当前位置:文档之家› 多进制频率调制解调系统的设计毕业设计

多进制频率调制解调系统的设计毕业设计

多进制频率调制解调系统的设计毕业设计
多进制频率调制解调系统的设计毕业设计

多进制频率调制解调系统的设计

【摘要】MFSK ---多进制数字频率调制,简称多频制,是2FSK方式的推广。它是用不同的载波频率代表各种数字信息。在数字通信系统中,数字调制与解调技术占有非常重要的地位。随着FPGA 技术的发展,数字通信技术与 FPGA的结合体现了现代数字通信系统发展的一个趋势。文中介绍了MFSK 调制解调的原理, 并基于 VHDL 实现了MFSK 调制解调电路设计,仿真结果表明设计方案是可行的。整个系统的功能在EDA技术开发平台均调试通过,并在MAX7000S系列FPGA上硬件实现,具有较高的实用性和可靠性。

【关键词】MFSK;VHDL;调制;解调

Design and Simulation of MFSK Modulation Circuit

Based on VHDL

XX

(Grade 03,Class 1,Major electronics and information engineering ,Electronics and information engineering Dept.,XX University of technology XXXX,XX)

Tutor: XX

【Abstract】MFSK --- Multi-band digital frequency modulation, referred to as multi-frequency system is the way 2FSK promotion. It is representative of a different variety of digital information carrier frequency. In digital communication system, the digital modulation and demodulation plays an important role with the development of FPGA technology, the combination of digital communication technology with FPGA is an inevitable trend. This paper gives the principle of MFSK modulation and demodulation. Based on VHDL, the design of MFSK modulation circuit is realized. The simulation result indicates that this scheme is feasible.

【Key words】MFSK;VHDL; modulation; demodulation

毕业设计(论文)原创性声明和使用授权说明

原创性声明

本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:

指导教师签名:日期:

使用授权说明

本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明

本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日

学位论文版权使用授权书

本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日

导师签名:日期:年月日

目录

1绪论 (1)

1.1MAXPLUXII简介 (3)

1.2VHDL语言简介 (4)

1.3多进制调制的特点 (5)

2方案论证 (8)

2.1FPGA简介 (8)

2.2FPGA概述 (8)

2.3ALTERA可编程逻辑器件简介 (9)

3多进制数字调制原理 (10)

3.1FSK调制解调的基本原理 (10)

3.2MFSK简介 (12)

3.3多进制数字频率调制的原理 (12)

3.4多进制数字频率解调的原理 (13)

3.5MFSK调制解调原理 (14)

3.6MFSK信号的频谱、带宽及频带利用率 (15)

3.7MFSK系统的误码性能 (15)

4 MFSK的VHDL 建模与设计 (16)

4.1MFSK调制电路的VHDL建模与设计及实现 (16)

4.2MFSK解调电路的VHDL建模与设计及实现 (17)

4.3MFSK调制解调电路的VHDL建模与设计及实现 (19)

5硬件实现 (21)

5.1程序下载 (21)

5.2波形验证 (22)

5.3结果分析与体会 (23)

结论 (24)

致谢 (25)

参考文献 (26)

附录A英文文献: (27)

中文翻译: (31)

附录B原文总程序: (34)

1绪论

如今社会通信技术的发展速度可谓日新月异,计算机的出现在现代通信技术的各种媒体中占有独特的地位,计算机在当今社会的众多领域里不仅为各种信息处理设备被使用,而且它与通信向结合,使电信业务更加丰富。随着人类经济和文化的发展,人们对通信技术性能的需求也越来越迫切,从而又大大推动了通信科学的发展。

在通信理论上,先后形成了“过滤和预测理论”、“香浓信息论”、“纠错编码理论”、“信源统计特性理论”、“调制理论”等。通信作为社会的基本设施和必要条件,引起的世界各国的广泛关注,通信的目的就是从一方向另一方传送信息,给对方以信息,但是消息的传送一般都不是直接的,它必须借助于一定形式的信号才能便于远距离快速传输和进行各种处理。

