当前位置:文档之家› 半导体器件物理课件——第四章课件

半导体器件物理课件——第四章课件

半导体器件物理课件——第四章课件

半导体器件物理课件——第四章课件

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用2T V V i np n e =导出)(n n x p 表达式。给 出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =??? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=-

半导体器件物理_复习重点

第一章 PN结 1.1 PN结是怎么形成的? 耗尽区:正因为空间电荷区内不存在任何可动的电荷,所以该区也称为耗尽区。 空间电荷边缘存在多子浓度梯度,多数载流子便受到了一个扩散力。在热平衡状态下,电场力与扩散力相互平衡。 p型半导体和n型半导体接触面形成pn结,p区中有大量空穴流向n区并留下负离子,n区中有大量电子流向p区并留下正离子(这部分叫做载流子的扩散),正负离子形成的电场叫做空间电荷区,正离子阻碍电子流走,负离子阻碍空穴流走(这部分叫做载流子的漂移),载流子的扩散与漂移达到动态平衡,所以pn 结不加电压下呈电中性。 1.2 PN结的能带图(平衡和偏压) 无外加偏压,处于热平衡状态下,费米能级处处相等且恒定不变。 1.3 内建电势差计算 N区导带电子试图进入p区导带时遇到了一个势垒,这个势垒称为内建电势差。

1.4 空间电荷区的宽度计算 n d p a x N x N = 1.5 PN 结电容的计算 第二章 PN 结二极管 2.1理想PN 结电流模型是什么? 势垒维持了热平衡。 反偏:n 区相对于p 区电势为正,所以n 区内的费米能级低于p 区内的费米能级,势垒变得更高,阻止了电子与空穴的流动,因此pn 结上基本没有电流流动。 正偏:p 区相对于n 区电势为正,所以p 区内的费米能级低于n 区内的费米能级,势垒变得更低,电场变低了,所以电子与空穴不能分别滞留在n 区与p 区,所以pn 结内就形成了一股由n 区到p 区的电子和p

区到n 区的空穴。电荷的流动在pn 结内形成了一股电流。 过剩少子电子:正偏电压降低了势垒,这样就使得n 区内的多子可以穿过耗尽区而注入到p 区内,注入的电子增加了p 区少子电子的浓度。 2.2 少数载流子分布(边界条件和近似分布) 2.3 理想PN 结电流 ?? ????-??? ??=1exp kT eV J J a s ?? ? ? ? ?+=+= 0020 11p p d n n a i n p n p n p s D N D N en L n eD L p eD J ττ 2.4 PN 结二极管的等效电路(扩散电阻和扩散电容的概念)? 扩散电阻:在二极管外加直流正偏电压,再在直流上加一个小的低频正弦电压,则直流之上就产生了个叠加小信号正弦电流,正弦电压与正弦电流就产生了个增量电阻,即扩散电阻。 扩散电容:在直流电压上加一个很小的交流电压,随着外加正偏电压的改变,穿过空间电荷区注入到n 区内的空穴数量也发生了变化。P 区内的少子电子浓度也经历了同样的过程,n 区内的空穴与p 区内的电子充放电过程产生了电容,即扩散电容。

半导体器件物理第二章答案

2-1.P N + 结空间电荷区边界分别为p x -与n x ,利用2T V V i np n e =导出)(n n x p 表达式。给出N 区空穴为小注入与大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =? ?? ? ??-= 而 ()()() 000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 2020=?+?=?+ 2001T V V n i n n n p n p e n n ???+= ?? ? T V V 2 2n n0n i p +n p -n e =0 n p = (此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 2 0ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψ ε=- 所以n n d n n D dx x ψμ?=?,又因为n T n D V μ=(爱因斯坦关系)

