当前位置:文档之家› 单级共射放大电路(一)

单级共射放大电路(一)

单级共射放大电路(一)
单级共射放大电路(一)

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

PNP型单级共射放大电路

PNP 型单级共射放大电路 一、 实验目的 1、 设计一个PNP 型共射放大器,使其放大倍数为80,工作电流为80mA 。 二、 实验仪器 1、 示波器 2、信号发生器 3、数字万用表 4、交流毫伏表 5、直流稳压源 三、 实验原理 1、PNP 型单级共射放大器电路图如下: 2、 静态工作点的理论计算: 静态工作点可由以下几个关系式确定: 4 34 B C C R U V R R = + 5 B BE C E U U I I R -≈= 由以上式子可知,当管子确定后,改变CC V 、3R 、4R 中任意参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过P R 调整。工作点偏高,输出信号波形易产生饱和失真;工作点偏低,输出波形易产生

截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的 静态损耗。 3、电压放大倍数的测量与计算 电压放大倍数是指放大电路输出端的信号电压(变化电压)与输入端的信号电压之比, 即:o u i u A u = 电路中有12 (//) u be R R A r β =-、 26 '(1) be bb EQ mV r r I β =++ 其中,' bb r一般取300Ω。 当放大电路静态工作点设置合理后,在其输入端加适当的正弦信号,同时用示波器观察放大电路的输出波形,在输出波形不失真的条件下,用交流毫伏表或示波器分别测量放大电路的输入、输出电压,再按定义式计算即可。 四、实验内容及结果 1、按图连接电源,确认电路无误后接通电源。 2、在放大器的输入端加入频率f=1KHz,幅值约为10mV的正弦信号,用示波器观察,同时,用示波器的另一端监视放大器的输出电压Uo的波形。调整Rp的阻值,使静态工作点处于合适位置,此时,输出波形最大而不失真。 3、测量电路工作电流Ic并与理论计算值比较

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过 I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量 在被测放大器的输入端与信号源之间串入一已知电阻R,

在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 测量值计算值 U(V)U(V)U(V)R(K)U(V)U(V)I(mA) 2.测量电压放大倍数 ∞

模电实验单级共射放大电路

单极共射放大电路 一、实验目的 (1)掌握用Multisim 13 仿真软件分析单极放大电路主要性能指标的方法。 (2)熟悉掌握常用电子仪器的使用方法,熟悉基本电子元器件的作用。 (3)学会并熟悉“先静态后动态”的电子线路的基本调试方法。 (4)分析静态工作点对放大器性能的影响,学会调试放大器的静态工作点。 (5)掌握放大器的放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (5)测量放大电路的频率特性。 二、实验原理 1.基本电路 电路在接通直流电源CC V 而未加入输入信号时(通过隔直流电容1C 将输入端接地),电路中产生的电流、电压为直流量,记为BEQ V ,CEQ V ,BQ I ,CQ I ,由它们确定了电路的一个工作点,称为静态工作的Q 。三极管的静态工作点可用下式近似估算: )7.0~6.0(=BEQ V V 硅管; (0.2~0.3)V 锗管 ()e c CQ CC CEQ R R I V V +-= CC P BQ V R R R R V 2 12++= E BEQ BQ EQ CQ R V V I I -=≈ β CQ BQ I I = 2.静态工作点的选择 放大器静态工作点的选择是指对三极管集电极电流C I (或CE V )的调整与测试。 在晶体管低频放大电路中,静态工作点的选择及稳定具有举足轻重的作用,直接关系到放大电路能否正常可靠地工作。若工作点偏高(C I 放大),则放大器在加入交流信号以后易产生饱和失真,此时输出信号o u 的负半周将被削底;若工作点偏低,则易产生截止失真,即o u 的正半周被削顶(一般截止失真不如饱和

