体积计量方式作图,制成了快速且自动化的高聚物分子量及分子量分布的测定仪,从而创立了液相色谱中的凝胶渗透色谱。 近年来,光散射技术(如图9-1所示,一束光通过一间充满烟雾的房间,会产生光散射现象。)广泛应用于高分子特征分析领域[3]。将光散射技术和凝胶渗透色谱(GPC)分离技术相结合,可以测定大分子绝对分子量、分子旋转半径、第二维里系数,也可测定分子量分布、分子形状、分枝率和聚集态等。目前,该技术在高分子分析领域已成为一种非常有效的工具,在美国,日本及欧洲广为使用,国内近年来亦引进了此项技术。 入射光 散射光 图9-1光散射现象 9.1 基本原理 9.1.1凝胶渗透色谱分离原理 让被测量的高聚物溶液通过一根内装不同孔径的色谱柱,柱中可供分子通行的路径包括粒子间的间隙(较大)和粒子内的通孔(较小)。如图9-2、图9-3所示,当待测聚合物溶液流经色谱柱时,较大的分子只能从粒子间的间隙通过,被排除在粒子的小孔之外,速率较快;较小的分子能够进入粒子中的小孔,通过的速率慢得多。这样经过一定长度的色谱柱分离后,不同相对分子质量的物质就被区分开了,相对分子质量大的在前面流出(其淋洗时间短),相对分子质量小的在后面流出(淋洗时间长)。从试样进柱到被淋洗出来,所接受到的淋出液总体积称为该试样的淋出体积。当仪器和实验条件确定后,溶质的淋出体积与其分

膜分离技术综述

膜分离技术应用综述 摘要:膜分离工程技术是一项新兴的高效分离技术,已广泛应用于化工、电子、轻工、纺织、石油、食品、医药等工业,被认为是20世纪末到21世纪中期最有发展前途的高技术之一。由于膜分离的优势,越来越多的中药研究者正致力于开发膜技术在中药工业中的应用。膜分离技术 (微滤、超滤、纳滤、反渗透膜技术)在中药领域中发挥着非常重要的作用,可应用于中药提取液的纯化、浸膏制剂的制备、口服液的生产、注射剂的制备以及热原的去除等。膜分离技术将在中药现代化进程中发挥重大作用,并对中药的规范化和标准化生产起到一定的促进作用。由于历史的原因,生物技术发展初期,绝大多数的投资是在上游过程的开发,而下游处理过程的研究投入要比上游过程少得多,因而使得下游处理过程的研究明显落后,已成为生物技术整体优化的瓶颈,严重地制约了生物技术工业的发展,因此,当务之急是要充实和强化下游处理过程的研究,以期有更多的积累和突破,使下游处理过程尽快达到和适应上游过程的技术水平和要求。 关键词:生物分离下游工程膜分离 正文: 1、常用的膜分离过程 1.1微滤 鉴于微孔滤膜的分离特征,微孔滤膜的应用范围主要是从气相和液相中截留微粒、细菌以及其他污染物,以达到净化、分离、浓缩的目的。 具体涉及领域主要有:医药工业、食品工业(明胶、葡萄酒、白酒、果汁、牛奶等)、高纯水、城市污水、工业废水、饮用水、生物技术、生物发酵等。 1.2超滤 早期的工业超滤应用于废水和污水处理。三十多年来,随着超滤技术的发展,如今超滤技术已经涉及食品加工、饮料工业、医药工业、生物制剂、中药制剂、临床医学、印染废水、食品工业废水处理、资源回收、环境工程等众多领域。1.3纳滤 纳滤的主要应用领域涉及:食品工业、植物深加工、饮料工业、农产品深加工、生物医药、生物发酵、精细化工、环保净水和污水处理及其资源化工业。1.4反渗透 由于反渗透分离技术的先进、高效和节能的特点,在国民经济各个部门都得到了广泛的应用,主要应用于水处理和热敏感性物质的浓缩,主要应用领域包括以下:食品工业、牛奶工业、饮料工业、植物(农产品)深加工、生物医药、生物发酵、制备饮用水、纯水、超纯水、海水、苦咸水淡化、电力、电子、半导体工业用水、医药行业工艺用水、制剂用水、注射用水、无菌无热源纯水、食品饮料工业、化工及其它工业的工艺用水、锅炉用水、洗涤用水及冷却用水。 1.5其他常用膜分离过程 除了以上四种常用的膜分离过程,另外还有渗析、控制释放、膜传感器、膜法气体分离等。

