当前位置:文档之家› 死锁的检测与解除C语言代码

死锁的检测与解除C语言代码

死锁的检测与解除C语言代码
死锁的检测与解除C语言代码

实验名称:死锁的检测与解除姓名:杨秀龙

学号:1107300432

专业班级:创新实验班111 指导老师:霍林

实验题目

死锁的检测与解除

实验目的

为了更清楚系统对死锁是如何检测和当死锁发生时如何解除死锁

设计思想

首先需要建立和银行家算法类似的数组结构,先把孤立的进程(没有占用资源的进程)放入一个数组中,根据死锁原理,找出既不阻塞又非独立的进程结点,使之成为孤立的结点并放入孤立数组中,再释放该进程的占用资源,继续寻找下一个孤立结点,如果所有进程都能放入孤立数组中,则系统不会发生死锁,如果有进程不能放入,则系统将发生死锁,并进行死锁解除,撤消所有的死锁进程,释放它们占用的资源。

主要数据结构

和银行家算法类似,需要建立相应的数组

int allocation[M][M];

int request[M][M];

int available[M];

int line[M]; //管理不占用资源的进程

int no[M]; //记录造成死锁的进程

int work[M];

流程图

运行结果

图(1)不会发生死锁时

图(1)当发生死锁时

附录

源代码如下:

# include "stdio.h"

# define M 50

int allocation[M][M];

int request[M][M];

int available[M];

int line[M];

int no[M];

intn,m,i,j,f,a=0;

main()

{

void check();

void remove();

void show();

printf("输入进程总数:");

scanf("%d", &n);

printf("输入资源种类数量:");

scanf("%d", &m);

printf("输入进程已占用的资源Allocation:\n");

for(i=0;i

for(j=0;j

scanf("%d", &allocation[i][j]);

printf("输入进程的请求矩阵request:\n"); for(i=0;i

for(j=0;j

scanf("%d",&request[i][j]);

printf("输入系统可利用资源available:\n");

for (j=0;j

scanf("%d", &available[j]);

show();

check();

f=1;

for(i=0;i

{

if(line[i]==0)

{f=0;

no[a++]=i;//记录死锁序号

}

}

if(f==0)

{

printf("该系统将发生死锁!\n");

printf("造成死锁的进程为:");

for(i=0;i

printf("%2d",no[i]);

printf("\n");

remove();

show();

}

else{

printf("不会发生死锁!\n");

}

}

void check()//死锁检测

{

int k,;

int x;

int work[M];

for(i=0;i

line[i]=0;

for(i=0;i

{ x=0;

for(j=0;j

{

if(allocation[i][j]==0)

x++;

if(x==m)

line[i]=1;

}

}

for(j=0;j

work[j]=available[j];

k=n;

do{

for (i=0;i

{

if(line[i]==0)

{

f=1; //空置条件是否满足

for (j=0;j

if (request[i][j]>work[j])

f=0;

if (f==1) //找到满足条件的进程

{ line[i]=1;

for (j=0;j

work[j]=work[j]+allocation[i][j]; //释放资源available[j]=work[j];

}

}

}

k--;

}while(k>0);

}

void remove() //死锁解除

{

for(i=0;i

{

if(line[i]==0)

{

for(j=0;j

{

available[j]+=allocation[i][j];

allocation[i][j]=0;

request[i][j]=0;

}

}

}

printf("死锁解除!\n");

}

void show()

{

printf("进程");

printf(" ");

printf("allocation");

printf(" ");

printf("request");

printf(" ");

printf("available");

printf("\n");

for (i=0;i

{

printf("%2d",i);

printf(" ");

for(j=0;j

printf("%2d",allocation[i][j]);

printf(" ");

for(j=0;j

printf("%2d",request[i][j]);

printf(" ");

for(j=0;j

if(i>0)

break;

printf("%2d",available[j]);

}

printf("\n");

}

}

线程死锁

主线程A等待另一个线程B的完成才能继续,在线程B中又要更新主线程A的界面,这里涉及了同步问题以及由此可能产生的死锁问题,同步问题在修改后的文章中讲得比较清楚了,对于线程之间可能产生死锁的浅析如下: 在等待线程B中更新主线程A的界面,如果未能正确处理A,B两线程同步的问题,极有可能导致两线程间的死锁 C#线程同步与死锁 在上一讲介绍了使用lock来实现C#线程同步。实际上,这个lock是C#的一个障眼法,在C#编译器编译lock语句时,将其编译成了调用Monitor类。先看看下面的C#源代码: 1.public static void MyLock() 2.{ 3.lock (typeof(Program)) 4. { 5. } 6.} 7. 上面的代码通过lock语句使MyLock同步,这个方法被编译成IL后,代码如图1所示。

图1 从上图被标注的区域可以看到,一条lock语句被编译成了调用Monitor的Enter和Exit方法。Monitor 在System.Threading命名空间中。lock的功能就相当于直接调用Monitor的Entry方法,所不同的是,lock方法在结束后,会自动解除锁定,当然,在IL中是调用了Monitor的Exit方法,但在C#程序中,看起来是自动解锁的,这类似于C#中的using语句,可以自动释放数据库等的资源。但如果直接在C#源程序中使用Monitor类,就必须调用Exit方法来显式地解除锁定。如下面的代码所示: 1.Monitor.Entry(lockObj); 2.try 3.{ 4.// lockObj的同布区 5.} 6.catch(Exception e) 7.{ 8.// 异常处理代码 9.} 10.finally 11.{ 12. Monitor.Exit(lockObj); // 解除锁定