失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大电路的输入端加入一定的输入电压i u ,并检查输出电压o u 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 还应说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言。若输入信号幅度很小,则即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。若须满足较大信号幅度的要求,则静态工作点最好尽量靠近输出特性曲线上交流负载线的中点,如图Q 点,使静态CE V 大致等于电源电压的一半。这样可使交流信号输入时,工作点Q 沿着交流负载线向上或向下移动较大范围,使得输出电压的动态范围大致在2CEQ V 范围内变化,从而获得较大的输出电压幅度,且波形上下对称。 实际工作中往往通过调节基极偏置电阻的大小,观察输出波形的变化。当输入电阻逐渐放大时,若要输出波形正、负同时出现削波现象,即表明此时放大电路的静态工作点选择合适,此时放大电路动态范围最大。 按照图连好电路,在输入端引入正弦信号,用示波器观察输出。静态工作点 略微增大,两种失真同时出现;输入信号略微减小,两种失真同时消失时,可以认为此时的静态工作点正好处于交流负载线的中点。去掉输入信号,测量BEQ V ,CEQ V ,BQ I ,CQ I ,就得到了该电路的最佳静态工作点。 3.电压放大倍数的测量 电压放大倍数是指输出电压o V 和输入电压i V 之比,其值与负载L R 有关,是衡量放大电路放大能力的指标。 i o V V V A 4.输入电阻和输出电阻的测量 (1)输入电阻。输入电阻是指从放大器输入端看进去的等效电阻,它表明放大器对信号源的影响程度。一般采用间接法进行测量。 当被测电路的输入电阻不太高时(与毫伏级电压表内阻相比),采用如图的电路进行测量。在信号源与被测放大器的输入端之间串入一已知电阻R ,在放大器正常工作的情况下(保证输出电压不失真),用交流毫伏表测出s V

三极管共射极放大电路实验报告

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.学习共射放大电路的设计方法与调试技术; 2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响; 3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法; 4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法; 5.进一步熟悉示波器、函数信号发生器的使用。 二、实验内容和原理 1.静态工作点的调整与测量 2.测量电压放大倍数 3.测量最大不失真输出电压 4.测量输入电阻 5.测量输出电阻 6.测量上限频率和下限频率 7.研究静态工作点对输出波形的影响 三、主要仪器设备 示波器、信号发生器、万用表 共射电路实验板 四、操作方法和实验步骤 1.静态工作点的测量和调试 实验步骤: (1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。 (2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。 (3)将放大器电路板的工作电源端与15V 直流稳压电源接通。然后,开启电源。此时,放大器处于工作状态。 (4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。 (5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。 2.测量电压放大倍数(R L =∞、R L =1k Ω) 专业: 姓名: 学号: 日期: 地点: 学生序号6

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

PS软件仿真练习(一)——单级共射放大电路(DOC)

华中科技大学 《电子线路设计、测试与实验》实验报告 实验名称:PS软件仿真练习(一)——单 级共射放大电路 院(系):自动化学院 指导教师:汪小燕 2014 年4月3 日 PS软件仿真练习(一)——单级共射放大电路 一.实验目的 电子电路CAD技术现已广泛被应用到科学研究、产品设计、电子电路分析与设计等许多领域中,采用CAD技术和工具已成为工程技术人员对电子电路进行设计、分析必不可少的方法和手段。为了培养学生使用CAD技术的能力,全面提高学生的素质和创新能力,就必须掌握电子电路的仿真方法。为此,本实验力图达到以下目的: 1.了解电子电路CAD技术的基本知识,熟悉仿真软件PSpice的主要功能。 2.学习利用仿真手段,分析,设计电子电路。 3.初步掌握用仿真软件PSpice分析,设计电路的基本方法和技巧。

二.实验条件 计算机,PSpice仿真软件。 三、预习要求 1.认真阅读本书附录A,详细了解PSpice软件的功能,仿真步骤及使用方法。 2.熟悉单极共射放大电路的静态工作点,输入,输出电阻及幅频特性,相频特性等。 四.实验说明 PSpice用于电子电路的仿真分析,除了可以对模拟电路,数字电路进行仿真分析外,还可以对模拟混合电路进行分析,具有优化设计的功能。它主要包括Capture(电子原理图设计)、PSpiceA/D(模数混合仿真)、PSpice Optimizer(电路优化)和Layout Plus(PCB 设计)等组件。根据电子技术基础课程的教学要求,本实验以单级共射放大电路为例,简要介绍Capture和PSpice A/D两部分软件的仿真步骤及使用方法。 单级共射放大参考电路的仿真步骤如图4.1.1所示,三极管型号为Q2N222( =50),试 分析: (1)放大电路的工作点。 (2)当输入电压信号为幅值10mV,频率1kHz的正弦波时,仿真输入,输出波形。 (3)仿真该电路电压增益的幅频响应和相频响应曲线。 (4)仿真该电路的输入,输出电阻频率响应曲线。 图4.1.1 单级共射放大电路