分馏单元技术问答

加氢装置分馏单元技术问答 1.塔-2101的进料口在第层塔盘。 答:12 2.容-2108安全阀定压值为。 答:0.48Mpa 3.容-2109安全阀定压值为。 答:0.83Mpa 4.测定汽油馏程的意义,HK和10%点说明汽油在发动机中的。 答:启动性能 5.测定汽油馏程的意义,50%点说明汽油在发动机中的。 答:加速性能 6.测定汽油馏程的意义,90%和KK说明汽油在发动机中的。 答:蒸发完全程度 7.塔-2101顶回流属于。 答:冷回流 8.回流比是回流量和之比。 答:塔顶产品量 9.回流量大,分馏效果好,但装置增加,设备负荷增加。 答:能耗 10.回流量小,传热机会少,分馏效果。 答:变差 11.塔-2101采用汽提方式。 答:塔底重沸炉 12.柴油的十六烷值代表柴油的。 答:抗爆性能 13.汽油的辛烷值代表汽油的。 答:抗爆性能 14.分馏塔内的作用是使汽、液两相充分接触,进行物、热交换。 答:塔板

15.塔-2101顶压力高,易造成产品柴油的不合格。 答:闪点 16.精制柴油的闪点主要是由调节塔-2101 来控制的。 答:塔底温度 17.塔-2101设计塔底温度为℃。 答:309 18.塔-2101设计进料温度为℃。 答:238 19.塔-2102设计进料温度为℃。 答: 128 20.塔-2102设计塔底温度为℃。 答: 176 21.蒸馏从形式上可以分为三种,即闪蒸、简单蒸馏和。 答:精馏 22.重沸器的作用是提供一定量的。 答:上升的蒸汽流 23.塔顶冷凝器的作用是获得液相产品及保证有适宜的。 答:液相回流 24.对完整的精馏塔,原料液进入的那层塔板称为。 答:进料板 25.对完整的精馏塔,进料板以上的塔板称为。 答:精馏段 26.对完整的精馏塔,进料段以下的塔板(包括进料板)称为。 答:提馏段 27.塔-2101的塔盘类型为。 答:浮阀塔盘 28.在分馏塔的塔盘上,汽液两相接触之前处于。 答:不平衡状态 29.若轻重组分出现馏程重叠,说明分馏塔分离效果。 答:差