第3章死锁习题及答案

第三章死锁习题 一、填空题 1.进程的“同步”和“互斥”反映了进程间①和②的关系。 【答案】①直接制约、②间接制约 【解析】进程的同步是指在异步环境下的并发进程因直接制约而互相发送消息,进行相互合作、相互等待,使得各进程按一定的速度执行的过程;而进程的互斥是由并发进程同时共享公有资源而造成的对并发进程执行速度的间接制约。 2.死锁产生的原因是①和②。 【答案】①系统资源不足、②进程推进路径非法 【解析】死锁产生的根本原因是系统的资源不足而引发了并发进程之间的资源竞争。由于资源总是有限的,我们不可能为所有要求资源的进程无限地提供资源。而另一个原因是操作系统应用的动态分配系统各种资源的策略不当,造成并发进程联合推进的路径进入进程相互封锁的危险区。所以,采用适当的资源分配算法,来达到消除死锁的目的是操作系统主要研究的课题之一。 3.产生死锁的四个必要条件是①、②、③、④。 【答案】①互斥条件、②非抢占条件、③占有且等待资源条件、④循环等待条件 【解析】 互斥条件:进程对它所需的资源进行排它性控制,即在一段时间内,某资源为一进程所独占。 非抢占条件:进程所获得的资源在未使用完毕之前,不能被其它进程强行夺走,即只能由获得资源的进程自己释放。 占有且等待资源条件:进程每次申请它所需的一部分资源,在等待新资源的同时,继续占有已分配到的资源, 循环等待条件:存在一进程循环链,链中每一个进程已获得的资源同时被下一个进程所请求。 4.在操作系统中,信号量是表示①的物理实体,它是一个与②有关的整型变量,其值仅能由③原语来改变。 【答案】①资源,②队列,③P-V 【解析】信号量的概念和P-V原语是荷兰科学家E.W.Dijkstra提出来的。信号量是一个特殊的整型量,它与一个初始状态为空的队列相联系。信号量代表了资源的实体,操作系统利用它的状态对并发进程共享资源进行管理。信号量的值只能由P-V原语来改变。 5.每执行一次P原语,信号量的数值S减1。如果S>=0,该进程①;若S<0,则②该进程,并把它插入该③对应的④队列中。 【答案】①继续执行,②阻塞(等待),③信号量,④阻塞(等待) 【解析】从物理概念上讲,S>0时的数值表示某类资源可用的数量。执行一次P原语,意味着请求分配一个单位的资源,因此描述为S=S-1。当S<0时,表示已无资源,这时请求资源的进程将被阻塞,把它排在信号量S的等待队列中。此时,S的绝对值等于信号量队列上的阻塞的进程数目。 6.每执行一次V原语,信号量的数值S加1。如果①,Q进程继续执行;如果S<=0,则从对应的②队列中移出一个进程R,该进程状态变为③。 【答案】①S>0,②等待,③就绪 【解析】执行一次V原语,意味着释放一个单位的资源。因此,描述为S=S+1。当S<0时,表示信号量请求队列中仍然有因请求该资源而被阻塞的进程。因此,应将信号量对应的阻塞队列中的第一个进程唤醒,使之转至就绪队列。 7.利用信号量实现进程的①,应为临界区设置一个信号量mutex。其初值为②,表示该资源尚未使用,临界区应置于③和④原语之间。

操作系统死锁练习及答案

死锁练习题 (一)单项选择题 l系统出现死锁的根本原因是( )。 A.作业调度不当 B.系统中进程太多 C.资源的独占性 D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源 B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一 D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源 B循环等待资源 c.不可抢夺资源 D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。A.打印机 B.磁带机 c.绘图仪 D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。A.时间片轮转算法 B.非抢占式优先数算法 c.先来先服务算法 D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 c.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用 ( )策略。 A死锁的防止 B.死锁的避免 c.死锁的检测 D.死锁的防止、避免和检测的混合(一)单项选择题 1.D 2.C 3.B 4.D 5.A 6 C 7 D (二)填空题 l若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对 ______或没有顾及进程______可能出现的情况,则就可能形成死锁。3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。 14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。 17.可以证明,M个同类资源被n个进程共享时,只要不等式______成立,则系统一定不会发生死锁,其中x为每个进程申请该类资源的最大量。 18.______对资源的分配不加限制,只要有剩余的资源,就可把资源分配给申请者。 19.死锁检测方法要解决两个问题,一是______是否出现了死锁,二是当有死锁发生时怎样去______。 20.对每个资源类中只有一个资源的死锁检测程序根据______和______两张表中记录的资源情况,把进程等待资源的关系在矩阵中表示出

操作系统死锁习题集

死锁习题 一、填空题 2.死锁产生的原因是。 3.产生死锁的四个必要条件是、、、。 二、单项选择题 1.两个进程争夺同一个资源。 (A)一定死锁(B)不一定死锁 (C)不死锁(D)以上说法都不对 4.如果发现系统有的进程队