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

模电共射放大电路实验报告

实验一BJT单管共射电压放大电路 实验报告 自动化一班 李振昌 一、实验目的 (1)掌握共射放大电路的基本调试方法。 (2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。(3)进一步熟练电子仪器的使用。 二、实验内容和原理 仿真电路图

静态工作点变化而引起的饱和失真与截止失真 静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =。测量个点的静 态电压值 RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。 装 订 线

RL=∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。 放大电路上限频率fH、下限频率fL的测量 : 改变输入信号频率,下降到中频段输出电压的倍。 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。 三、主要仪器设备 示波器、函数信号发生器、12V稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等 四、操作方法和实验步骤 准备工作: 修改实验电路 将K1用连接线短路(短接R7); RW2用连接线短路; 在V1处插入NPN型三极管(9013); 将RL接入到A为RL=2k,不接入为RL=∞(开路) 。 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。 确认输出电压为12V后,关闭直流稳压电源。 用导线将电路板的工作电源与12V直流稳压电源连接。

实验一单级共射放大电路SB

实验一 单级共射放大电路 电子信息工程 2011117105 徐博 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及其对放大电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 信号发生器、数字万用表、交流毫伏表、直流稳压源。 三、预习要求 1.复习基本共射放大电路的工作原理,并进一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 1.电路参数变化对静态工作点的影响 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过三极管的直流电流IBQ 、ICQ 及管子C 、E 极之间的直流电压UCEQ 和B 、E 极的直流电压UBE 中的射极电阻R6、R7是用来稳定放大器的静态工作点。其工作原理如下。 ① 利用RB 和RB2的分压作用固定基极电压UB 。 由图可知,当RB 、RB2选择适当,满足I2远大于IB 时,则有 b2b=*2 R U Vcc Rb Rb + 式中,RB 、RB2和VCC 都是固定不随温度变化的,所以基极电位基本上为一定值。 ② 通过IE 的负反馈作用,限制IC 的改变,使工作点保持稳定。具体稳定过程如下: T Ic Ie Ue Ube Ib Ic ↑→↑→↑→↑→↓→↓→↓ 2.静态工作点的理论计算 电路的静态工作点可由以下几个关系式确定 b2b=*2R U Vcc Rb Rb + Re Ub Ube Ic -=

仿真实验四 共射极放大电路分析

仿真实验四 共射极放大电路分析 一、实验目的: (1)认真理解和掌握含三极管的非线性电路的特点 (2)使用Multisim 验证三极管的等效小信号模型 二、实验原理及实例 小信号分析法是分析非线性电阻电路的主要方法之一。在非线性电路中,同时有直流电压0U 和随时间变化变化的输入信号源s u t () 的作用。如果在任何时刻都有0U >s u t () ,则可以采用小信号分析法。 具体步骤如下: (1)画放大电路的小信号等效电路。 (2)估算be r 。为此,还要求得静态电流eq I (3)求电压增益V A 。 (4)计算输入、输出电阻o ,R R i 三、仿真实验设计 如下图所示求该电路的电压增益。 (1)当电路中只有直流电流作用时,求出静态工作点

2120.0454m 250800.0036312 1.104BE B C B CE C V I A K I I A V R I V ββ-= =Ω ====-= (2)画出该电路的小信号等效电路

计算相关参数: 26200(180)7730.0454 3.63 be r =++=Ω+ ()155.24770.63b C E V b BE i b be o C i R R A i R R R r R R k β=-=-=≈Ω ≈=Ω 对其仿真得: 由仿真结果可得67.56m 154.03435.23u O V i V V A V V = == 验证输入与输出的波形关系 :

可得到输入波形与输出波形为反向,所以-154.03V A = 测量输入、输出电阻的阻值: i 435771.30.435263.552824.40.0225i i O o V V R I mA V V R Io mA = ==Ω===Ω

