当前位置:文档之家› 计量经济学简单线性回归OLS的Matlab程序

计量经济学简单线性回归OLS的Matlab程序

计量经济学简单线性回归OLS的Matlab程序
计量经济学简单线性回归OLS的Matlab程序

计量经济学简单线性回归OLS的Matlab程序

wxh1000

2011-09-21

先写OLS.m的M文件,用来代替regress函数;

(目前对regress函数不太了解,这里特别感谢潘晓炜同学的提醒)

-----------------------------------------------------------------------------------↓

function [beta_0 beta_1]=OLS(y,x)

%Ordinary Linear Regression

%其中x,y为样本构成的向量;

%回归方程为Simple regression: y=beta_0+x*beta_1+u;

%y_mean=mean(y);

%x_mean=mean(x);

%beta_1=((x-x_mean)*(y-y_mean)')/((x-x_mean)*(x-x_mean)');

%beta_0=y_mean-beta_1*x_mean;

%其中u为服从N(0,sigma^2)随机变量;

y_mean=mean(y);

x_mean=mean(x);

beta_1=((x-x_mean)*(y-y_mean)')/((x-x_mean)*(x-x_mean)');

beta_0=y_mean-beta_1*x_mean;

-----------------------------------------------------------------------------------↑

然后写OLS_test.m的M文件,用来进行模拟;

-----------------------------------------------------------------------------------↓

function [b_0 b_1]=OLS_test(beta_0,beta_1,n,a,b,sigma)

%已知beta_0,beta_1,由OLS回归得b_0,b_1.两者进行比较得到估计效果;

%y=beta_0+beta_1*x+u来得到;

%x为随机向量,u为服从N(0,sigma^2)随机变量;

%n为模拟数据量,比如1,10,100,1000等;

%x=a+b*rand(1,n);%产生(a,a+b)区间上的随机向量;

%mu= ;sigma= ;%随机矩阵服从均值为mu,方差为sigma的正态分布

%M= ;N= %M,N为产生[M,N]的随机矩阵

%x=mu+sqrt(sigma)*randn(M,N);%x为新生成的矩阵[M,N],服从均值为mu,方差为sigma的正态分布;

x=a+b*rand(1,n);%产生(a,a+b)区间上的随机向量;

%随机矩阵服从均值为0,方差为sigma的正态分布

u=sqrt(sigma)*randn(1,n);

y=beta_0+beta_1*x+u;

%用OLS函数进行回归即可:[beta_0 beta_1]=OLS(y,x);

[b_0 b_1]=OLS(y,x);

sprintf('已知参数\n\tbeta_0=%0.5g\n\tbeta_1=%0.5g\n模拟后,OLS估计值为\n\tbeta_0=%0.5g\n\tbeta_1=%0.5g',beta_0,beta_1,b_0,b_1) -----------------------------------------------------------------------------------↑

运行结果如下:

-----------------------------------------------------------------------------------↓

>> [b_0 b_1]=OLS_test(20,0.7,2,1,99,1)

ans =

已知参数

beta_0=20

beta_1=0.7

模拟后,OLS估计值为

beta_0=19.394

beta_1=0.72626

>> [b_0 b_1]=OLS_test(20,0.7,100,1,99,1)

ans =

已知参数

beta_0=20

beta_1=0.7

模拟后,OLS估计值为

beta_0=19.894

beta_1=0.70479

>> [b_0 b_1]=OLS_test(20,0.7,10000,1,99,1)

ans =

已知参数

beta_0=20

beta_1=0.7

模拟后,OLS估计值为

beta_0=19.988

beta_1=0.70018

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型

2006年 217656.6 77597.2 63376.86 2007年 268019.4 93563.6 73300.1 2008年 316751.7 100394.94 79526.53 2009年 345629.2 82029.69 68618.37 2010年 408903 107022.84 94699.3 2011年 484123.5 123240.56 113161.39 2012年 534123 129359.3 114801 2013年 588018.8 137131.4 121037.5 2014年 636138.7 143911.66 120422.84 数据来源:国家统计局 三、模型的检验及结果的解释、评价 (一)OLS 法的检验 相关系数: Y X1 X2 Y 1 0.9799919175967026 0.98352422945 0628 X1 0.97999191759 67026 1 0.99756527944 46187 X2 0.983524229450628 0.99756527944 46187 1 线性图: 100,000 200,000300,000400,000500,000600,000700,000Y X1 X2 估计参数: Dependent Variable: Y

Method: Least Squares Date: 12/14/15 Time: 14:47 Sample: 1985 2014 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob. C 3775.319359 326024 8769.9280467 183 0.4304846447 102545 0.67026006 64360232 X1 -0.91272630 85551189 1.9385186318 83585 -0.470837005 9194414 0.64153894 75333828 X2 5.522785592 51161 2.2548570541 42605 2.4492841275 08302 0.02108703 0146243 R-squared 0.967586049 4429319 Mean dependent var 173871.823 3333334 Adjusted R-squared 0.965185016 0683343 S.D. dependent var 187698.441 4104575 S.E. of regression 35022.22758 863741 Akaike info criterion 23.8599929 764685 Sum squared resid 3311702348 2.29852 Schwarz criterion 24.0001127 1463471 Log likelihood -354.899894 6470274 Hannan-Quinn criter. 23.9048184 8460881 F-statistic 402.9873385 683694 Durbin-Watson stat 0.54328498 36158895 Prob(F-statistic) 7.850214650 723685e-21 统计检验: (1)拟合优度:从上表可以得到R2=0.9675860494429319,修正后的可决系数R2=0.9651850160683343,这说明模型对样本的拟合很好。 (2)F检验:针对H0: (二)多重共线性的检验及修正 相关系数矩阵: X1 X2