列就说明系统有可能发生死锁了。 (A)互斥(B)可剥夺 (C)循环等待(D)同步 5.预先静态分配法是通过破坏条件,来达到预防死锁目的的。 (A)互斥使用资源/循环等待资源 (B)非抢占式分配/互斥使用资源 (C) 占有且等待资源/循环等待资源 (D)循环等待资源/互斥使用资源 7.下列关于死锁的说法中,正确的是? 1)有环必死锁; 2)死锁必有环; 3)有环无死锁; 4)死锁也无环 8.资源有序分配法的目的是? 1)死锁预防; 2)死锁避免; 3)死锁检测; 4)死锁解除 8.死锁的预防方法中,不太可能的一种方法使()。

A 摈弃互斥条件 B 摈弃请求和保持条件 C 摈弃不剥夺条件 D 摈弃环路等待条件 10. 资源的按序分配策略可以破坏()条件。 A 互斥使用资源 B 占有且等待资源 C 不可剥夺资源 D 环路等待资源 三、多项选择题 1.造成死锁的原因是_________。 (A)内存容量太小(B)系统进程数量太多,系统资源分配不当 (C)CPU速度太慢(D)进程推进顺序不合适 (E)外存容量太小 2.下列叙述正确的是_________。 (A)对临界资源应采取互斥访问方式来实现共享 (B)进程的并发执行会破坏程序的“封

闭性” (C)进程的并发执行会破坏程序的“可再现性” (D)进程的并发执行就是多个进程同时占有CPU (E)系统死锁就是程序处于死循环3.通常不采用_________方法来解除死锁。 (A)终止一个死锁进程(B)终止所有死锁进程 (C)从死锁进程处抢夺资源(D)从非死锁进程处抢夺资源 (E)终止系统所有进程 5.通常使用的死锁防止策略有_________。 (A)动态分配资源(B)静态分配资源 (C)按序分配资源(D)非剥夺式分配资源 (E)剥夺式分配资源 四、名词解释 1死锁

第5章 死锁 练习题参考答案

第五章死锁练习题参考答案 (一)单项选择题 1.D 2.C 3.B 4.D 5.A 6.C 7.D (二)填空题 1.死锁2.资源管理不得当,并发执行时3.占有并等待资源,循环等待资源4.等价的5.没有死锁6.一个条件不成立7.静态分配资源,释放已占资源8.预分配资源.开始执行前9.没有占用资源10.抢夺11.主存空间,处理器12.按序分配13安全状态14.避免死锁15.银行家算法16.死锁的避免17.n(x- 1)+l<=m 18.死锁检测方法19判断系统,解除死锁20.占用表,等待表21.尚需量,剩余量22终止,抢夺资源23.校验点24.防止,检测 (三)简答题 1.若系统中存在一组进程、它们中的每—个进程都占用了某种资源而又都在等待其中另一个进程所占的资源,这种等待永远不能结束,则说明系统出现了死锁。产生死锁的原因有两个:一是操作系统对资源的管理不当,二是没有顾及进程并发执行时可能出现的情况。 2.采用某些资源分配策略使死锁的四个必要条件之一不成立,就能防止死锁。除第一个条件互斥使用资源没有对应策略外,对占有并等待资源、不可抢夺资源和循环等待资源这三个条件可采用静态分配资源,释放已占资源,抢夺式分配资源和按序分配资源等资源分配策略。 3.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于安全状态。常用银行家算法动态地检测系统中的资源分配情况和进程对资源的需求情况进行资源分配,确保系统处于安全状态。 4解决死锁问题有以下三种方法:(1)死锁的防止。系统按预定的策略为进程分配资源,这些分配策略能使死锁的四个必要条件之一不成立,从而使系统不产生死锁。(2)死锁的避免。系统动态地测试资源分配情况,仅当能确保系统安全时才给进程分配资源。(3)死锁的检测。对资源的申请和分配不加限制,只要有剩余的资源就可把资源分配给申请者,操作系统要定时判断系统是否出现了死锁,当有死锁发生时设法解除死锁。5.用抢夺资源的方式解除死锁时要注意三点:(1)抢夺进程资源时希望付出的代价最小。(2)为被抢夺者的恢复准备好条件,如返回某个安全状态,并记录有关信息。(3)防止被抢夺资源的进程“饿死”,一般总是从执行时间短的进程中抢夺资源。 (四)应用题 1.(1)根据表,P1,P2和P3三个进程尚需资源数分别是4,5和1,系统的资源剩余量为2,若把剩余的资源量全部分配给P2,系统产已无资源可分配,使三个进程都等待资源而无法完成,形成死锁。所以不能先满足进程P2的要求。 (2)可先为进程P3分配1个资源,当它归还3个资源后,这样共有4个可分配资源,可满足P1申请1个资源的要求,再分配3个资源给进程P1,待P1归还7个资源后,先满足P2申请2个资源的请求,分配给进程P2,再分配3个资源给P2,使它完成。 2.(1)系统目前尚余有的资源数为(2,6,2,1),五个进程尚需的资源数分别是A:(2,0,0,0) ; B:(0,0,0,0); C:(4,6,2,0) ; D:(5,7,0,0); E:(0,0,2,1);由于进程B己满足了全部资源需求,它在有限时间内会归还这些资源,因此可分配资源达到(3,6,4,1),这样就可分配给进程A;等A归还资源后,可分配资源达到(6,12,6,1),再分配给进程C;之后可分配资源会达到(7,12,10,1),分配给进程D并等待一段时间后,可分配资源将达到(7,12,10,2),最后,可分配给进程E,满足其全部请求。所以说目前系统处于安全状态。 (2)若此时给进程D分配(2,5,0,0)个资源,进程D尚需(3,2,0,0),则系统剩余的资源量为(0,