实验一单级共射放大电路

实验一单级共射放大电路 实验单级共发射放大电路 胡军2010117114 实验目的 1。熟悉常用电子仪器的使用 2。掌握放大器静态工作点的调试方法及其对放大器电路性能的影响3.掌握放大器动态性能参数的测试方法4.进一步掌握单级放大电路的工作原理 实验仪器 1。示波器2。信号发生器3。数字万用表4。交流毫伏表5。DC稳压器 静态测试 实验原理和测量方法 电路图如下: 注意:由于实验箱负载RL=10k1.电路参数变化对静态工作点的影响放大器的基本任务是无失真地放大信号,实现输入变化对输出变化的控制效果。为了使放大器正常工作,除了保证放大器电路的正常工作电压外,还应该有一个合适的静态工作点。放大器的静态工作点是指流经三极管的直流IBQ和ICQ中的发射极电阻R6和R7,管的C极和E极之间的直流电压UCEQ,以及放大器输入端短路时B极和E

极的直流电压ube。工作原理如下 ①基极电压UB由RB和RB2的部分电压作用固定从图中可以看出,UB =? Rb2*Vcc Rb?在RB2公式中,铷、RB2和VCC是固定的,不随温度变化,所以基本势是一个确定的值。(2)通过工业工程的负反馈,限制集成电路的变化,保持工作点稳定。具体稳定过程如下: T??Ic??Ie??Ue??Ube??Ib??Ic?静态工作点 2的理论计算。 电路的静态工作点可由以下关系确定: UB = RB2 * CRB?Rb2 Ub?Ube ReIc? Uce?Vcc?Ic(Rc?关于)? 从以上公式可以看出,当管道确定后,改变VCC、RB、RB2、RC(或RE)的任何参数值都会导致静态工作点的改变当电路参数确定后,静态工作点主要由RP调整由于高工作点,输出信号波形容易出现饱和失真。工作点低,输出波形易于截止失真。然而,当输入信号太大时,电子管将工作在非线性区域,输出波形将产生双向失真当输出波形不是很大时,静态工作点的设置应该很低,以减少电路的静态损耗。3.测量和调整 调整放大器电路静态工作点的方法一般有两种(1)将放大电路的输入端(即ui=0)短路,使其工作在DC状态,用DC电压表测量三极管

单级共射放大电路实验报告精编版

单级共射放大电路实验报告 一、实验目的 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进一步熟悉示波器的 正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静态工作点及电路的 电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ 和B、E极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有 UB=RB2·VCC/(RB+RB2) 式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定

单级共射放大电路的设计共7页word资料

实验二、单级共射放大电路的设计 一、实验目的 1.掌握共射放大器电路的设计方法 2.掌握如何设置放大电路的静态工作点及其调试方法 3.学习放大电路性能指标 4.观察基本放大电路参数对放大器的静态工作点、电压放大倍数及最 大不失真电压、以及频率响应的测量方法 5.进一步熟悉函数发生器、等常用仪器的使用方法 6.进一步熟悉晶体管参数的测试 7.了解负反馈对放大电路性能的影响 二、实验仪器与器件: 直流稳压电源、万用电表、双踪示波器、交流毫伏表、直流毫安表、频率计、三极管、电阻器、电容器、电位器若干。 三、实验原理: 连接电路图如下图,并测量相关数据,了解单级共设放大电路 四、实验内容 1.静态工作点的调整与测量: 将R L 开路;在接通电源钱,将R b2 调至最大,并使u i =0.调节R b2 测量相应数 据填入下表

2.观察静态工作点对输出波形失真的影响: 调节函数信号发生器找到最大不失真输入电压,然后观察u O 输出波形,判断失真情况以及管子工作状态填入下表

3.电压放大倍数的测量 将频率为1kHz 、u i =300mV (参考)的正弦信号作为输入信号,用交流毫伏表测量U i 和U o 有效值,用示波器观察输入输出电压的波形,把测量结果记入下表 U i =248mV