高分子物理学习题第一章答案

高分子物理学思考题及习题 第1章 思考题 1-1 重要概念:高分子化合物;高分子材料(聚合物);天然高分子材料;人工合成高分子材料;塑料;橡胶;纤维;功能高分子;结构单元;聚合度;线形分子链(线形高分子);支化分子链(支化高分子);交联网络(交联高分子)。 1-2 了解高分子材料的分类法和命名法。 1-3 与小分子化合物和小分子材料相比,高分子化合物与高分子材料的结构有哪些重要特点使之具有独特的性能?将这些特点牢记在心。 1-4 仔细阅读关于高分子材料的“多分散性和多尺度性”、“软物质性”及“标度性”的说明,理解其意义。 1-5 了解高分子物理学的核心内容和主要学习线索,体会“高分子物理学是研究高分子材料结构、分子运动与性能的关系的学说”。 1-6 阅读“高分子物理学发展简史及研究热点”一节,了解当前高分子物理学的热点问题和发展方向。 1-7 根据生活经验,列举一些适合用作塑料、橡胶或纤维的聚合物名称。 1-8 下列一些聚合物(我国的商品名称):丁苯橡胶,氯丁橡胶,硅橡胶,环氧树脂,脲醛树脂,聚氯乙烯,聚碳酸脂,涤纶,锦纶,腈纶。试分别写出各自结构单元的化学结构式及合成所需单体的化学结构式。 第一章习题可能与高分子化学学习内容重复,可不做。 第2章 思考题及习题 2-1重要概念:近程结构;远程结构;构型;构象;无规线团;内旋转;内旋转

势垒;分子链柔顺性(静态和动态);链段;均方末端距;均方旋转半径;自由连接链;自由旋转链;等效自由连接链;Kuhn等效链段;高斯链;θ条件/θ状态;Flory特征比(刚性因子)。 (1)近程结构:包括构造和构型。构造是指链中原子的种类和排列,取代基和端基的种类,单体单元的排列顺序,支链的类型和长度等。构型是指由化学键所固定的链中原子或基团在空间的排列。 注意:近程结构相当于“链的细节”。构造着重于链上的原子的种类、数目比例、相互连接关系。构型涉及空间立体异构(顺反异构、旋光异构)。 (2)远程结构:包括分子的大小、构象和形态,链的柔顺性。 注意:因为高分子的长链形状,才产生了如此多的结构层次。 (3)无规线团:高斯链的空间形态。换言之,无规蜷曲的柔性链的空间形态。(4)内旋转:sigma键的电子云轴对称,因此形成sigma键的两个原子可以绕键对称轴旋转。 注意:无论高分子或小分子,只要是sigma键就可内旋转。小分子的三维尺寸差不多,内旋转意义不大;而高分子的长短与粗细相差悬殊,故内旋转能导致高分子链出现天文数字的空间形态。我们一般只关注“主链上单键的内旋转”,不太关心侧基上单键。 (5)内旋转势垒:顺式构象与反式构象的位能差。 注意:参考图2-5。相当于内旋转活化能,内旋转势能峰高度。是ΔE而不是Δε。 (6)柔顺性:大分子链通过主链上单键的内旋转可以改变构象和形态的性质。(7)链段:大分子链上由相邻几个单键组成的能够自由取向的最小单位。 注意:链段实际上不存在,是一个人为的划分。很多时候算出来的链段长度是个非整数(譬如聚乙烯,le=倍单键投影长度)。但是链段有明确的物理意义,即链越柔顺,le越小。 (8)均方末端距:末端距平方的平均值。 注意:如何理解“平均值”?有两种“平均”方法,(1)可只对一个链进行时间平均;(2)也可对所有链(某一时刻)作平均。根据统计力学原理,二者的结果相同。

高分子物理第四章习题及解答

第四章 4.1 高聚物相对分子质量的统计意义 4.1.1 利用定义式计算相对分子质量 例4-1 假定A与B两聚合物试样中都含有三个组分,其相对分子质量分别为1万、10万和20万,相应的重量分数分别为:A是0.3、0.4和0.3,B是0.1、0.8 和0.1,计算此二试样的、和,并求其分布宽度指数、和多分散系数d。 解:(1)对于A (2)对于B 例4-2 假定某聚合物试样中含有三个组分,其相对分子质量分别为1万、2万和3万,今测得该试样的数均相对分子质量为2万、重均相对分子质量为2.3万,试计算此试样中各组分的摩尔分数和重量分数。 解:(1)

解得,, (2) 解得,, 例4-3 假定PMMA样品由相对分子质量100,000和400,000两个单分散级分以1:2的重量比组成,求它的,和,(假定a=0.5)并比较它们的大小. 解:

可见 例4-4 一个聚合物样品由相对分子质量为10000、30000和100000三个单分散组份组成, 计算下述混合物的和 (1)每个组份的分子数相等 (2)每个组份的重量相等 (3)只混合其中的10000和100000两个组份,混合的重量比分别为 0.145:0.855:0.5:0.5:0.855:0.145,评价值. 解:(1) (2) (3)当比例为0.145:0.855时 ,, 当比例为0.5:0.5时, ,, 当比例为0.855:0.145时, ,,

可见,组成接近时d值较大。故用d值衡量是合理的。 例4-5假定某一聚合物由单分散组分A和B组成,A和B的相对分子质量分别为100, 000和400,000。问分别以(1)A∶B=1∶2(重量比);(2)A∶B=2∶1混合样品, 混合物的和为多少?(3)A∶B=1∶2,a=0.72,计算, 并比较、、的大小。 解:(1)=1/100,000=1×10-5 =2/400,000=0.5×10-5 =2.0×10-5 (2)=2/100,000=2×10-5 =1/400,000=0.25×10-5 (3) 所以,<< *例4-6两种多分散样品等重量混合,样品A有=100,000,=200,000。

半导体器件物理(第二版)第二章答案

2-1.P N +结空间电荷区边界分别为p x -和n x ,利用2T V V i np n e =导出)(n n x p 表达式。给 出N 区空穴为小注入和大注入两种情况下的)(n n x p 表达式。 解:在n x x =处 ()()??? ??????? ??-=??? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp 而 ()()()000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) n p =(此为一般结果) 小注入:(0n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22 =或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零,用此方法推导方程 20ln i a d T p n n N N V =-=ψψψ。 解:净电子电流为 ()n n n n I qA D n x με?=+? 处于热平衡时,I n =0 ,又因为 d dx ψε=- 所以n n d n n D dx x ψμ?=?,又因为n T n D V μ=(爱因斯坦关系) 所以dn n V d T =ψ, 从作积分,则 2-3.根据修正欧姆定律和空穴扩散电流公式证明,在外加正向偏压V 作用下,PN 结N 侧 空穴扩散区准费米能级的改变量为qV E FP =?。 证明: 从12x x →积分:

将T n 2n0V /V 1n0P (x )P Pn(x )P e =???=??代入 得FP E qV ?= 2-4. 硅突变结二极管的掺杂浓度为:31510-=cm N d ,320104-?=cm N a ,在室温下计算: (a )自建电势(b )耗尽层宽度 (c )零偏压下的最大内建电场。 解:(a )自建电势为 (b )耗尽层宽度为 (с) 零偏压下最大内建电场为 2–5.若突变结两边的掺杂浓度为同一数量级,则自建电势和耗尽层宽度可用下式表示 试推导这些表示式。 解:由泊松方程得: 积分一次得 由边界条件 所以 再积分一次得 令 ()()0 0p p n n x x ψψψ?-=??=?? 得: 10D = , 20D ψ= 于是()()()()2020022a p p d n n qN x x x k qN x x x k ψεψψε?=+????=--+?? ()()n p x x o x x ≤≤≤≤-0 再由电势的连续性,当x =0时 , ()()00p n ψψ=: 所以 ()2200 2a p d n q N x N x k ψε=+ 再由 ?????=+=n d p a n p x N x N x x W 得 故 ()()()2 2222020022a d n p a d d a a d a d qN N x x N N W N N W q k k N N N N ψεε??++==??++???? 将 p a n d x N x N =代入上式,得 2–6.推导出线性缓变PN 结的下列表示式:(a )电场(b )电势分布(c )耗尽层宽度(d )

半导体器件物理施敏课后答案

半导体器件物理施敏课后答案 【篇一:半导体物理物理教案(03级)】 >学院、部:材料和能源学院 系、所;微电子工程系 授课教师:魏爱香,张海燕 课程名称;半导体物理 课程学时:64 实验学时:8 教材名称:半导体物理学 2005年9-12 月 授课类型:理论课授课时间:2节 授课题目(教学章节或主题): 第一章半导体的电子状态 1.1半导体中的晶格结构和结合性质 1.2半导体中的电子状态和能带 本授课单元教学目标或要求: 了解半导体材料的三种典型的晶格结构和结合性质;理解半导体中的电子态, 定性分析说明能带形成的物理原因,掌握导体、半导体、绝缘体的能带结构的特点 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):