计量经济学实验报告(多元线性回归 自相关 )

实验报告 课程名称计量经济学 实验项目名称多元线性回归自相关 异方差多重共线性班级与班级代码 08国际商务1班实验室名称(或课室)实验楼910 专业国际商务 任课教师刘照德 学号: 043 姓名:张柳文 实验日期: 2011 年 06 月 23日 广东商学院教务处制

姓名张柳文实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存。

计量经济学实验报告 实验项目:多元线性回归、自相关、异方差、多重共线性 实验目的:掌握多元线性回归模型、自相关模型、异方差模型、多重共线性模型的估计和检验方法和处理方法 实验要求:选择方程进行多元线性回归;熟悉图形法检验和掌握D-W 检验,理解广义差分法变换和掌握迭代法;掌握Park或 Glejser检验,理解同方差性变换; 实验原理:普通最小二乘法图形检验法 D-W检验广义差分变换加权最小二乘法 Park检验等 实验步骤: 首先:选择数据 为了研究影响中国税收收入增长的主要原因,选择国内生产总值(GDP)、财政支出(ED)、商品零售价格指数(RPI)做为解释变量,对税收收入(Y)做多元线性回归。从《中国统计年鉴》2011中收集1978—2009年各项影响因素的数据。如下表所示: 中国税收收入及相关数据

实验一:多元线性回归 1、将数据导入后,分别对三个解释变量与被解释变量做散点图,选择两个变量作为group打开,在数据表“group”中点击view/graph/scatter/simple scatter,出现数据的散点图,分别如下图所示: 从散点图看,变量间不一定呈现线性关系,可以试着作线性回归。 2、进行因果关系检验

计量经济学简单线性回归实验报告精编

实验报告 1. 实验目的随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。 2. 模型设定 为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量” 为被解释变量(用Y 表示),选择“人均收入”为解释变量(用X 表 示)。本次实验报告数据取自某市从1974 年到1987 年的数据(教材书上101页表3.11),数据如下图所示:

1粮食年销售量Y/万吨人均收入X/ rF1974[ 9& 45153.2 1975100.7190 pl1976102.8240.3 1977133. 95301.12 [61978140.13361 71979143.11420 8—1980146.15491.76「91981144.6501 101982148. 94529.2 1 11-1983158.55552. 72匸1984169. 68771.16 131985P 162.1481L8 14二1986170. 09988.43 1519871F& 691094.65为分析粮食年销售量与人均收入的关系,做下图所谓的散点图 从散点图可以看出粮食年销售量与人均收入大体呈现为线性关 系,可以建立如下简单现行回归模型: 3?估计参数

Y t = ■? 1 2 X t ——I t 假定所建模型及其中的随机扰动项叫满足各项古典假定,可以 用OLS法估计其参数。 通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示: Dependent Variable Y Method: Least Squares Date 10/15/11 Time 14 49 Sample- 1 14 Included observations: 14 Variable Coefficient Std Error t-Statistic Prob C99 61349 6 431242 15 489000 0000 X0.0814700.010738 7.5071190.0000 R-squared0 827493Mean dependent var142 7129 Adjusted R-squared0 813123S.D. dependent var26.09805 S E of regression11 28200Akaike info criterion7 915858 Sum squared resid1527 403Schwarz criterion7 907152 Log likelihood-52.71101F-statisti c5756437 Durbin-V/atson stat0 638969Prob(尸-statistic)0 000006 可用规范的形式将参数估计和检验的结果写为: A Y t =99.61349+0.08147 X t (6.431242)(0.10738) t= (15.48900) (7.587119) R2=0.827498 F=57.56437 n=14 4?模型检验 (1).经济意义检验 A A 所估计的参数1=99.61349, 1 2=0.08147,说明人均收入每增加 1元,平均说来可导致粮食年销售量提高0.08147元。这与经济学中

利用Matlab进行线性回归分析之欧阳歌谷创编

利用Matlab进行线性回归分析 欧阳歌谷(2021.02.01) 回归分析是处理两个及两个以上变量间线性依存关系的统计方法。可以通过软件Matlab实现。 1.利用Matlab软件实现 在Matlab中,可以直接调用命令实现回归分析, (1)[b,bint,r,rint,stats]=regress(y,x),其中b是回归方程中的参数估计值,bint是b的置信区间,r和rint分别表示残差及残差对应的置信区间。stats包含三个数字,分别是相关系数,F统计量及对应的概率p值。 (2)recplot(r,rint)作残差分析图。 (3)rstool(x,y)一种交互式方式的句柄命令。 以下通过具体的例子来说明。 例现有多个样本的因变量和自变量的数据,下面我们利用Matlab,通过回归分析建立两者之间的回归方程。 % 一元回归分析 x=[1097 1284 1502 1394 1303 1555 1917 2051 2111 2286 2311