虽然基带信号可以直接传输,但是目前大多数信道不适合传输基带信号。现有通信网的主体为传输模拟信号而设计的,基带数字信号不能直接进入这样的通信网。基带信号一般都包含有频率较低,甚至是直流的分量,很难通过有限尺寸的天线得到有效辐射,因而无法利用无线信道来直接传播。对于大量有线信道,由于线路中多半串接有电容器或并接有变压器等隔直流元件,低频或直流分量就会受到很大限制。因此,为了使基带信号能利用这些信道进行传输,必须使代表信息的原始信号经过一种变换得到另一种新信号,这种变换就是调制。实际中一般选正弦信号为基带信号,称为载波信号。代表所传信息的原始信号,使调制载波的信号。调制就是从载波的一个参量的变化来反映调制信号变化的过程。用载波幅度的变化来反映调制信号的称为振幅调制;用载波的频率、相位反映调制信号变化的调制分别成为频率调制和相位调制。而实现这些调制过程得设备成为调制器。从已调波形中恢复调制信号的过程称为解调,相应的设备成为解调器。一般讲调制器和解调器做成一个设备,可用于双向传输,称为调制解调器。

调制的另一目的是便于线路复用。在进行多路传输时,各路数据的原始基带型号的频谱往往是相互重叠的,不能在同一线路上同时输出。经过调制后,各路信号可已搬移到频带互不重叠的频段去传输,从而避免多路传输中的相互干扰。基于这种目的,信号经调制后在传输的方式又称为频带传输。

调制信号时模拟信号的称为模拟调制,模拟调制是对载波信号的参量进行连续调制,在接受端则对载波信号的调制参量连续地估值;而数字调制则是用载波的某些离散状态来表征所传输的信息,在接受端也只要对载波信号的离散调制参量进行检测。二进制数字调制所用调制信号由代表“0”“1”的数字信号脉冲序列组成。因此,数字调制信号也成为键控信号。在二进制振幅调制、频率调制和相位调制分别称为振幅键控(ASK)、频移键控(FSK)、相移键控(PSK)。数字调制产生模拟信号,其载波参量的离散状态是与数字数据相对应的,这种信号适宜于在带通型的模拟信道上传输。

频率调制是利用载波的频率变化来传输信息的,其中最简单的一种方式是多进制频移键控(MFSK)调制,它是继振幅键控信号之后出现比较早的一种调制方式。由于它的抗衰减性能优于ASK,设备又不算复杂,实现也比较容易,所以一直在很多场合,例如在中低速数据传输,尤其在有衰减的无线信道中广泛应用。多进制频移键控(MFSK)用靠近在载波的多个不同频率表示两个二进制数。MFSK

信号有两种产生方法:载波调频法和频率选择法。载波调频法产生的是相位连续的MFSK信号,相位连续MFSK信号一般由一个振荡器产生,用基带信号改变振荡器的参数,使震荡频率发生变化,这时相位是连续的。频率选择法一般是相位不连续的MFSK信号,相位不连续的MFSK信号一般由四个不同频率的振荡器长生,由基带信号控制着四个频率信号的输出。由于这两个振荡器是相互独立的因此在转换或相反的过程中,不能保证相位的连续。了解了MFSK信号的基本概念后,利用Max-plus Ⅱ软件中的VHDL语言对MFSK频移键控系统就行调制、解调的程序设计;程序设计运行成功后,在利用VHDL语言对MFSK频移键控系统进行调制、解调的波形仿真;最后通过VHDL语言制作出MFSK 频移键控系统调制、解调的电路图。

在数字通信中,数字信号传输系统分为基带传输系统和载波传输系统。在数字载波传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成原来的数字信号。数字信号对载波的调制与模拟信号对载波的调制过程类似,同样可以用数字信号去控制正弦载波的振幅、频率或相位的变化。但由于数字信号具有时间和取值离散的特点,从而使受控载波的参数变化过程离散化,因此这种调制过程又称为“键控法”。数字调制过程中处理的是数字信号, 而载波有振幅、频率和相位3 个变量, 且二进制的信号只有高低电平两个逻辑量1 和0, 所以数字调制最基本的方法有3 种:对载波的振幅调制称为振幅键控(ASK);对载波的频率调制称为频移键控(FSK);对载波的相位调制称为相移键控(PSK)。根据所处理的基带信号的进制不同分为二进制和多进制调制。多进制数字调制与二进制相比, 在相同的信息传输速率条件下,可以使传输频带压缩k 倍,从而提高了通信系统的有效性。

1 EDA技术简介

EDA技术就是依靠功能强大的电子计算机,在EDA工具软件平台上,对以硬件描述语言HDL (Hardware Description Language)为系统逻辑描述手段完成的设计文件,自动地完成逻辑编译、化简、分割、综合、优化、仿真,直至下载到可编程逻辑器件CPLD/FPGA或专用集成电路ASIC (Application Specific Integrated Circuit)芯片中,实现既定的电子电路设计功能。EDA技术可把数字通信技术,微电子技术和现代电子设计自动技术结合起来,实现硬件设计软件化,加速了数字通信系统设计的效率,降低了设计成本。