新型膜分离技术的研究进展

收稿日期:2011-04-18 作者简介:陈默(1986—),硕士研究生,从事含能化合物的合成研究;王建龙,教授,博士生导师,通讯联系人,主要从事含能化合物合成及炸药中间体的制备、 应用及开发。新型膜分离技术的研究进展 陈 默,曹端林,李永祥,王建龙 (中北大学化工与环境学院,山西太原030051) 摘要:膜分离技术是一项新兴的高效、快速、节能的新型分离技术。作为一种新型分离技术,在多种领域得到了广泛的应用。综述了反渗透、 电渗析、纳滤、微滤、超滤、气体分离、渗透汽化和膜反应器等各种膜分离技术的分离原理、特点,在工业中的应用以及目前存在的问题。最后展望了膜技术的应用前景。关键词:膜分离;原理;应用;进展中图分类号:TQ028.8 文献标识码:A 文章编号:1008-021X (2011)05-0031-03 Research Progress of Membrane Technology CHEN Mo ,CAO Duan -lin ,LI Yong -xiang ,WANG Jian -long (College of Chemical Engineering and Environment ,North University of China ,Taiyuan 030051,China )Abstract :The membrane extraction technique is a new type extraction technique with high efficiency ,high speed and saving energy.Membrane separation technology is applied widely as a new kind of separation technology.The separation mechanism and characteristics of different kinds of membrane technologies were introduced ,including electrodialysis ,reverse osmosis ,nanofiltration ,ultrafiltration ,microfiltration ,gas separation ,pervaporation ,membrane reactor.Further more ,the application and current problems of different membrane technologies were extensively summarized.Finally ,application prospect of membrane separation technology was presented.Key words :membrane separation ;principle ;application ;progress 膜分离技术主要是采用天然或人工合成高分子 薄膜,以外界能量或化学位差为推动力,对双组分或多组分流质和溶剂进行分离、分级、提纯和富集操作。与传统分离方法(蒸发、萃取或离子交换等)相比,它是在常温下操作,没有相变,最适宜对热敏性物质和生物活性物质的分离与浓缩,具有高效、节能,工艺过程简单,投资少,污染小等优点,因而在化工、轻工、电子、医药、纺织、生物工程、环境治理、冶金等方面具有广泛的应用前景。1膜分离技术的分离原理和特点1.1 纳滤 纳滤膜具有纳米级孔径,截留相对分子质量为200 1000,能使溶剂、有机小分子和无机盐通过。纳滤膜的分离机理模型目前的看法主要是空间位阻-孔道模型。与超滤膜相比,纳滤膜有一定的荷电容量;与反渗膜相比,纳滤膜又不是完全无孔的。纳滤是介于反渗透和超滤之间的一种膜分离技 术, 是国内外研究的热点。余跃等[1] 对纳滤技术处理印染废水进行了去除COD 和脱色的研究。结果 表明, 纳滤技术可有效地去除印染废水中的色度和COD 。Salzgitter Flachstahl 电镀厂采用膜技术处理 镀锌废水, 回收其中的Zn 2+ 和H 2SO 4,其结果达到了设计要求[2]。常江等[3] 在完成用新型纳滤膜处 理模拟含Ni 2+ 废水实验室研究的基础上,进行了电 镀镍漂洗废水的纳滤膜处理及镍和水回收利用的工业试验,为大规模工业应用提供了参考数据。杨青等[4] 研究报道将DK 型与NF90型纳滤膜组合可适用于治理高浓度、高盐分的吡啉农药废水污染。1.2 超滤 超滤的截留相对分子质量在1000 100000之间。超滤过程的分离机理一般认为是压力驱动的筛孔分离过程,是膜表面上的机械截留(筛分)、在膜孔中的停留(阻塞)、在膜表面及膜孔内的吸附三种形式。 徐超等 [5] 在中试中采用浸没式超滤膜代替传 统砂滤工艺处理浊度较低的滦河水,取得较好的处理效果, 设备费用降低了。罗涛等[6] 采用混凝沉淀-超滤工艺对微污染原水进行试验,结果表明,组合

航煤装置技术问答

中国石化塔河炼化有限责任公司管理体系 SHTH-T4.02.02.001.2014 加制氢车间航煤加氢装置技术问答 2014-03-01 发布2014-03-01实施 中国石化塔河炼化有限责任公司

目录 第一节化工工艺基础 (1) 第二节冷换设备 (10) 第三节燃烧 (14) 第四节司泵 (32) 第五节自控 (44) 第六节压缩机 (61) 第七节分馏单元 (67) 第八节航煤加氢岗位技术问答 (75)