2003 2435 2625 2948 3, 55 3372];%自变量序列数据 y=[698 872 988 807 738 1025 1316 1539 1561 1765 1762 1960 1902 2013 2446 2736 2825];%因变量序列数据 X=[ones(size(x')),x'],pause [b,bint,r,rint,stats]=regress(y',X,0.05),pause%调用一元回归分析函数rcoplot(r,rint)%画出在置信度区间下误差分布。 % 多元回归分析 % 输入各种自变量数据 x1=[5.5 2.5 8 3 3 2.9 8 9 4 6.5 5.5 5 6 5 3.5 8 6 4 7.5 7]'; x2=[31 55 67 50 38 71 30 56 42 73 60 44 50 39 55 7040 50 62 59]'; x3=[10 8 12 7 8 12 12 5 8 5 11 12 6 10 10 6 11 11 9 9]'; x4=[8 6 9 16 15 17 8 10 4 16 7 12 6 4 4 14 6 8 13 11]'; %输入因变量数据 y=[79.3 200.1 163.1 200.1 146.0 177.7 30.9 291.9 160 339.4 159.6 86.3 237.5 107.2 155 201.4 100.2 135.8 223.3 195]'; X=[ones(size(x1)),x1,x2,x3,x4]; [b,bint,r,rint,stats]=regress(y,X)%回归分析 Q=r'*r sigma=Q/18 rcoplot(r,rint); %逐步回归 X1=[x1,x2,x3,x4];

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型应用作业 1985~2014年中国GDP与进口、出口贸易总额的关系 一、概述 在当今市场上,一国的GDP与多个因素存在着紧密的联系,例如进口总额和出口总额等都是影响一国GDP 的重要因素。本次将以中国1985-2014年GDP和进口总额、出口总额两个因素因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调贸易对GDP 的重要性,从而促进国内生产总值的发展。 二、模型构建过程 ⒈变量的定义 解释变量:X1进口贸易总额,X2出口贸易总额被解释变量:Y国内生产总值 建立计量经济模型:解释原油产量与进口贸易总额、出口贸易总额之间的关系。 ⒉模型的数学形式 设定GDP与两个解释变量相关关系模型,样本回归模型为: ⒊数据的收集 该模型的构建过程中共有两个变量,分别是中国从1990-2006年民用汽车拥有量、电力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数据作为预测对比数据,收集的数据如下所示 时间国内生产总值(亿元) 出口总额(人民币亿 元) 进口总额(人民币亿 元) 1985年9039.9 808.9 1257.8 1986年10308.8 1082.1 1498.3 1987年12102.2 1470 1614.2 1988年15101.1 1766.7 2055.1 1989年17090.3 1956 2199.9 1990年18774.3 2985.8 2574.3 1991年21895.5 3827.1 3398.7 1992年27068.3 4676.3 4443.3 1993年35524.3 5284.8 5986.2 1994年48459.6 10421.8 9960.1 1995年61129.8 12451.8 11048.1 1996年71572.3 12576.4 11557.4 1997年79429.5 15160.7 11806.5 1998年84883.7 15223.6 11626.1 1999年90187.7 16159.8 13736.5 2000年99776.3 20634.4 18638.8 2001年110270.4 22024.4 20159.2 2002年121002 26947.9 24430.3 2003年136564.6 36287.9 34195.6 2004年160714.4 49103.3 46435.8 2005年185895.8 62648.1 54273.7

多元回归分析matlab剖析

回归分析MATLAB 工具箱 一、多元线性回归 多元线性回归:p p x x y βββ+++=...110 1、确定回归系数的点估计值: 命令为:b=regress(Y , X ) ①b 表示???? ?? ????????=p b βββ?...??10 ②Y 表示????????????=n Y Y Y Y (2) 1 ③X 表示??? ??? ????? ???=np n n p p x x x x x x x x x X ...1......... .........1 (12) 1 22221 11211 2、求回归系数的点估计和区间估计、并检验回归模型: 命令为:[b, bint,r,rint,stats]=regress(Y ,X,alpha) ①bint 表示回归系数的区间估计. ②r 表示残差. ③rint 表示置信区间. ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r 2、F 值、与F 对应的概率p. 说明:相关系数2 r 越接近1,说明回归方程越显著;)1,(1-->-k n k F F α时拒绝0H ,F 越大,说明回归方程越显著;与F 对应的概率p α<时拒绝H 0,回归模型成立. ⑤alpha 表示显著性水平(缺省时为0.05) 3、画出残差及其置信区间. 命令为:rcoplot(r,rint) 例1.如下程序. 解:(1)输入数据. x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; (2)回归分析及检验. [b,bint,r,rint,stats]=regress(Y ,X) b,bint,stats 得结果:b = bint =