EDA与传统电子设计方法的比较:

传统设计方法的缺点:

(1)复杂电路的设计、调试十分困难。

(2)如果某一过程存在错误,查找和修改十分不便。

(3)设计过程中产生大量文档,,不易管理。

(4)对IC设计而言,设计实现过程与具体生产工艺直接相关,因此可移植性差。

(5)只有在设计出样机或生产出芯片后才能进行实测。

EDA技术的特点:

(1)采用硬件描述语言作为设计输入。

(2)库的引入。

(3)设计文档的管理。

(4)强大的系统建模、电路仿真功能。

(5)具有自主知识产权。

(6)开发技术的标准化、规范化以及IP核的可重用性。

(7)适用于高效率大规模系统设计的自顶向下设计方案。

(8)全方位的利用计算机自动设计、仿真和测试技术。

(9)对设计者的硬件知识和硬件经验要求低。

(10)与以CPU为主的电路系统相比,EDA技术具有更好的高速性能。

(11)纯硬件系统的高可靠性。

因此,EDA技术是现代电子设计的发展趋势。

1.1 MAXPLUXII简介

前面已提到,MAX+PLUS II是开发ALTERA公司FPGA产品的软件工具。利用MAX+PLUS II提供的设计环境和设计工具,可以灵活高效地完成各种数字电路设计。

在MAX+PLUS II中FPGA的设计流程如下:

1设计的输入

MAX+PLUS II中有三种输入方式:图形输入、文本输入、波形输入,分别利用MAX+PLUS II的Graphic Editor、Text Editor、Waveform Editor。图形输入即输入电路原理图,不仅可以使用MAX+PLUS II中丰富的图形器件库,而且可以使用几乎全部的标准EDA设计工具。文本输入方式支持ALTERA公司的AHDL语言,同时兼容VHDL和Verilog HDL。波形输入允许设计者通过只编辑输入波形,而由系统自动生成该功能模块。

2设计实现

设计实现意味着在所选的FPGA器件内物理地实现所需逻辑。这个过程主要由MAX+PLUS II中的核心部分编译器(Compiler)完成。它主要依据设计输入文件自动生成用于器件编程、波形仿真及延时分析等所需的数据文件。

3设计仿真

仿真器(Simulator)和时延分析器(Timing Analyzer)利用编译器产生的数据文件自动完成逻辑功能仿真和延时特性仿真。在仿真文件中加载不同的激励,可以观察中结果以及输出波形。必要时,可以返回设计输入阶段,修改设计输入,最终达到设计要求。

4器件编程与测试

在仿真结果正确以后,就可以进行器件编程,即通过编程器(Programmer)将设计下载到实际芯片中。下载之后,仍需进行动态仿真,因为在上一步骤的仿真属于静态时序仿真,并未涉及实际器件。动态仿真是将实际信号送入实际芯片中进行的时序验证。最后则是测试芯片在系统中的实际运行性能。

1.1.1 Max-plusⅡ开发系统的特点:

1、开放的界面

Max-plusⅡ支持与Cadence,Exemplar logic,Mentor Graphics,Simplicity,View logic和其它公司所提供的EDA工具接口。

2、与结构无关

Max-plusⅡ系统的核心Complier支持Altera公司的FLEX10K、FLEX8000、FLEX6000、MAX9000、MAX7000、MAX5000和Classic可编程逻辑器件,提供了世界上唯一真正与结构无关的可编程逻辑设计环境。

3、完全集成化

Max-plusⅡ的设计输入、处理与较验功能全部集成在统一的开发环境下,这样可以加快动态调试、缩短开发周期。

4、丰富的设计库

Max-plusⅡ提供丰富的库单元供设计者调用,其中包括74系列的全部器件和多种特殊的逻辑功能(Macro-Function)以及新型的参数化的兆功能(Mage-Function)。

5、模块化工具

设计人员可以从各种设计输入、处理和较验选项中进行选择从而使设计环境用户化。

6、硬件描述语言(HDL)

Max-plusⅡ软件支持各种HDL设计输入选项,包括VHDL、Verilog HDL和Altera自己的硬件描述语言AHDL。

1.2 VHDL语言简介

VHDL的英文全名是Very-High-Speed Integrated Circuit Hardware Description Language,诞生于1982年。1987年底,VHDL被IEEE代了原有的非标准的硬件描述语言和美国国防部确认为标准硬件描述语言。