实验二死锁的检测与避免

实验二死锁的检测与避免—银行家算法 一、实验目的 1、了解进程产生死锁原因,了解为什么要避免死锁。 2、掌握银行家算法的数据结构,了解算法的执行过程,加深对银行家算法的理 解。 二、实验内容及步骤 采用银行家算法来实现一个n 个并发进程共享m 个系统资源的系统。进程可 以申请和释放资源,系统可以按照各进程的申请计算是否可以分配给其资源。 1、创建C语言工程项目,按照教材上的有关说明,定义相应的数据结构。 2、给各个数据结构设定合适的初始值。 注意:步骤1、2可同时进行,即利用C语言中的定义变量就可同时初始化的 方式进行数值初设。 3、依据银行家算法的描述依次进行资源的试探性分配,直至成功或失败,成功 则说明当前状态是安全的;失败后,还应该将资源回到初始状态,并进行另一 次试探;只有所有的试探都失败了,才能说明当前状态是不安全的。 通常,这种试探性算法采用递归的方法是很合适的,程序也是很简洁的。 三、实验原理 1、银行家算法的思路 先对用户提出的请求进行合法性检查,即检查请求的是不大于需要的,是否不大于可利用的。若请求合法,则进行试分配。最后对试分配后的状态调用安全性检查算法进行安全性检查。若安全,则分配,否则,不分配,恢复原来状态,拒绝申请。 2、银行家算法程序流程图(图2-1)

银行家算法(图2-1) 安全性算法(图2-2)

四、实验结果及分析 (一): 1、T0时刻安全性 2、P1发出请求向量Request 1(1,0,2) 3、P4发出请求向量Request 4(3,3,0) 4、P0发出请求向量Request 0(0,2,0) (二): 1、 该状态是否安全? 2、 P2发出请求向量Request (1,2,2 ,2)后,系统能否将资源分配给它? (三)、自行设计一组资源分配数据,要求资源数大于等于3,进程数大于等于3,有2次预分配。

第三章习题(处理机调度与死锁)

一、单项选择题 1.在为多道程序所提供的可共享的系统资源不足时,可能出现死锁。但是,不适当的 c 也可能产生死锁。 A.进程优先权 B.资源的线性分配 C.进程推进顺序 D. 分配队列优先权 2.采用资源剥夺法可解除死锁,还可以采用 b 方法解除死锁。 A.执行并行操作 B.撤消进程 C.拒绝分配新资源 D.修改信号量 3.产生死锁的四个必要条件是:互斥、 b 、循环等待和不剥夺。 A. 请求与阻塞 B.请求与保持 C. 请求与释放 D.释放与阻塞 4.发生死锁的必要条件有四个,要防止死锁的发生,可以破坏这四个必要条件,但破坏 a 条件是不太实际的。 A. 互斥 B.不可抢占 C. 部分分配 D.循环等待 5.在分时操作系统中,进程调度经常采用 c 算法。 A.先来先服务 B.最高优先权 C.时间片轮转 D.随机 6.资源的按序分配策略可以破坏 D 条件。 A. 互斥使用资源 B.占有且等待资源 C.非抢夺资源 D. 循环等待资源 7.在 C 的情况下,系统出现死锁。 A. 计算机系统发生了重大故障 B.有多个封锁的进程同时存在 C.若干进程因竞争资源而无休止地相互等待他方释放已占有的资源 D.资源数大大小于进程数或进程同时申请的资源数大大超过资源总数 8.银行家算法是一种 B 算法。 A.死锁解除 B.死锁避免 C.死锁预防 D. 死锁检测 9.当进程数大于资源数时,进程竞争资源 B 会产生死锁。 A.一定 B.不一定 10. B 优先权是在创建进程时确定的,确定之后在整个进程运行期间不再改变。 A.先来先服务 B.静态 C.动态 D.短作业 11. 某系统中有3个并发进程,都需要同类资源4个,试问该系统不会发生死锁的最少资源数是 B A.9 B.10 C.11 D.12 答:B 13.当检测出发生死锁时,可以通过撤消一个进程解除死锁。上述描述是 B 。 A. 正确的 B.错误的 14.在下列解决死锁的方法中,属于死锁预防策略的是 B 。 A. 银行家算法 B. 资源有序分配法 C.死锁检测法 D.资源分配图化简法 15.以下叙述中正确的是 B 。 A. 调度原语主要是按照一定的算法,从阻塞队列中选择一个进程,将处理机分配 给它。 B.预防死锁的发生可以通过破坏产生死锁的四个必要条件之一来实现,但破坏互斥条件的可能性不大。 C.进程进入临界区时要执行开锁原语。 D.既考虑作业等待时间,又考虑作业执行时间的调度算法是先来先服务算法。