第一节化工工艺基础 1.常见物质的积聚状态有:气态、液态、固态三种。其各自的物理特征:气态 分子间引力小,可以自由的充满整个空间;液体分子间作用力较大,但有空缺,具有一定的流动性和扩散性; 固态微粒紧密堆积,其形态不易改变。 2.描绘气体状态的三个参数为温度、压力、体积。 3.理想气体状态方程式为PV = nRT(或PV = W/MRT) 。 4.气体方程中R称为摩尔气体常数,其数值对压力和体积的单位不同而不同。 5.当气体达到临界状态时,气体都有一个共性,即:气液不分的特点。 6.为了使理想气体状态方程能够用于实际气体提出了压缩因子的概念和对比 态原理。热力学上将体系分为:敞开体系、封闭体系、孤立体系三类。 8.如果体系各个状态性质均不随时间而变化,则该体系处于热力学平衡状态。 9.热容是指在不发生化学反应和物质聚积状态转变的条件下,使物质温度升高 1K所需的热量,称为该物质的热容。 10.标准状态是指1atm,热力学温度为273.15K 。 11.基元反应是指反应物分子在碰撞中一步直接转化为生成物分子的反应。 12.活化能是指使具有平均能量的普通分子变为能量超过一定值的活化分子所需 的最小能量。 13.反应化学平衡是研究反应可能性的关键。 14.PH是指溶液中[H+]浓度的负对数,用其来表示溶液的酸碱性。 15.测定PH值的方法有:酸碱指示剂、PH试纸、PH计等。 16.金属腐蚀按机理分为化学腐蚀和电化学腐蚀两类。 17.金属腐蚀的防护方法有:钝化法、合金法、包复法、阴极保护法等。 18.热力学三大平衡是:热平衡、化学平衡、相平衡。 19.相平衡是所有分离过程的基础,?它为选择适宜的分离方法与确定正确操作 条件提供了科学依据。 20.沸点是指当溶液的蒸汽压等于外压时的温度。

膜分离技术应用综述

膜分离技术应用综述 The Standardization Office was revised on the afternoon of December 13, 2020

《食品科学概论》课程论文 论文题目:膜分离技术应用综述 学 院 :生物工程学院 专 业 :食品科学与工程 年级班别 :09级一班 学 号 :10122 学生姓名 :齐莹 学生 指导教师 :陈清禅 2011年 5 月 24 日 JINGCHU UNIVERSITY OF TECHNOLOGY

膜分离技术应用综述 齐莹 10122 摘要综述膜分离技术的特点、种类及分离机理,介绍国内外膜分离技术的研究进展及其在各个领域的应用现状,同时指出该技术存在的问题,提出选用更佳的膜材料以及多种膜分离技术联用是其今后的发展方向。 关键词膜分离技术微滤超滤食品工业 膜分离是在20世纪初出现,上世纪60年代后迅速崛起的一门分离新技术。膜分离技术由于兼有分离、浓缩、纯化和精制的功能,又有高效、节能、环保、分子级过滤及过滤过程简单、易于控制等特征,因此,目前已广泛应用于食品、医药、生物、环保、化工、冶金、能源、石油、水处理、电子、仿生等领域,产生了巨大的经济效益和社会效益,已成为当今分离科学中最重要的手段之一。据统计,膜销售每年以14%~30%的速度增长,而最大的市场为生物医药市场[1] 。 1膜分离的简介 1. 1 膜的定义 膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。 1. 2 膜的种类 分离膜包括:反渗透膜(0. 0001~0. 005μm) ,纳滤膜(0. 001 ~0. 005μm) 超滤膜(0. 001 ~0. 1μm) 微滤膜(0. 1~1μm) 、电渗析膜、渗透气化膜、

分离课后习题及答案

第一章绪论1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度 提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分:

(方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?=οA A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分; B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示,οο M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。

新型分离技术在化工生产中的应用

新型分离技术在化工生产中的应用 摘要:本文主要介绍了膜分离技术、超临界萃取技术、分子蒸馏技术、耦合分离的技术原理及应用 关键词:化工分离、分离工程、膜分离、萃取、吸附分离 引言:化工分离技术是化学工程的一个重要分支, 任何化工生产过程都离不开这种技术,原料的精制、中间产物以及产品的分离提纯、废气废水的处理等等,都离不开化工分离技术。化工分离技术应用领域广泛、分离要求多种多样,这就决定了分离技术的多样性。精馏、萃取、吸收、吸附等都是传统的化工分离技术,无论是技术还是应用方面都发展得很成熟。然而,随着基础工业和高科技的发展,分离技术越来越面临着新的挑战:石油、天然气、煤炭等资源的不可再生要求分离过程必须充分得利用资源,降低能耗;迅速发展的生物医药工程对产品纯度、活性等指标的限制对分离技术提出了更高的要求;由环境保护意识的增强提出的各种废弃物排放限制越来越严格也给分离技术带来了难题;此外新材料的开发、食品工业和天然资源综合利用等领域的迅速发展也对分离技术提出了更高的要求。所有这些需求都推动了人们对新型化工分离技术的探索。 正文: 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,这就决定了分离技术的多样性。按机理划分,可大致分为五类,即:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 1超临界流体萃取技术及其应用 超临界流体萃取是一种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术,其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。 超临界流体具有一系列重要的性质: 1)超临界流体相当粘稠,其密度接近于液体,具有较大的溶解能力; 2)超临界流体的扩散系数比液体大23个数量级,其粘度类似于气体,远小于液体。这对于分离过程的传质极为有利,缩短了相平衡所需时间,大大提高了分离效率,是高效传质的理