数据类型,常数和子程序等;配置用于从库中选取所需要单元来支持系统的不同设计,即对库的使用。库可由用户生成或芯片制造商提供,以便共享。

实体是描述系统的外部端口,实体说明用于描述设计系统的外部端口输入、输出特征;

结构体是描述系统内部的结构和行为,即用于描述设计系统的行为、系统数据的流程和系统内部的结构及其实现的功能。

配置为属性选项,描述层与层之间、实体与结构体之间的连接关系,比如高层设计需要将低层实体作为文件加以利用,这就要用到配置说明,用于从库中选取所需设计单元来组成系统设计的不同版本。

程序包为属性选项,用于把共享的定义放置其中,具体地说主要用来存放各种设计的模块都能共享的数据类型、常量和子程序等。

库主要用于存放已经编译的实体、结构体、程序包和配置,可由用户自主生成或有ASIC芯片制造商提供相应的库,以便于设计中为大家所共享。

相对于其他硬件设计语言,

1.2.1 VHDL具有如下优点:

1、用于设计复杂的、多层次的设计,支持设计库和设计的重复使用;

2、与硬件独立,一个设计可用于不同的硬件结构,而且设计时不必了解过多的硬件细节;

3、有丰富的软件支持VHDL的综合和仿真,从而能在设计阶段就能发现设计中的Bug,缩短设计时间,降低成本;

4、有良好的可读性,容易理解。VHDL主要用于描述数字系统的结构,行为,功能和接口。除了含有许多具有硬件特征的语句外,VHDL的语言形式和描述风格与句法是十分类似于一般的计算机高级语言。VHDL的程序结构特点是将一项工程设计,或称设计实体(可以是一个元件,一个电路模块或一个系统)分成外部(或称可视部分,及端口)和内部(或称不可视部分),既涉及实体的内部功能和算法完成部分。在对一个设计实体定义了外部界面后,一旦其内部开发完成后,其他的设计就可以直接调用这个实体。这种将设计实体分成内外部分的概念是VHDL系统设计的基本点。

VHDL语言的基本结构:一个完整的VHDL语言程序通常包括实体声明(Entity Declaration)、结构体(Architecture Body)、配置(Configuration)、程序包(Package)和库(Library)五个组成部分。其中实体和结构体是不可缺少的。前4种是可分别是编译的源设计单元。库存放已编译的实体,结构体,配置和包;实体用于描述系统内部的结构和行为;包存放各设计模块都能共享的

5、有良好的可读性,容易理解[5]。

1.3 多进制调制的特点

数字通信的早期历史是与电报的发展联系在一起的。1937年,英国人A.H.里夫斯提出脉码调制(PCM),从而推动了模拟信号数字化的进程。 1946年,法国人E.M.德洛雷因发明增量调制。1950年C.C.卡特勒提出差值编码。1947年,美国贝尔实验室研制出供实验用的24路电子管脉码调制装置,证实了实现PCM的可行性。1953年发明了不用编码管的反馈比较型编码器,扩大了输入信号的动态范围。1962年,美国研制出晶体管24路1.544兆比/秒脉码调制设备,并在市话网局间使用。数字通信与模拟通信相比具有明显的优点。它抗干扰能力强,通信质量不受距离的影响,能适应各种通信业务的要求,便于采用大规模集成电路,便于实现保密通信和计算机管理。不足之处是占用的信道频带较宽。 20世纪90年代,数字通信向超高速大容量长距离方向发展,高效编码技术日益成熟,语声编码已走向实用化,新的数字化智能终端将进一步发展。

1.3.1数字通信系统是利用数字信号来传递信息的通信系统,如下图所示

图1.1数字通信系统

1.3.2 各部分功能

(1)信源编码与译码

信源编码的作用:

设法减少码元数目和降低码元速率,即通常所说的数据压缩。码元速率将直接影响传输所占的带宽,而传输带宽又直接反映了通信的有效性。

信息源给出的是模拟语音信号时,信源编码器将其转换成数字信号,以实现模拟信号的数字化传输。

(2) 信道编码与译码

为了减少差错,信道编码器对传输的信息码元按一定的规则加入保护成分(监督元),组成所谓“抗干扰编码”。接收端的信道译码器按一定规则进行解码,从解码过程中发现错误或纠正错误,从而提高通信系统抗干扰能力,实现可靠通信。

(3)加密与解密

在需要实现保密通信的场合,为了保证所传信息的安全,人为将被传输的数字序列扰乱,即加上密码,这种处理过程叫加密。在接收端利用与发送端相同的密码复制品对收到的数字序列进行解密,恢复原来信息,叫解密。

(4) 数字调制与解调

?