李建伟版实用操作系统第二版最新习题 3 进程同步与通信

李建伟版实用操作系统第二版最新习题 3 进程同步与通信 一、选择题 题号1 2 3 4 5 6 7 8 9 10 答案A D D C B C A B A A 题号11 12 答案D C 二、综合题 1、答:临界资源也称独占资源、互斥资源,它是指某段时间内只充许一个进程使用的资源。比如打印机等硬件资源,以及只能互斥使用的变量、表格、队列等软件资源。各个进程中访问临界资源的、必须互斥执行的程序代码段称为临界区,各进程中访问同一临界资源的程序代码段必须互斥执行。 为防止两个进程同时进入临界区,可采用软件解决方法或同步机构来协调它们。但是,不论是软件算法还是同步机构都应遵循下述准则: ①空闲让进。②忙则等待。③有限等待。④让权等待。 2、答:忙等待意味着一个进程正在等待满足一个没有闲置处理器的严格循环的条件。因为只有一个CPU 为多个进程服务,因此这种等待浪费了CPU 的时钟。 其他类型的等待:与忙等待需要占用处理器不同,另外一种等待则允许放弃处理器。如进程阻塞自己并且等待在合适的时间被唤醒。忙等可以采用更为有效的办法来避免。例如:执行请求(类似于中断)机制以及PV 信号量机制,均可避免“忙等待”现象的发生。 3、答: 在生产者—消费者问题中,Producer 进程中P(empty)和P(mutex)互换先后次序。先 执行P(mutex),假设成功,生产者进程获得对缓冲区的访问权,但如果此时缓冲池已满,没有空缓冲区可供其使用,后续的P(empty)原语没有通过,Producer 阻塞在信号量empty 上,而此时mutex 已被改为0,没有恢复成初值1。切换到消费者进程后,Consumer 进程执行P(full)成功,但其执行P(mutex)时由于Producer 正在访问缓冲区,所以不成功,阻塞在信号量mutex 上。生产者进程和消费者进程两者均无法继续执行,相互等待对方释放资源,会产生死锁。 在生产者和消费者进程中,V 操作的次序无关紧要,不会出现死锁现象。 4、答:

处理机调度与死锁作业题

第三章处理机调度与死锁作业 一、判断题 1、先来先服务(FCFS)算法是一种简单的调度算法,但其效率比较高。(错) 2、FCFS调度算法对短作业有利。(错) 3、时间片的大小对轮转法(RR)的性能有很大的影响,时间片太短,会导致系统开销大大增加。(对) 二、选择题 1、在进行作业调度时,要想兼顾作业等待时间和作业执行时间,应选取(C)。 A.轮转法 B.先进先出调度算法 C.响应比高优先算法 D.短作业优先调度 2、若系统中有五台绘图仪,有多个进程均需要使用两台,规定每个进程一次仅允许申请一台,则至多允许(D)个进程参于竞争,而不会发生死锁。 A、5 B、2 C、3 D、4 解析:由于系统资源总共只有5台,若有5个进程参与竞争,每个进程在拥有一台打印机后,由于都需要两台打印机,所有进程都不能向前推进,假设又都不愿意放弃已申请到的打印机,系统便进入死锁状态,若有4个进程参与竞争,每个进程拥有一台打印机后,任意一个进程在获得剩余的一台打印机后就可以运行,在该进程运行完后,释放拥有的两台打印机,其他3个进程就可以顺利推进,完成各自任务。 3、在进程资源图中( C )是发生死锁的必要条件。 A.互斥 B.可剥夺件 C.环路 D.同步 三、填空题 1、在响应比最高者优先的作业调度算法中,当各个作业等待时间相同时,计算时间短的作业将得到优先调度;当各个作业要求运行的时间相同时,等待时间长的作业得到优先调度。 2、分时系统采用的调度方法是时间片轮转调度算法。在分时系统中,当用户数目为100时,为保证响应时间不超过2秒,此时时间片最大应为20ms。 3、有三个同时到达的作业J1,J2和J3,它们的执行时间分别是T1,T2和T3,且T1

《操作系统原理》5资源管理(死锁)习题

第五章死锁练习题 (一)单项选择题 1.系统出现死锁的根本原因是( )。 A.作业调度不当B.系统中进程太多C.资源的独占性D.资源管理和进程推进顺序都不得当 2.死锁的防止是根据( )采取措施实现的。 A.配置足够的系统资源B.使进程的推进顺序合理 C.破坏产生死锁的四个必要条件之一D.防止系统进入不安全状态 3.采用按序分配资源的策略可以防止死锁.这是利用了使( )条件不成立。 A.互斥使用资源B循环等待资源C.不可抢夺资源D.占有并等待资源 4.可抢夺的资源分配策略可预防死锁,但它只适用于( )。 A.打印机B.磁带机C.绘图仪D.主存空间和处理器 5.进程调度算法中的( )属于抢夺式的分配处理器的策略。 A.时间片轮转算法B.非抢占式优先数算法C.先来先服务算法D.分级调度算法 6.用银行家算法避免死锁时,检测到( )时才分配资源。 A.进程首次申请资源时对资源的最大需求量超过系统现存的资源量 B.进程己占用的资源数与本次申请资源数之和超过对资源的最大需求量 C.进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足尚需的最大资源量 D进程已占用的资源数与本次申请的资源数之和不超过对资源的最大需求量,且现存资源能满足本次申请量,但不能满足尚需的最大资源量 7.实际的操作系统要兼顾资源的使用效率和安全可靠,对资源的分配策略,往往采用( )策略。 A死锁的防止B.死锁的避免C.死锁的检测D.死锁的防止、避免和检测的混合 (二)填空题 1.若系统中存在一种进程,它们中的每一个进程都占有了某种资源而又都在等待其中另一个进程所占用的资源。这种等待永远不能结束,则说明出现了______。 2.如果操作系统对______或没有顾及进程______可能出现的情况,则就可能形成死锁。 3.系统出现死锁的四个必要条件是:互斥使用资源,______,不可抢夺资源和______。 4.如果进程申请一个某类资源时,可以把该类资源中的任意一个空闲资源分配给进程,则说该类资源中的所有资源是______。 5.如果资源分配图中无环路,则系统中______发生。 6.为了防止死锁的发生,只要采用分配策略使四个必要条件中的______。 7.使占有并等待资源的条件不成立而防止死锁常用两种方法:______和______. 8静态分配资源也称______,要求每—个进程在______就申请它需要的全部资源。 9.释放已占资源的分配策略是仅当进程______时才允许它去申请资源。 10.抢夺式分配资源约定,如果一个进程已经占有了某些资源又要申请新资源,而新资源不能满足必须等待时、系统可以______该进程已占有的资源。 11.目前抢夺式的分配策略只适用于______和______。 12.对资源采用______的策略可以使循环等待资源的条件不成立。 13.如果操作系统能保证所有的进程在有限的时间内得到需要的全部资源,则称系统处于______。14.只要能保持系统处于安全状态就可______的发生。 15.______是一种古典的安全状态测试方法。 16.要实现______,只要当进程提出资源申请时,系统动态测试资源分配情况,仅当能确保系统安全时才把资源分配给进程。