4.观察静态工作点对电压放大倍数的影响 将R L 开路,R C =2k欧姆,输入适当u i 。改变R b2 ,将数据填入下表 U i =106.06mV 注意:测量U CE 时它是静态参数。 5.输入电阻和输出电阻的测量 输入端开关打开,用交流毫伏表测量U i 和U s ,计算输入电阻 R i =U i /I i =R s *U i /(U s -U i ) 闭合输入端开关,打开和闭合输出端开关,用交流毫伏表测量U L 和U O ,计 算输出电阻 R O =(U O /U L -1)*R L 6.最大不是真输出电压V opp 的测量 同时调节输入信号的幅度和电位器R b2 ,用示波器和交流毫伏表测量填表 7.幅频特性的测量 采用主点法进行测量,填表。

模电实验 晶体管共射极放大电路

晶体管共射极放大电路 一、实验目的 1、 学习放大电路静态工作点的测试及调整方法,分析静态工作点对放大器性能的影 响。 2、 掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 3、 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2-1为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i 后,在放大器的输出端便可得到一个与u i 相位相反,幅值被放大了的输出信号u 0,从而实现了电压放大。 图1-1 共射极单管放大器实验电路 在图2-1电路中,当流过偏置电阻R B1和R B2 的电流远大于晶体管T 的 基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算 CC B2 B1B1B U R R R U +≈ (1-1) (1-2) U CE =U CC -I C (R C +R E ) (1-3) 电压放大倍数 be L C V r R R β A // -= (1-4) C E BE B E I R U U I ≈-≈

输入电阻 R i =R B1 / R B2 / r be (1-5) 输出电阻 R O ≈R C (1-6) 由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。一个优质放大器,必定是理论设计与实验调整相结合的产物。因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。 放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。 1、 放大器静态工作点的测量与调试 1) 静态工作点的测量 测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。一般实验中,为了避免断开集电极,所以采用测量电压U E 或U C ,然后算出I C 的方法,例如,只要测出U E ,即可用 E E E C R U I I = ≈算出I C (也可根据C C CC C R U U I -= ,由U C 确定I C ),同时也能算出 U BE =U B -U E ,U CE =U C -U E 。 为了减小误差,提高测量精度,应选用内阻较高的直流电压表。 2) 静态工作点的调试 放大器静态工作点的调试是指对管子集电极电流I C (或U CE )的调整与测试。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时u O 的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即u O 的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压u i ,检查输出电压u O 的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。 (a) (b) 图1-2 静态工作点对u O 波形失真的影响 改变电路参数U CC 、R C 、R B (R B1、R B2)都会引起静态工作点的变化,如图2-3所示。但通常多采用调节偏置电阻R B2的方法来改变静态工作点,如减小R B2,则可使静态工作点提高等。

实验四基本共射极放大电路实验报告

基本共射极放大电路

1. 实验背景 VBB , Rb:使发射极正偏,并提供合适的基极偏置电流 VCC :通过Rc 使T 集电极反偏,VCE>=VBE RC: 将集电极电流信号转换为电压信号,限流 三极管 T 起放大作用 分析方法:叠加 前提:BJT 工作在线性放大区 图1 1. 静态(直流工作状态) 输入信号vs =0时,放大电路的工作状态称为静态或直流工作状态。 电流关系: b BEQ BB BQ R V V I -= BQ CEO BQ CQ βI I βI I ≈+= VCEQ=VCC -ICQRc

IB、IC和VCE 是静态工作状态的三个量,用Q表示,称为静态工作点Q( IBQ,ICQ,VCEQ )。 图2 2. 动态 输入正弦信号vs后,电路将处在动态工作情况。此时,BJT各极电流及电压都将在静态值的基础上随输入信号作相应的变化。

交流通路 图3 图4 2.实验目标 1.静态工作点的计算 2.通过仿真实验理解基本共射极放大电路的基本原理.