数字调制就是把数字基带信号的频谱搬移到载频处, 形成适合在信道中传输的频带信号。 ? 基本的数字调制方式有振幅键控ASK 、频移键控FSK 、绝对相移键控PSK 、相对(差分)相移

键控DPSK 。

? 对这些信号可以采用相干解调或非相干解调还原为数字基带信号。

(5) 同步与数字复接

?

同步是使收、发两端的信号在时间上保持步调一致。 ?

按照同步的功用不同,可分为载波同步、位同步、群同步和网同步。 ? 数字复接就是依据时分复用基本原理把若干个低速数字信号合并成一个高速的数字信号,以

扩大传输容量和提高传输效率。

1.3.3数字通信的主要特点

(1)抗干扰能力强。

(2)远距离传输可消除噪声积累。

源 编码器 调制器 信道 解调器 译码器 信宿 干扰源

(3)采用信道编码技术可控制差错。降低误码率, 提高传输的可靠性。

(4)易于与各种数字终端接口,用现代计算技术对信号进行处理、加工、变换、存储,从而形成 能网。

(5)易于集成化, 从而使通信设备微型化。

(6)易于加密处理, 且保密强度高。

数字通信的缺点

(1)占据宽的系统频带,因此数字通信的频带利用率不高。

(2)数字通信对同步要求高,因而系统设备比较复杂。

(3)不过,随着光纤等的采用、 窄带调制技术和超大规模集成电路的发展,数字通信的这些缺点已经弱化。数字通信将占主导地位。

1.3.4 多进制数字调制

频率件控是用数字基带信号控制载波信号的频率,即以不同频率的高频振荡来表示不同的数字基带信号。多进制数字频率调制也称为多元调频或多频制。用多个频率不同的正弦波分别代表不同的数字信号,在某一码元时间内只发送其中一个频率。

所谓多进制数字调制,就是利用多进制数字基带信号去调制高频载波的某个参量,如幅度、频率或相位的过程。根据被调参量的不同,多进制数字调制可分为多进制幅度键控(MASK )、多进制频移键控(MFSK )以及多进制相移键控(MPSK 或MDPSK )。也可以把载波的两个参量组合起来进行调制,如把幅度和相位组合起来得到多进制幅相键控(MAPK )或它的特殊形式多进制正交幅度调制(MQAM )等。

由于多进制数字已调信号的被调参数在一个码元间隔内有多个取值,因此,与二进制数字调制相比,多进制数字调制有以下几个特点:

(1)在码元速率(传码率)相同条件下,可以提高信息速率(传信率),使系统频带利用率增大。码元速率相同时,M 进制数传系统的信息速率是二进制的 M 2log 倍。在实际应用中,通常取k

M 2 ,k 为大于1的正整数。

(2)在信息速率相同条件下,可以降低码元速率,以提高传输的可靠性。信息速率相同时,M 进制的码元宽度是二进制的M 2log 倍,这样可以增加每个码元的能量,并能减小码间串扰影响等。

正是基于这些特点,使多进制数字调制方式得到了广泛的使用。不过,获得以上几点好处所付出的代价是,信号功率需求增加和实现复杂度加大。

2方案论证

2.1 FPGA简介

FPGA是现场可编程门阵列器件(Field Programmable Gate Array)的简称,它是复杂可编程逻

辑器件(Complex Programmable Logic Device)的一个分支。在过去的课程设计中用的最多的是ALTERA公司的MAX7000s 系列芯片,本次设计仍将使用它们。

2.2 FPGA概述

FPGA结构原理图如下:

图2.1 FPGA结构原理图

FPGA通常由布线资源围绕的可编程单元构成阵列,又由可编程I/O单元围绕阵列构成整个芯片。其内部结构称为LCA(Logic Cell Array),由可编程逻辑块(CLB)、可编程输入输出模块(IOB)和可编程内部连线(PIC)三个部分组成。排成阵列的逻辑单元由布线通道中的可编程连线连接起