死锁实验报告

操作系统实验二报告 一.实验名称:死锁的检测与解除 二.实验目的:观察死锁产生的条件,并使用适当的算法,有效的防止和避免死锁的发生。 三.实验内容: 死锁的检测算法: 1.找出不再申请资源的进程,将它们所占的资源与系统中还剩余的资源加在一起作为“可分配的资源”,同时对这些进程置标志; 2.检测所有无标志的进程,找出一个所需资源量不超过“可分配的资源”量的进程,将其所占用的资源添加到“可分配的资源”中,同时为该进程置标志;重复2)直到所有进程均有标志或无标志的进程的所需资源量均超过“可分配的资源”量; 3.若进程均有标志,说明系统当前不存在死锁;若存在无标志的进程,则表示系统当前已有死锁形成,这些无标志的进程就是一组处于死锁状态的进程。 死锁的解除: 当死锁检测程序检测到有死锁存在时,一般采用两种方式来解除死锁: 1.终止进程:终止一个或多个涉及死锁的进程的执行,收回它们所占的资源再分配。 2.抢夺资源:从涉及死锁的一个或几个进程中抢夺资源,把夺来的资源再分配给卷入死锁的其他进程,直到死锁解除。 四.实验代码: #include using namespace std; 其中系统可用资源数为 2 1 0 0

给进程3 分配资源数0 1 0 0 六.实验心得: 加深理解了有关资源申请分配、检测以及避免死锁等概念,了解死锁和避免死锁的具体实施方法。死锁的解除实质上就是如何让释放资源的进程能够继续运行.为了解除死锁就要剥夺资源,此时,需要考虑一下几个问题:选择一个牺牲进程,即要剥夺哪个进程的哪些资源剥夺的进程如何再次运行.怎样保证不发生”饿死”现象“最小代价”,即最经济合算的算法,使得进程回退带来的开销最小.但是,”最小开销”是很不精确的,进程重新运行的开销包括很多因素: 进程的优先级、该进程使用的资源种类和数量为完成任务,进程还需要多少资源有多少进程要被撤销、该进程被重新启动运行的次数.。只有综合考虑各个进程之间的关系,跟资源的关系,才能搞好的解除死锁。避免系统出错。

进程同步与互斥练习

进程同步与互斥 练习题 选择题 .任何两个并发进程之间存在着()地关系. .各自完全独立 .拥有共享变量 .必须互斥 .可能相互制约文档收集自网络,仅用于个人学习 .并发进程执行地相对速度是(). .由进程地程序结构决定地 .由进程自己来控制地 .在进程被创建时确定地 .与进程调度策略有关地文档收集自网络,仅用于个人学习 .并发进程执行时可能会出现“与时间有关地错误”,这种错误是由于并发进程()引起地. .使用共享资源 .执行地顺序性 .要求计算时间地长短 .程序地长度文档收集自网络,仅用于个人学习 .并发进程中与共享变量有关地程序段称为(). .共享子程序 .临界区 .管理区 .公共数据区文档收集自网络,仅用于个人学习 .用来实现进程同步与互斥地操作实际上是由()过程组成地. .一个可被中断地 .一个不可被中断地 .两个可被中断地 . 两个不可被中断地文档收集自网络,仅用于个人学习 .进程从运行态变为等待态可能由于(). .执行了操作 .执行了操作 .时间片用完 .有高优先级进程就绪文档收集自网络,仅用于个人学习 .用操作管理互斥使用地资源时,信号量地初值应定义为(). .任意正整数 . . .文档收集自网络,仅用于个人学习 .用、操作管理临界区时,互斥信号量地初值应定义为( ). .任意值 . . . .现有个具有相关临界区地并发进程,如果某进程调用操作后变为等待状态,则调用操作时