matlab建立多元线性回归模型并进行显著性检验及预测问题

matlab建立多元线性回归模型并进行显着性检验及预测问题 例子; x=[143 145 146 147 149 150 153 154 155 156 157 158 159 160 162 164]'; X=[ones(16,1) x]; 增加一个常数项Y=[88 85 88 91 92 93 93 95 96 98 97 96 98 99 100 102]'; [b,bint,r,rint,stats]=regress(Y,X) 得结果:b = bint = stats = 即对应于b的置信区间分别为[,]、[,]; r2=, F=, p= p<, 可知回归模型y=+ 成立. 这个是一元的,如果是多元就增加X的行数! function [beta_hat,Y_hat,stats]=regress(X,Y,alpha) % 多元线性回归(Y=Xβ+ε)MATLAB代码 %? % 参数说明 % X:自变量矩阵,列为自变量,行为观测值 % Y:应变量矩阵,同X % alpha:置信度,[0 1]之间的任意数据 % beta_hat:回归系数 % Y_beata:回归目标值,使用Y-Y_hat来观测回归效果 % stats:结构体,具有如下字段 % =[fV,fH],F检验相关参数,检验线性回归方程是否显着 % fV:F分布值,越大越好,线性回归方程越显着 % fH:0或1,0不显着;1显着(好) % =[tH,tV,tW],T检验相关参数和区间估计,检验回归系数β是否与Y有显着线性关系 % tV:T分布值,beta_hat(i)绝对值越大,表示Xi对Y显着的线性作用% tH:0或1,0不显着;1显着 % tW:区间估计拒绝域,如果beta(i)在对应拒绝区间内,那么否认Xi对Y显着的线性作用 % =[T,U,Q,R],回归中使用的重要参数 % T:总离差平方和,且满足T=Q+U % U:回归离差平方和 % Q:残差平方和 % R∈[0 1]:复相关系数,表征回归离差占总离差的百分比,越大越好% 举例说明 % 比如要拟合y=a+b*log(x1)+c*exp(x2)+d*x1*x2,注意一定要将原来方程线化% x1=rand(10,1)*10; % x2=rand(10,1)*10; % Y=5+8*log(x1)+*exp(x2)+*x1.*x2+rand(10,1); % 以上随即生成一组测试数据 % X=[ones(10,1) log(x1) exp(x2) x1.*x2]; % 将原来的方表达式化成Y=Xβ,注意最前面的1不要丢了

计量经济学判断题 )

1. 总离差平方和可分解为回归平方和与残差平方和。( 对 ) 2. 整个多元回归模型在统计上是显着的意味着模型中任何一个单独的解释变量均是统计显着的。( 错 ) 3. 多重共线性只有在多元线性回归中才可能发生。( 对 ) 4. 通过作解释变量对时间的散点图可大致判断是否存在自相关。( 错 ) 5. 在计量回归中,如果估计量的方差有偏,则可推断模型应该存在异方差( 错 ) 6. 存在异方差时,可以用广义差分法来进行补救。( 错 ) 7. 当经典假设不满足时,普通最小二乘估计一定不是最优线性无偏估计量。( 错 ) 8. 判定系数检验中,回归平方和占的比重越大,判定系数也越大。( 对 ) 9. 可以作残差对某个解释变量的散点图来大致判断是否存在自相关。( 错 )做残差 ) n 5、经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量将有偏的。错,,即使经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量仍然是无偏的。 因为222)()?(βμββ=+=∑i i K E E ,该表达式成立与否与正态性无关。 1、在简单线性回归中可决系数2R 与斜率系数的t 检验的没有关系。错误,在简单线性回归 中,由于解释变量只有一个,当t 检验显示解释变量的影响显着时,必然会有该回归模型的可决系数大,拟合优度高。 2、异方差性、自相关性都是随机误差现象,但两者是有区别的。正确,异方差的出现总是与模型中某个解释变量的变化有关。自相关性是各回归模型的随机误差项之间具有相关关

系。3、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与模型有无截距项无关。错误,模型有截距项时,如果被考察的定性因素有m个相互排斥属性,则模型中引入m-1个虚拟变量,否则会陷入“虚拟变量陷阱”;模型无截距项时,若被考察的定性因素有m个相互排斥属性,可以引入m个虚拟变量,这时不会出现多重共线性。 4、满足阶条件的方程一定可以识别。错误,阶条件只是一个必要条件,即满足阶条件的的方程也可能是不可识别的。 5、库依克模型、自适应预期模型与局部调整模型的最终形式是不同的。错误,库依克模型、自适应预期模型与局部调整模型的最终形式是相同的,其最终形式都是一阶自回归模型。2、多重共线性问题是随机扰动项违背古典假定引起的。错误,应该是解释变量之间高度相关引起的. (3) 线性回归模型意味着因变量是自变量的线性函数。(错) (4) 在线性回归模型中,解释变量是原因,被解释变量是结果。(对) 1、虚拟变量的取值只能取0或1(对) 2、通过引入虚拟变量,可以对模型的参数变化进行检验(对) 1、简单线性回归模型与多元线性回归模型的基本假定是相同的。错 在多元线性回归模型里除了对随机误差项提出假定外,还对解释变量之间提 出无多重共线性的假定。 2、在模型中引入解释变量的多个滞后项容易产生多重共线性。对 在分布滞后模型里多引进解释变量的滞后项,由于变量的经济意义一样,只