3. 实验方法 1> 按所给电路画好电路图 2> 区分所要求的是交流电路,直流电路和混合电路,调整好电路,加入指针。 3> 调整时间间隔,进行时间扫描。如图所示。 4. 实验设计 1. 下图为基本共射极放大电路的仿真电路图。试计算静态工作点的各参数并与手算结 果进行比较。 Q1 Q2N2222 R1 20k R22k V1 1Vdc V2 9Vdc V3AC = TRAN = sin(0v ,10mv ,1khz,0s,0,0)DC = 2. 基于以上电路图,请分别绘出v s ,v BE ,i B ,i C ,v CE ,v ce 的波形图 3. 电路图如下图所示。通过仿真结果,请说明上图v 2的作用。

实验1单级放大电路

实验1 单级放大电路 1.实验目的 1)学习使用电子仪器测量电路参数的方法。 2)学习共射放大电路静态工作点的调整方法。 3)研究共射放大电路动态特性与信号源内阻、负载阻抗、输入信号幅值大小的关系。2.实验仪器 示波器、信号发生器、交流毫伏表、数字万用表。 3.预习内容 1)三极管及共射放大器的工作原理。 2)阅读实验内容。 4.实验内容 实验电路为共射极放大器,常用于放大电压。由于采用了自动稳定静态工作点的分压式偏置电路(引入了射极直流电流串联负反馈),所以温度稳定性较好。 1)联接电路 (1)用万用表判断实验箱上的三极管的极性和好坏。由于三极管已焊在实验电路板上,无法用万用表的h EF档测量。改用万用表测量二极管档测量。对NPN三极管,用正表笔接基极,用负表笔分别接射极和集电极,万用表应显示PN结导通;再用负表笔接基极,用正表笔分别接射极和集电极,万用表应显示PN结截止。这说明该三极管是好的。用万用表判断实验箱上电解电容的极性和好坏。对于10μF电解电容,可选择200kΩ电阻测量档,用万用表的负极接电解电容的负极,用万用表的正极接电解电容的正极,万用表的电阻示数将不断增加,直到超过示数的范围。这说明该电解电容是好的。 ⑵按图联接电路。 ⑶接通实验箱交流电源,用万用表测量直流12V电源电压是否正常。若正常,则将12V 电源接至图的Vcc。 图共射极放大电路

⑷ 测量电阻R C 的阻值。将V i 端接地。改变R P (有案可查2 2k Ω、100k Ω、680k Ω三个可变电阻可选择),测量集电极电压V C ,求 I C =(V CC -V C )/R C 分别为、1mA 、时三极管的β值。建议使用以下方法。 b B c c 2b B B R V V R V I -=+ p 1b b R R R += B C I I =β (1-1) 请注意,电路断电、电阻从电路中开路后才能用万用表测量电阻值。本实验用测电阻值、电 压值来计算电流值,而不是直接测量电流,是因为本实验电路的电流较小,测量电流的测量误差较测量电压、电阻的误差大。同时还因为测量电流时万用表的内阻趋于零,使用不当很可能损坏万用表。 Vcc= V 图是示意图。它示意i C 并不严格等于βi B , 只是近似等于βi B ;或者说β并不是一个常数。通常, β随i B 增大而增大。 对于一个三极管,β随i B 的变化越小越好。用图 解法表示共发射极放大器放大小信号的原理可知,β 随i B 变化而变化是正弦波小信号经共发射极放大器放 大后产生非线性谐波失真的原因。若表中β的数 值较接近,则表中的非线性谐波失真应较小。使 用不同实验箱的同学之间可验证上述分析。由此可见, 在制作小信号放大器时,若要求其非线性谐波失真尽可能小,则应挑选β值随i B 变化而变化尽可能小的三极管。 2) 调整静态 电压放大器的主要任务是使失真尽可能小地放大电压信号。为了使输出电压失真尽可能小,一般地说,静态工作点Q 应选择在输出特性曲线上交流负载线的中点。若工作点选得太高,放大器在加入交流信号后容易引起饱和失真;若选得太低,容易引起截止失真。对于小信号放大器而言,若输出交流信号幅度较小,电压放大器的非线性失真将不是主要问题,因此Q 点不一定要选在交流负载线的中点,而可根据其他要求来选择。例如,希望放大器耗电省、噪声低,或输入阻抗高,Q 点可选得低一些。 将V i 端接地。调整R P ,使V C =6V ,测量计算并填写表,绘制直流负载线,估算静态工作点和放大电路的动态范围;分析发射极直流偏置对放大器动态范围的影响。

相关主题
文本预览
相关文档 最新文档