信号量地值必定为(). .≤ . . .文档收集自网络,仅用于个人学习 .用操作管理临界区时把信号量地初值定义为,现已有一个进程在临界区,但有个进程在等待进人临界区,这时信号量地值为(). . . . .文档收集自网络,仅用于个人学习 .用操作唤醒一个等待进程时,被唤醒进程地状态应变成()状态. .执行 .就绪 .运行 .收容文档收集自网络,仅用于个人学习 .进程间地同步是指进程间在逻辑上地相互( )关系. .联接.制约文档收集自网络,仅用于个人学习 .继续.调用 多项选择题 .有关并发进程地下列叙述中,()是正确地. .任何时刻允许多个进程在同一上运行 .进程执行地速度完全由进程自己控制 .并发进程在访问共享资源时可能出现与时间有关地错误 .同步是指并发进程中存在地一种制约关系 .各自独立地并发进程在执行时不会相互影响文档收集自网络,仅用于个人学习.一个正在运行地进程调用()后,若地值为(),则该进程可以继续运行. .> .< .≠ .≥ .≤ 文档收集自网络,仅用于个人学习 判断题 .有交往地并发进程一定共享某些资源. () .如果不能控制并发进程执行地相对速度,则它们在共享资源时一定会出现与时间有关地错误. () .并发进程地执行结果只取决于进程本身,不受外界影响. () .多道程序设计必然导致进程地并发执行. () 有个进程共享同一临界资源,若使用信号量机制实现对资源地互斥访问,则信号量值地变化范围是. 文档收集自网络,仅用于个人学习 对于两个并发进程,设互斥信号量为,若,则 表示没有进程进入临界区表示有一个进程进入临界区 表示有一个进程进入临界区,另一个进程等待进入 表示有两个进程进入临界区

死锁避免算法设计报告

漳州师范学院 操作系统课程设计 死锁避免算法设计 姓名: 学号: 系别: 专业: 年级: 指导教师: 一、课程设计题目介绍(含设计目的)

死锁避免算法设计是通过模拟实现银行家算法实现死锁避免目的: 1、了解进程产生死锁的原因,了解为什么要进行死锁的避免。 2、掌握银行家算法的数据结构,了解算法的执行过程,加深对银行家算法的理解。 3、通过运用Dijkstra的银行家算法来避免多个进程运行中因争夺资源而造成僵局,即死锁 要求: 本课程设计可以实现教材3.6.3节中所描述的银行家避免死锁算法。 可自定义进程数目、资源类型和每种类型资源的数目; 可输入每个进程对每种资源的最大需求、已经获得的数量; 当某进程发起某种资源请求时,计算系统状态是否安全。 思想: 操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配,从而达到死锁的避免。

二、总体设计(含系统的结构、原理框图或模块介绍等) 1.系统的结构 2.原理框图 从主函数开始进入银行家算法系统,先调用初始化函数chushihua()分别输入Allocation[i][j],Max[i][j],All[y]并判断是否符合条件,在调用函数show(),输出当前状态Available,Max[i][j],Allocation[i][j],Need[i][j]。然后调用安全性算法函数safe()判断在该时刻是否处于安全状态,并输出安全序列。然后调用银行家算法函数bank()进行试分配后再调用安全性算法函数判断在该时刻是否处于安全状态,若不安全,则恢复试分配时改变的值。

进程同步及死锁之欧阳光明创编

附件(四) 欧阳光明(2021.03.07) 深圳大学实验报告课程名称:操作系统 实验项目名称:进程(线程)同步及死锁学院:计算机与软件学院 专业:计算机科学与技术 指导教师: 报告人:学号:班级: 实验时间:2015/10/23 实验报告提交时间:2015/11/13 教务处制

二、方法、步骤: 设计解决哲学家就餐问题的并发线程。 假定有6个哲学家,围着圆桌交替地进行思考和进餐;每次进餐时,必须同时拿到左右两边的两只筷子才能进餐;进餐后,再放下筷子思考。 这是一个典型的同时需要两个资源的例子,如果申请资源顺序不当,可能会引起死锁。 本实验设计6个哲学家共享一个相同的线程Philosopher,既完成线程同步,又预防死锁发生。实验中采用了3种预防死锁的方法(摒弃‘环路等待’条件,摒弃‘请求和保持’条件,摒弃‘不剥夺’条件),要预防死锁,只采用其中的任何一种方法即可。 三.实验过程及内容:(其中:提供有简短说明的程序代码。要求:程序运行正确、符合设计要求。) 1.创建工程,注意勾选Win32 Application,点击确定 2.勾选第三个选项

3.创建菜单,有Eat、About、Exit 4.在进程(线程)同步及死锁.cpp中编写代码,此时代码有“摒弃‘环路等待’条件”、“摒弃‘请求和保持’条件”、“摒弃‘不剥夺’条件”三种代码,当检测其中一个时须将其余两个加以注释,一一检测其对死锁的影响。 运行结果: 运行前:

运行后: 5.在运行时可知,在分别“摒弃‘环路等待’条件”和“摒弃‘不剥夺’条件”的代码时不会出现死锁,而使用“摒弃‘请求和保持’条件”时会产生死锁,在理论正确前提下,此种情况说明了代码出现错误。 6.代码解释及修改⑴摒弃‘环路等待’条件 R1=ThreadID; R2=(ThreadID+1)%6; if (ThreadID == 0) { R1= (ThreadID+1) % 6; R2= ThreadID; } 依据摒弃‘环路等待’条件,要有至少一位哲学家与其他哲学家拿筷子顺序不同,则使第0位(ThreadID = 0)哲学家从右边开始拿筷子,其他哲学家相反。 ⑵摒弃‘不剥夺’条件 Wait(Mutex); if (ChopstickUsed[R2]) { Signal(Mutex); goto ReleaseChopstick;//将左筷子放弃掉 } Signal(Mutex); 若分配给的哲学家拿不到右筷子,则将他拿到的左筷子收回。 ⑶摒弃‘请求和保持’条件 原代码: Wait(Mutex); if((ChopstickUsed[R1])||(ChopstickUsed[R2])) { Signal(Mutex); goto LoopAgain;//思考