逐步回归matlab程序

~ function stepregress(x,y,F) x=zscore(x,1); %数列标准化 y=zscore(y,1); %数列标准化 r=corrcoef([x,y]); l=0; %消去的次数 L=0; %引入变量的个数 [n,m]=size(x); %m为变量的个数,n为观测的次数 k=ones(m); ? q=1; %判断逐步回归是否继续 while(q==1) q=0; for i=1:m v(i)=r(i,m+1)^2/r(i,i); %计算各因子的方差贡献 end max=1; min=1; > for i=1:m if((max==1)&&(k(i)==1)&&(k(1)==0))||((v(i)>v(max))&&(k(i)==1)) max=i; end if((min==1)&&(k(i)==0)&&(k(1)==1))||((v(i)F) disp( [ '引入第', num2str(max), '个变量']); k(max)=0; L=L+1; l=l+1; ¥ r=matdel(max,m+1,r); %matdel为消去变换程序 q=1; end else F2=v(min)/(r(m+1,m+1)/(n-l-1)); if((F2

matlab与统计回归分析 (1)

一Matlab作方差分析 方差分析是分析试验(或观测)数据的一种统计方法。在工农业生产和科学研究中,经常要分析各种因素及因素之间的交互作用对研究对象某些指标值的影响。在方差分析中,把试验数据的总波动(总变差或总方差)分解为由所考虑因素引起的波动(各因素的变差)和随机因素引起的波动(误差的变差),然后通过分析比较这些变差来推断哪些因素对所考察指标的影响是显著的,哪些是不显著的。 【例1】(单因素方差分析)一位教师想要检查3种不同的教学方法的效果,为此随机地选取水平相当的15位学生。把他们分为3组,每组5人,每一组用一种方法教学,一段时间以后,这位教师给15位学生进行统考,成绩见下表1。问这3种教学方法的效果有没有显著差异。 表1 学生统考成绩表 方法成绩 甲75 62 71 58 73 乙71 85 68 92 90 丙73 79 60 75 81 Matlab中可用函数anova1(…)函数进行单因子方差分析。 调用格式:p=anova1(X) 含义:比较样本m×n的矩阵X中两列或多列数据的均值。其中,每一列表示一个具有m 个相互独立测量的独立样本。 返回:它返回X中所有样本取自同一总体(或者取自均值相等的不同总体)的零假设成立的概率p。

解释:若p值接近0(接近程度有解释这自己设定),则认为零假设可疑并认为至少有一个样本均值与其它样本均值存在显著差异。 Matlab程序: Score=[75 62 71 58 73;81 85 68 92 90;73 79 60 75 81]’; P=anova1(Score) 输出结果:方差分析表和箱形图 ANOVA Table Source SS df MS F Prob>F Columns 604.9333 2 302.4667 4.2561 0.040088 Error 852.8 12 71.0667 Total 1457.7333 14 由于p值小于0.05,拒绝零假设,认为3种教学方法存在显著差异。 例2(双因素方差分析)为了考察4种不同燃料与3种不同型号的推进器对火箭射程(单位:海里)的影响,做了12次试验,得数据如表2所示。 表2 燃料-推进器-射程数据表 推进器1 推进器2 推进器3 燃料1 58.2 56.2 65.3 燃料2 49.1 54.1 51.6 燃料3 60.1 70.9 39.2 燃料4 75.8 58.2 48.7 在Matlab中利用函数anova2函数进行双因素方差分析。 调用格式:p=anova2(X,reps)

计量经济学多元线性回归

低碳农业发展影响因素分析——以新疆南疆五地州为例 学生姓名方芳 学号1075717008 所属学院经济与管理学院 专业农村与区域发展 塔里木大学教务处制

目录 1 引言 (1) 2 数据来源和研究方法 (1) 2.1数据来源 (1) 2.2研究方法 (2) 3 模型检验与结果 (3) 3.1初始模型计量 (3) 3.2检验 (3) 4 结论与建议 (4) 5 参考文献 (4)