新型分离技术综述-分离技术在各方面的应用

河北工业大学结课论文 课程名称:新型分离技术基础 课程编号:14B15C0103 姓名:唐猛 学号:201511501014 班级:化学工程与技术 学院:化工学院

新型分离技术综述 ——分离技术在各方面的应用 摘要:现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术,他们在中药制药、农产品加工和环保工程中都得到了广泛应用。 主题词:中药制药农产品加工环保工程超临界流体萃取分子蒸馏膜分离 正文: 国内外对分离技术的发展十分重视,但由于应用领域十分广泛,原料、产品和对分离操作的要求多种多样,这就决定了分离技术的多样性。按机理划分,可大致分为五类,即:生成新相以进行分离(如蒸馏、结晶);加入新相进行分离(如萃取、吸收);用隔离物进行分离(如膜分离);用固体试剂进行分离(如吸附、离子交换)和用外力场或梯度进行分离(如离心萃取分离、电泳)等。现在运用较多且有很大发展前景的新型分离技术有超临界流体萃取技术、分子蒸馏技术和膜分离技术。 1、超临界流体萃取技术及其应用 超临界流体萃取是一种以超临界流体代替常规有机溶剂对目标组分进行萃取和分离的新型技术,其原理是利用流体(溶剂)在临界点附近区域(超临界区)内与待分离混合物中的溶质具有异常相平衡行为和传递性能,且对溶质的溶解能力随压力和温度的改变而在相当宽的范围内变动来实现分离的。 超临界流体具有一系列重要的性质: 1)超临界流体相当粘稠,其密度接近于液体,具有较大的溶解能力; 2)超临界流体的扩散系数比液体大23个数量级,其粘度类似于气体,远小于液体。这对于分离过程的传质极为有利,缩短了相平衡所需时间,大大提高了分离效率,是高效传质的理想介质; 3)具有不同寻常的、巨大的压缩性,使得压力的微小变化将会引起流体密度和介电常数的很大变化。 由于二氧化碳具有无毒、不易燃易爆、廉价、临界压力低、易于安全地从混合物中分离出来,所以是最常用的超临界流体。相对于传统提取分离方法(煎煮、醇沉、蒸发浓缩等)具有以下优点:萃取效率高、传递速度快、选择性高、提取物较干净、省时、减少有机溶剂及环境污染、适合于挥发油等脂溶性成分的提取分离。 1.1 超临界流体萃取技术特点 1)由于在临界点附近,流体温度或压力的微小变化会引起溶解能力的极大变化,使革取后溶剂与溶质容易分离。