死锁的检测与解除C语言代码

实验名称:死锁的检测与解除姓名:杨秀龙 学号:1107300432 专业班级:创新实验班111 指导老师:霍林

实验题目 死锁的检测与解除 实验目的 为了更清楚系统对死锁是如何检测和当死锁发生时如何解除死锁 设计思想 首先需要建立和银行家算法类似的数组结构,先把孤立的进程(没有占用资源的进程)放入一个数组中,根据死锁原理,找出既不阻塞又非独立的进程结点,使之成为孤立的结点并放入孤立数组中,再释放该进程的占用资源,继续寻找下一个孤立结点,如果所有进程都能放入孤立数组中,则系统不会发生死锁,如果有进程不能放入,则系统将发生死锁,并进行死锁解除,撤消所有的死锁进程,释放它们占用的资源。 主要数据结构 和银行家算法类似,需要建立相应的数组 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; //管理不占用资源的进程 int no[M]; //记录造成死锁的进程 int work[M];

流程图 否

运行结果 图(1)不会发生死锁时 图(1)当发生死锁时

附录 源代码如下: # include "stdio.h" # define M 50 int allocation[M][M]; int request[M][M]; int available[M]; int line[M]; int no[M]; intn,m,i,j,f,a=0; main() { void check(); void remove(); void show(); printf("输入进程总数:"); scanf("%d", &n); printf("输入资源种类数量:"); scanf("%d", &m); printf("输入进程已占用的资源Allocation:\n"); for(i=0;i

操作系统同步例题

13. 对于生产者—消费者问题,假设缓冲区是无界的,试用信号灯与PV操作给出解法。答:由于是无界缓冲区,所以生产者不会因得不到缓冲区而被阻塞,不需要对空缓冲区进行管理,可以去掉在有界缓冲区中用来管理空缓冲区的信号量及其PV操作。 semaphore mutex_in=1; semaphore mutex_out=1; semaphore empty=0; int in=0,out=0; 生产者活动: while(1){ produce next product; P(mutex_in); add the product to buffer[in]; in++; v(mutex_in); V(empty); } 消费者活动: while(1){ P(empty); P(mutex_out); take the product from buffer[out]; out++; V(mutex_out); } 14. 设有一个可以装A、B两种物品的仓库,其容量无限大,但要求仓库中A、B两种物品的数量满足下述不等式: -M≤A物品数量-B物品数量≤N 其中M和N为正整数。试用信号灯和PV操作描述A、B两种物品的入库过程。 答:已知条件 -M≤A物品数量-B物品数量≤N 可以拆成两个不等式,即 A物品数量-B物品数量≤N,

B物品数量-A物品数量≤M。 这两个不等式的含义是:仓库中A物品可以比B物品多,但不能超过N个;B物品可以比A 物品多,但不能超过M个。 semaphore a=n; semaphore b=m; void main(){ createprocess(A,…); createprocess(B,…); } A物品入库:void A(){ while(1){ P(a); A物品入库; V(b); } }B物品入库:void B(){ while(1){ P(b); B物品入库; V(a); } } 15. 试用信号灯与PV操作实现司机与售票员之间的同步问题。设公共汽车上有一个司机和一个售票员,其活动如下图 所示。

操作系统实验报告-死锁的检测与解除

操作系统实验报告 实验题目:死锁的检测与解除学生姓名:田凯飞 学生学号:1107300215 学生班级:计科111 指导老师:霍林

实验题目: 死锁的检测与解除。 实验目的: 在实验一中我们可以通过银行家算法和安全性检测来对系统对进程分配资源时进行安全性检测,这是避免系统发生死锁的有效方法,但是假如系统真的发生死锁的时候,系统也必须对此采取有效的措施,通过该实验我们可以深刻的认识系统对死锁的检测与解除的方法。 设计思想: 该程序是在银行家算法的基础上添加了死锁的解除模块得来的,死锁的解除采用的方法是:当系统发生死锁时,找到已分配资源最大的死锁进程,剥夺其已分配资源,再次检测是否发生死锁。 数据结构: 1)可用资源向量available: 这是一个含有m个元素的数组,其 中的每一个元素代表一类可利用资源数目。 2)最大需求矩阵max它是一个n m ?的矩阵,定义了系统中n个进程中得每一个进程对m类资源的最大需求。 3)可分配矩阵allocation: 这也一个n m ?的矩阵,定义了系统中每一类资源当前已分配给每一进程的资源数。 4)需求矩阵need: 这表示每一个进程尚需的各类资源数。 5)need[i][j]=max[i][j]-allocation[i][j]。 变量说明: 可用资源向量available[3]; 最大需求矩阵max[4][3]; 可分配矩阵allocation[4][3]; 需求矩阵need[4][3]; 进程状态标识finish[4]; 流程图:

否 是 否 是 运行结果: 无死锁: 算法开始 输入各进程的最大需求资源、 已分配资源和可利用资源数 显示各进程的最大需求资源、已分配资源和可利用资源数 选择进程并进行资源请求 请求是否合法 分配资源 是否死锁 输出进程序列以及该时刻的资源分配情况 解除占用资源最多的进程 算法结束

相关主题
文本预览
相关文档 最新文档