低碳农业发展影响因素分析 --以新疆南疆五地州为例 方芳 摘要:全球变暖问题引起世界各国的广泛关注,这一变化使得自然灾害频发,甚至危及人类安全,因此解决这一问题迫在眉睫。通过对新疆南疆五地州的农业总产值与化肥施用量、农用机械总动力及农作物总播种面积进行回归分析后,发现化肥施用量对农作物的总产值影响极大,是其主要的制约因素。要发展低碳农业应转变农业生产方式,实施保护性耕作;应推广施肥新技术,提高化肥利用率;应改进装置,利用新技术生产化肥;发展生态农业,实现经济循环发展。 关键字:低碳农业影响因素回归分析 1 引言 近年来气候变化所导致的高温热潮、暴雨连连、旱灾、沙尘暴频发事件的概率持续增加,CO2是造成该现象的源头之一,因此,发展低碳经济、发展节能减排成为全球关注的热点。2014 年《中美气候变化联合声明》提出我国将于2030 年左右达到碳排放峰值的庄严承诺,2015 年12 月12 日,195个缔约方在巴黎达成了新的全球气候协议———《巴黎协议》,提出努力将气温升幅限制在1.5℃内的目标。农业碳排放量介于电热生产和尾气之间,成为第二大排放源,占我国碳排放总量的17%。新疆位于亚欧大陆腹地,地处中国西北边陲,是中国面最大、交界邻国最多、陆地边境线最长的省区,肩负着与重要世界经济资源大国沿边开放的重任。同时,新疆作为我国重要的种植业和畜牧业基地,以8%的绿洲面积承载了90%以上的人口、耕地和生产总值,绿色生态压力相当严峻。新疆南疆位于天山以南的塔里木盆地 ,四周高山环抱。在行政区划上包括巴音郭楞、阿克苏、喀什、克孜勒苏、和田等五地州及生产建设兵团的四个农业师。塔里木河是我国最大的内陆河,它由西向东1321km,流域覆盖新疆南部地区,面积102万km2,人口825.7万 ,分别占新疆自治区的61%和 47%,是我国重要的棉花基地。冉锦成、苏洋等人研究表明,南疆各地 (州,市) 区域差异明显,喀什地区属碳排放量、碳排放强度“双高”型地区,因此,通过对农业产值与化肥施用量、机械总动力以及农作物播种面积的回归分析,试图找到影响低碳农业发展的主要因素,并提出相关的建议,促进农业实现低碳生产。 2 数据来源和研究方法 2.1数据来源 本文选取的是新疆2006--2016年的农业生产数据,其中包括:农业总产值(亿)Y,化肥施用量(万吨)(X1)、农用机械总动力(万千瓦)(X2)、农作物总播种面积(万公顷)(X3),数据来源于《中国统计年鉴》和《新疆统计年鉴》(2006--2016),数据见表1。 表1 新疆统计年鉴2006-2016样本数据

计量经济学多元线性回归模型

多元线性回归模型 一.概述 当今农村农民人均纯收入与多个因素存在着紧密的联系,例如人均工资收入,人均农林牧渔产值人均生产费用支出,人均转移性和财产性收入等。本次将以安徽1995-2009年农村居民纯收入与人均工资收入,人均生产费用支出,人均转移性和财产性收入等因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调农村居民生活的重要性,从而促进全国经济的发展。 二、模型构建过程 ⒈变量的定义 被解释变量:农民人均纯收入y 解释变量:人均工资收入x1, 人均农林牧渔产值x2 人均生产费用支出x3 人均转移性和财产性收入x4。 建立计量经济模型:解释农民人均纯收入与人均工资收入,人均生产费用支出,人均转移性和财产性收入的关系 ⒉模型的数学形式 设定农民人均纯收入与五个解释变量相关关系模型,样本回归模型为: ∧Y i=∧ β + ∧ β 1 X i1+∧β 2 X i2+∧β 3 X i3+∧β 4 X i4+e i ⒊数据的收集 该模型的构建过程中共有四个变量,分别是中国从1995-2009年人均工资收入,人均农林牧渔产值人均生产费用支出,人均转移性和财产性收入,因此为时间序列数据,最后一个即2009年的数据作为预测对比数据,收集的数据如下所示: ⒋用OLS法估计模型 回归结果,散点图分别如下:

Y?=33.632+0.659X1+0.59X2-0.274X3+0.152X4 i d.f.=10 ,R2=0.997116 , Se=(186.261) (0.1815 (0.1245) (0.2037) (0.5699) t=(0.1805) (3.632) (4.741) (-1.347) (2.674) 三、模型的检验及结果的解释、评价

利用MATLAB进行回归分析

利用MATLAB进行回归分析 一、实验目的: 1.了解回归分析的基本原理,掌握MATLAB实现的方法; 2. 练习用回归分析解决实际问题。 二、实验内容: 题目1 社会学家认为犯罪与收入低、失业及人口规模有关,对20个城市的犯罪率y(每10万人中犯罪的人数)与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数3x(千人)进行了调查,结果如下表。 (1)若1x~3x中至多只许选择2个变量,最好的模型是什么? (2)包含3个自变量的模型比上面的模型好吗?确定最终模型。 (3)对最终模型观察残差,有无异常点,若有,剔除后如何。 理论分析与程序设计: 为了能够有一个较直观的认识,我们可以先分别作出犯罪率y与年收入低于5000美元家庭的百分比1x、失业率2x和人口总数 x(千人)之间关系的散点图,根据大致分布粗略估计各因素造 3 成的影响大小,再通过逐步回归法确定应该选择哪几个自变量作为模型。

编写程序如下: clc; clear all; y=[11.2 13.4 40.7 5.3 24.8 12.7 20.9 35.7 8.7 9.6 14.5 26.9 15.7 36.2 18.1 28.9 14.9 25.8 21.7 25.7]; %犯罪率(人/十万人) x1=[16.5 20.5 26.3 16.5 19.2 16.5 20.2 21.3 17.2 14.3 18.1 23.1 19.1 24.7 18.6 24.9 17.9 22.4 20.2 16.9]; %低收入家庭百分比 x2=[6.2 6.4 9.3 5.3 7.3 5.9 6.4 7.6 4.9 6.4 6.0 7.4 5.8 8.6 6.5 8.3 6.7 8.6 8.4 6.7]; %失业率 x3=[587 643 635 692 1248 643 1964 1531 713 749 7895 762 2793 741 625 854 716 921 595 3353]; %总人口数(千人) figure(1),plot(x1,y,'*'); figure(2),plot(x2,y,'*'); figure(3),plot(x3,y,'*'); X1=[x1',x2',x3']; stepwise(X1,y) 运行结果与结论:

应用回归分析 matlab程序自相关

4.13 表中是某软件公司月销售额数据,其中,x为总公司的月销售额(万元);y为某分公司的月销售额(万元)。 (1)用普通最小二乘法建立x和y的回归方程。 (2)用残差图及DW检验诊断序列的自相关性。 (3)用迭代法处理序列相关,并建立回归方程。 (4)用一阶差分法处理数据,并建立回归方程。 (5)比较以上各方法所建回归方程的优良性。 序号x y 序号x y 1 127.3 20.96 11 148.3 24.54 2 130.0 21.40 12 146.4 24.28 3 132.7 21.96 13 150.2 25.00 4 129.4 21.52 14 153.1 25.64 5 135.0 22.39 15 157.3 26.46 6 137.1 22.76 16 160. 7 26.98 7 141.1 23.48 17 164.2 27.52 8 142.8 23.66 18 165.6 27.78 9 145.5 24.10 19 168.7 28.24 10 145.3 24.01 20 172.0 28.78 (1)aa_size=size(aa,1) >> x=[ones(aa_size,1),aa(:,1)]; >> y=aa(:,2); >> b_est=inv(x'*x)*x'*y; b_est b_est = -1.4348 0.1762 (2) y_est=x*b_est; >> b1=y-y_est; >> plot(b1,'ro') p01=sum(b1(1:(aa_size-1)).*b1(2:(aa_size))); >> p02=sqrt(sum(b1(1:(aa_size-1)).^2)*sum(b1(2:aa_size).^2)); >> p=p01/p02 DW=2*(1-p) DW = 0.6793

matlab中回归分析实例分析

1.研究科研人员的年工资与他的论文质量、工作年限、获得资助指标之间的关系.24位科研人员的调查数据(ex81.txt): 设误差ε~(0,σ 2 ), 建立回归方程; 假定某位人员的观测值 , 预测年工资及置信度为 95%的置信区间. 程序为:A=load('ex81.txt') Y=A(:,1) X=A(1:24,2:4) xx=[ones(24,1) X] b = regress(Y,X) Y1=xx(:,1:4)*b x=[1 5.1 20 7.2] s=sum(x*b) 调出Y 和X 后,运行可得: b = 17.8469 1.1031 0.3215 1.2889 010203(,,)(5.1,20,7.2)x x x =

x = 1.0000 5.1000 20.0000 7.2000 s = 39.1837 所以,回归方程为:Y= 17.8469+1.1031X1+0.3215X2+1.2889X3+ε 当 时,Y=39.1837 2、 54位肝病人术前数据与术后生存时间(ex82.txt,指标依次为凝血值,预后指数,酵素化验值,肝功能化验值,生存时间). (1) 若用线性回归模型拟合, 考察其各假设合理性; (2) 对生存是时间做对数变换,用线性回归模型拟合, 考察其各假设合理性; (3) 做变换 用线性回归模型拟合, 考察其各假设合理性; (4) 用变量的选择准则,选择最优回归方程 010203 (,,)(5.1,20,7.2)x x x =0.0710.07 Y Z -=

(5)用逐步回归法构建回归方程 程序为:A=load('ex82.txt') Y=A(:,5) X=A(1:54,1:4) xx=[ones(54,1) X] [b,bint,r,rint,stats]=regress(Y,xx) 运行结果为: b = -621.5976 33.1638 4.2719 4.1257 14.0916 bint = -751.8189 -491.3762 19.0621 47.2656 3.1397 5.4040 3.0985 5.1530 -11.0790 39.2622

计量经济学回归模型实验报告

回归模型分析报告 背景意义: 教育是立国之本,强国之基。随着改革开放的进行、经济的快速发展和人们生活水平的逐步提高,“教育”越来越受到人们的重视。一方面,人均国内生产总值的增加与教育经费收入的增加有着某种联系,而人口的增长也必定会对教育经费收入产生影响。本报告将从这两个方面进行分析。 我国1991年~2013年的教育经费收入、人均国内生产总值指数、年末城镇人口数的统计资料如下表所示。试建立教育经费收入Y关于人均国内生产总值指数X1和年末城镇人口数X2的回归模型,并进行回归分析。 年份教育经费收入 Y(亿元) 人均国内生产总值指数 X1(1978年=100) 年末城镇人口数 X2(万人) 199131203 199232175 199333173 199434169 199535174 199637304 199739449 199841608 199943748 200045906 200148064 200250212 200352376 200454283 200556212 200658288 200760633 200862403 200964512 201066978 201169079 201271182 201373111 资料来源:中经网统计数据库。 根据经济理论和对实际情况的分析可以知道,教育经费收入Y依赖于人均国内生产总值指数X1和年末城镇人口数X2的变化,因此我们设定回归模型为 Y Y=Y0+Y1Y1Y+Y2Y2Y+Y Y 应用EViews的最小二乘法程序,输出结果如下表 Y?Y=5058.835+28.7491Y1Y?0.3982Y2Y