1.半导体的晶格结构:金刚石型结构;闪锌矿型结构;纤锌矿型 结构 2.原子的能级和晶体的能带 3.半导体中电子的状态和能带(重点,难点) 4.导体、半导体和绝缘体的能带(重点) 研究晶体中电子状态的理论称为能带论,在前一学期的《固体物理》课程中已经比较完整地介绍了,本节把重要的内容和思想做简要的 回顾。 本授课单元教学手段和方法: 采用ppt课件和黑板板书相结合的方法讲授 本授课单元思考题、讨论题、作业: 作业题:44页1题 本授课单元参考资料(含参考书、文献等,必要时可列出) 1.刘恩科,朱秉升等《半导体物理学》,电子工业出版社2005? 2.田敬民,张声良《半导体物理学学习辅导和典型题解》?电子工 业 出版社2005 3. 施敏著,赵鹤鸣等译,《半导体器件物理和工艺》,苏州大学出 版社,2002 4. 方俊鑫,陆栋,《固体物理学》上海科学技术出版社 5.曾谨言,《量子力学》科学出版社 注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案;3. “重点”、“难点”、“教学手段和方法”部分要尽量具体;4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。

半导体器件物理(第二章)_194702163

半导体器件 物理进展 第二章(1) 半导体的导电理论Theory of Electrical Conduction in Semiconductor

本章主要介绍描述半导体中带电粒子(即载流子)运动规律的几个方程,包括载流子的电荷与外加电场、电势分布之间的相互关系。电子和空穴也不再作为单个粒子来处理,而是以晶体中宏观的载流子分布或者载流子浓度来处理。从分析方法上来看,也不再使用量子力学的处理方法,而是采用求解麦克斯韦方程组以及应用电荷守恒原理、浓度梯度导致的扩散过程等方法来进行分析。

本章主要内容: 电子在电场作用下的漂移 载流子的迁移率 漂移电流 扩散电流 漂移-扩散方程 电流输运方程 准费米能级

§1 电子在电场作用下的漂移 1. 晶格热振动与声子的概念 至此,我们讨论半导体材料中的载流子(包括导带电子和价带空穴)都是处于理想的晶体材料中(即具有完美的周期性势场),而在实际的晶体材料中,往往含有间隙原子、空位和一些特定的杂质,同时晶格原子往往还存在热振动(只要不是处在绝对零度条件下),这种晶格原子热振动的幅度主要与晶体材料所处的温度相关。利用量子力学和统计力学的方法对晶格原子热振动(特别是对其热振动的能量)所做的详细研究使得我们可以引入声子的概念来处理其与晶体中载流子之间的相互作用。

声子的概念: 所谓声子实际上是我们人为假想的一种准粒子,它反映了晶格原子热振动能量在晶体材料中与载流子之间相互传递、交换的过程。 对于各种实际的非完美晶体材料,其中存在着多种非理想因素:既包括上面介绍的间隙原子、空位或杂质原子,也包括晶格原子偏离平衡位置的热振动,它们都会对完美晶格的周期性势场产生一定的畸变,从而对其中载流子(包括导带中的电子和价带中的空穴)的运动产生一定的相互作用。

半导体器件物理(第二版)第二章答案

半导体器件物理(第二版)第二章答案

2-1.P N + 结空间电荷区边界分别为p x -和n x ,利用 2T V V i np n e =导出)(n n x p 表达式。给出N 区空穴为 小注入和大注入两种情况下的)(n n x p 表达式。 解:在 n x x =处 ()()??? ??? ???? ??-=?? ? ??-=KT E E n x n KT E E n x p i Fn i n n FP i i n n exp exp ()()VT V i Fp Fn i n n n n e n KT E E n x n x p 22exp =? ?? ? ??-= 而 ()()()000n n n n n n n n n n n n p x p p p n x n n n p x =+?≈?=+?=+ (n n n p ?=?) ()()T T V V i n n n V V i n n n e n p n p e n n n p 202 0=?+?=?+ 200 1T V V n i n n n p n p e n n ???+= ??? T V V 22n n0n i p +n p -n e =0 T V V 2 2n0n0i n -n +n +4n e p = (此为一般结果) 小注入:(0 n n n p <>? 且 n n p p ?= 所以 T V V i n e n p 22=或 T V V i n e n p 2= 2-2.热平衡时净电子电流或净空穴电流为零, 用此方法推导方程