泡沫分离技术综述论文

泡沫浮选分离技术--曹肖烁 摘要:综述了泡沫浮选技术的定义、分类以及原理,介绍了泡沫浮选分离技术中使用的试剂(捕收剂、起泡剂、活化剂、无机调整剂、有机调整剂)、浮选机械等因素对分离效果的影响,并介绍了泡沫浮选分离技术的应用,指出了泡沫浮选分离技术的发展前景。 一.泡沫浮选的定义与分类 泡沫浮选是以气泡分离介质来浓集表面活性物质的一种新型分离技术,主要特点是利用气泡的气-液界面,分离被水润湿性不同的物料。疏水的物料随气泡漂浮到水面上,形成含某种成分很高的泡沫层;而被水润湿的物料,沉于水中,因而可以把它们分开[1]。人们通常把凡是利用气体在溶液中鼓泡,以达到分离或浓缩目的的这类方法总称为泡沫浮选分离技术,简称泡沫浮选技术。 根据被分离物质的不同,它可以分为两类:一类是本身具有表面活性物质的分离以及各种天然或合成表面活性剂的分离,例如医药生物工程中蛋白质、酶、病毒的分离;另一类是本身为非表面活性剂,但可以通过配合或其它方法使其具有表面活性,这类体系的分离被广泛地用于工业污水中各种金属离子如铜、锌、铁、汞、银等的分离回收。 根据被分离物质的溶解性,泡沫分离也可以分为不溶物的浮选和溶解物的浮选两大类。矿物浮选在不溶物浮选中最重要,也是最成熟的。表面活性剂在固体颗粒的表面形成半胶束单分子吸附层,且呈亲水基向里憎水基向外的状态,从而降低固体表面的润湿性,表现出疏水性吸附至气泡界面的倾向,使浮选得以进行。离子浮选是溶解物浮选的一类。其过程和前述过程十分相似,所不同的是表面活性剂并非吸附在被浮选物的表面。气泡形成时气液界面有表面活性剂吸附层,被浮选的离子通过静电吸引被束缚在气泡的界面上而随气泡上升。分子浮选是溶解物浮选的另一类别,是将少量溶解的分子如点白纸、醇等有机物从水中分离的过程。被分离物被气泡气液界面表面活性剂半胶束单分子层增溶富集而随气泡上升,得以浮选[2]。

2010级色谱分离技术试题111

2010级色谱分离与技术试题 班级:工业催化10级 姓名:杨昭 学号:405504110134 1.什么是色谱分离技术? 答:色谱分离技术又称层析分离技术或色层分离技术,是一种分离复杂混合物中各个组分的有效方法。它是利用不同物质在由固定相和流动相构成的体系中具有不同的分配系数,当两相作相对运动时,这些物质随流动相一起运动,并在两相间进行反复多次的分配,从而使各物质达到分离。 2.高效液相色谱与气相色谱相比有何特点? 答:与气相色谱相比高效液相色谱具有“三高一广一快”的特点:〈1〉高压:流动相为液体,流经色谱柱时,受到的阻力较大,为了能迅速通过色谱柱,必须对载液加高压。〈2〉高效:分离效能高。可选择固定相和流动相以达到最佳分离效果,比工业精馏塔和气相色谱的分离效能高出许多倍。〈3〉高灵敏度:紫外检测器可达0.01ng,进样量在μL数量级。〈4〉应用范围广:百分之七十以上的有机化合物可用高效液相色谱分析,特别是高沸点、大分子、强极性、热稳定性差化合物的分离分析,显示出优势。〈5〉分析速度快、载液流速快:较经典液体色谱法速度快得多,通常分析一个样品在15~30 min,有些样品甚至在5 min内即可完成,一般小于1h。此外HPLC还有色谱柱可反复使用、样品不被破坏、易回收等优点,但也有缺点,与气相色谱相比各有所长,相互补充。HPLC的缺点是有“柱外效应”。在从进样到检测器之间,除了柱子以外的任何死空间(进样器、柱接头、连接管和检测池等)中,如果流动相的流型有变化,被分离物质的任何扩散和滞留都会显著地导致色谱峰的加宽,柱效率降低。HPLC检测器的灵敏度不及气相色谱。 3.分别写出速率理论在高效液相色谱法和气相色谱法(包括填充柱色谱和开管柱色谱)中的表达式,并说明理由。 答:速率理论是由荷兰学者van Deemter在1956年提出的。该方程的数学简化式为: 其中,u为流动相的线速度;A, B, C为常数,分别代表涡流扩散项系数,分子扩散项系数,传质阻力项系数。 涡流扩散项A=2λd p; 分子扩散项在气相色谱里为B/u=2γD g/u; 至于传质阻力项系数Cu对于填充柱,气相传质阻力系数Cg=0.01k2/(1+k)2*d p2/D g,固定相传质阻力系数C l=2/3*k/(1+k)2*d f2/D l,则气相色谱中的速率方程为: 在液相色谱中,涡流扩散项A=2λd p;

相关主题
文本预览
相关文档 最新文档