R2= Y???2= F= 异方差的检验 1.Goldfeld-Quandt检验 X1和X2的样本观测值均已按照升序排列,去掉中间X1和X2各5个观测值,用第一个子样本回归: Y?Y=?3510.668+5.9096Y1Y+0.0839Y2Y SSE1= 用第二个子样本回归: Y?Y=178636.6+107.5861Y1Y?4.7488Y2Y SSE2=6602898 H0=u t具有同方差, H1=u t具有递增型异方差 构造F统计量。F=SSE2 SSE1=6602898 45633.64 =>(9,9) = 所以拒绝原假设,计量模型的随机误差项存在异方差 2.White检验 因为模型中含有两个解释变量,辅助回归式一般形式如下 Y?Y2=Y0+Y1Y Y1+Y2Y Y2+Y3Y Y12+Y4Y Y22+Y5Y Y1Y Y2+Y Y 辅助回归式估计结果如下 Y?Y2=??40478.23Y Y1+1067.432Y Y2?18.9196Y Y12?0.0202Y Y22 +1.3633Y Y1Y Y2 因为TR2=>Y0.12 (5)= 该回归模型中存在异方差 3.克服异方差 以1/X1做加权最小二乘估计,

Matlab实现多元回归实例

Matlab 实现多元回归实例 (一)一般多元回归 一般在生产实践和科学研究中,人们得到了参数(),,n x x x =???1和因变量y 的数据,需要求出关系式()y f x =,这时就可以用到回归分析的方法。如果只考虑 f 是线性函数的情形,当自变量只有一个时,即,(),,n x x x =???1中n =1时,称 为一元线性回归,当自变量有多个时,即,(),,n x x x =???1中n ≥2时,称为多元线性回归。 进行线性回归时,有4个基本假定: ① 因变量与自变量之间存在线性关系; ② 残差是独立的; ③ 残差满足方差奇性; ④ 残差满足正态分布。 在Matlab 软件包中有一个做一般多元回归分析的命令regeress ,调用格式如下: [b, bint, r, rint, stats] = regress(y,X,alpha) 或者 [b, bint, r, rint, stats] = regress(y,X) 此时,默认alpha = 0.05. 这里,y 是一个1n ?的列向量,X 是一个()1n m ?+的矩阵,其中第一列是全1向量(这一点对于回归来说很重要,这一个全1列向量对应回归方程的常数项),一般情况下,需要人工造一个全1列向量。回归方程具有如下形式: 011m m y x x λλλε=++???++ 其中,ε是残差。 在返回项[b,bint,r,rint,stats]中, ①01m b λλλ=???是回归方程的系数; ②int b 是一个2m ?矩阵,它的第i 行表示i λ的(1-alpha)置信区间; ③r 是1n ?的残差列向量; ④int r 是2n ?矩阵,它的第i 行表示第i 个残差i r 的(1-alpha)置信区间; 注释:残差与残差区间杠杆图,最好在0点线附近比较均匀的分布,而不呈现一定的规律性,如果是这样,就说明回归分析做得比较理想。 ⑤ 一般的,stast 返回4个值:2R 值、F_检验值、阈值f ,与显著性概率相关的p 值(如果这个p 值不存在,则,只输出前3项)。注释:

计量经济学一元线性回归模型总结

第一节 两变量线性回归模型 一.模型的建立 1.数理模型的基本形式 y x αβ=+ (2.1) 这里y 称为被解释变量(dependent variable),x 称为解释变量(independent variable) 注意:(1)x 、y 选择的方法:主要是从所研究的问题的经济关系出发,根据已有的经济理论进行合理选择。 (2)变量之间是否是线性关系可先通过散点图来观察。 2.例 如果在研究上海消费规律时,已经得到上海城市居民1981-1998年期间的人均可支配收入和人均消费性支出数据(见表1),能否用两变量线性函数进行分析? 表1.上海居民收入消费情况 年份 可支配收入 消费性支出 年份 可支配收入 消费性支出 1981 636.82 585 1990 2181.65 1936 1982 659.25 576 1991 2485.46 2167 1983 685.92 615 1992 3008.97 2509 1984 834.15 726 1993 4277.38 3530 1985 1075.26 992 1994 5868.48 4669 1986 1293.24 1170 1995 7171.91 5868

19871437.09128219968158.746763 19881723.44164819978438.896820 19891975.64181219988773.16866 2.一些非线性模型向线性模型的转化 一些双变量之间虽然不存在线性关系,但通过变量代换可化为线性形式,这些双变量关系包括对数关系、双曲线关系等。 例3-2 如果认为一个国家或地区总产出具有规模报酬不变的特征,那么采用人均产出y与人均资本k的形式,该国家或者说地区的总产出规律可以表示为下列C-D生产函数形式 y Akα = (2.2)

相关主题
文本预览
相关文档 最新文档