半导体器件物理施敏课后答案

半导体器件物理施敏课后答案

半导体器件物理施敏课后答案 【篇一:半导体物理物理教案(03级)】 >学院、部:材料与能源学院 系、所;微电子工程系 授课教师:魏爱香,张海燕 课程名称;半导体物理 课程学时:64 实验学时:8 教材名称:半导体物理学 2005年9-12 月 授课类型:理论课授课时间:2节 授课题目(教学章节或主题): 第一章半导体的电子状态 1.1半导体中的晶格结构和结合性质 1.2半导体中的电子状态和能带 本授课单元教学目标或要求: 了解半导体材料的三种典型的晶格结构和结合性质;理解半导体中的电子态, 定性分析说明能带形成的物理原因,掌握导体、半导体、绝缘体的能带结构的特点 本授课单元教学内容(包括基本内容、重点、难点,以及引导学生解决重点难点的方法、例题等):

1.半导体的晶格结构:金刚石型结构;闪锌矿型结构;纤锌矿型结构 2.原子的能级和晶体的能带 3.半导体中电子的状态和能带(重点,难点) 4.导体、半导体和绝缘体的能带(重点) 研究晶体中电子状态的理论称为能带论,在前一学期的《固体物理》课程中已经比较完整地介绍了,本节把重要的内容和思想做简要的回顾。 本授课单元教学手段与方法: 采用ppt课件和黑板板书相结合的方法讲授 本授课单元思考题、讨论题、作业: 作业题:44页1题 本授课单元参考资料(含参考书、文献等,必要时可列出) 1.刘恩科,朱秉升等《半导体物理学》,电子工业出版社2005? 2.田敬民,张声良《半导体物理学学习辅导与典型题解》?电子工业 出版社2005 3. 施敏著,赵鹤鸣等译,《半导体器件物理与工艺》,苏州大学出版社,2002 4. 方俊鑫,陆栋,《固体物理学》上海科学技术出版社 5.曾谨言,《量子力学》科学出版社 注:1.每单元页面大小可自行添减;2.一个授课单元为一个教案; 3. “重点”、“难点”、“教学手段与方法”部分要尽量具体; 4.授课类型指:理论课、讨论课、实验或实习课、练习或习题课。

半导体器件物理(第二版)第二章答案.docx

2-1 . P N 结空间电荷区边界分别为 x p 和 x n ,利用 np n i 2e V V T 导出 p n ( x n ) 表达式。给 出 N 区空穴为小注入和大注入两种情况下的 p n ( x n ) 表达式。 p n x n E i E FP n i exp 解:在 x x n 处 KT E Fn E i n n x n n i exp KT p n x n n n x n n i 2 exp E Fn E Fp V KT n i 2 e VT 而 p n x n p n0 p n p n ( p n n n ) n n x n n n 0 n n n n 0 p n x n V V p n n n0 n n n i 2 e V T p n n n0 p n n i 2 e V T 2 V p 1 p n n i e V T n n n0 n n0 p n 2 + n n0 p n - n i 2 e V V T = 0 -n n0 + 2 2 V V n n0 +4n i e T p n = 2 ( 此为一般结果 ) 小注入:( p n n n 0 ) 2 V V p n n i e V T p n 0 e V T n i 2 n n0 p n0 n n 0 大注入: p n n n0 且 p n p n V V 所以 p n 2 n i 2 e V T 或 p n n i e 2V T 2-2 .热平衡时净电子电流或净空穴电流为零,用此方法推导方程 0np V T ln N d N a 。 n i 2 I n qA( D n n ) 解:净电子电流为 n n x d 处于热平衡时, I n = 0 ,又因为 dx

相关主题
文本预览
相关文档 最新文档