来实现一定的逻辑功能。

FPGA是由掩膜可编程门阵列和可编程逻辑器件演变而来的,将它们的特性结合在一起,使得FPGA既有门阵列的高逻辑密度和通用性,又有可编程逻辑器件的用户可编程特性。鉴于此,FPGA是可编程逻辑器件的一个发展趋势。

FPGA由可编程逻辑单元阵列、布线资源和可编程的I/O单元阵列构成,一个FPGA包含丰富的逻辑门、寄存器和I/O资源。一片FPGA芯片就可以实现数百片甚至更多个标准数字集成电路所实现的系统。

FPGA的结构灵活,其逻辑单元、可编程内部连线和I/O单元都可以由用户编程,可以实现任何逻辑功能,满足各种设计需求。其速度快,功耗低,通用性强,特别适用于复杂系统的设计。使用FPGA还可以实现动态配置、在线系统重构(可以在系统运行的不同时刻,按需要改变电路的功能,

使系统具备多种空间相关或时间相关的任务)及硬件软化、软件硬化等功能。

鉴于高频疲劳试验机控制器控制规模比较大,功能复杂,故我们在研制过程中,在传统试验机控制器的基础上,通过FPGA技术及微机技术两者的结合,来全面提升控制器系统的性能,使整机的工作效率、控制精度和电气系统可靠性得到了提高,且操作方便而又不乏技术的先进性。

2.3 ALTERA可编程逻辑器件简介

可编程逻辑器件的两种主要类型是现场可编程门阵列(FPGA)和复杂可编程逻辑器件(CPLD)。在这两类可编程逻辑器件中,FPGA提供了最高的逻辑密度、最丰富的特性和最高的性能。现在最新的FPGA器件,如Xilinx Virtex?系列中的部分器件,可提供八百万"系统门"(相对逻辑密度)。这些先进的器件还提供诸如内建的硬连线处理器(如IBM Power PC)、大容量存储器、时钟管理系统等特性,并支持多种最新的超快速器件至器件(device-to-device)信号技术。 FPGA被应用于范围广泛的应用中,从数据处理和存储,以及到仪器仪表、电信和数字信号处理等。

与此相比,CPLD提供的逻辑资源少得多 - 最高约1万门。但是,CPLD提供了非常好的可预测性,因此对于关键的控制应用非常理想。而且如Xilinx Cool Runner?系列CPLD器件需要的功耗极低。

可编程逻辑器件,英文全称为:programmable logic device 即 PLD。

PLD是作为一种通用集成电路产生的,他的逻辑功能按照用户对器件编程来确定。一般的PLD 的集成度很高,足以满足设计一般的数字系统的需要。这样就可以由设计人员自行编程而把一个数字系统“集成”在一片PLD上,而不必去请芯片制造厂商设计和制作专用的集成电路芯片了。

PLD与一般数字芯片不同的是:PLD内部的数字电路可以在出厂后才规划决定,有些类型的PLD也允许在规划决定后再次进行变更、改变,而一般数字芯片在出厂前就已经决定其内部电路,无法在出厂后再次改变,事实上一般的模拟芯片、混讯芯片也都一样,都是在出厂后就无法再对其内部电路进行调修。

PLD与一般数字芯片不同的是:PLD内部的数字电路可以在出厂后才规划决定,有些类型的PLD也允许在规划决定后再次进行变更、改变,而一般数字芯片在出厂前就已经决定其内部电路,无法在出厂后再次改变,事实上一般的模拟芯片、混讯芯片也都一样,都是在出厂后就无法再对其内部电路进行调修。

目前FPGA的逻辑功能块在规模和实现逻辑功能的能力上存在很大差别。在这方面美国ALTERA 公司以雄厚的技术实力、独特的设计构思和功能齐全的芯片开发系统在激烈的市场竞争中脱颖而出。为满足更广泛的设计要求,ALTERA公司对其开发的FPGA器件进行了改进,推出了功能超过普通FPGA 的FLEX8000系列。再后来又推出了MAX7000S系列产品。通过该公司的先进的芯片开发软件MAX+PLUS II,用户可以任意对芯片进行编程、加密或用软件代替硬件,以满足自己的设计需要。

本课题就是基于MAX7000S系列芯片,运用MAX+PLUS II软件进行设计的。

3多进制数字调制原理

3.1 FSK 调制解调的基本原理

3.1.1 2FSK 的调制

频移键控即FSK (Frequency -Shift Keying )数字信号对载波频率调制,主要通过数字基带信号控制载波信号的频率来来传递数字信息。在二进制情况下,“1”对应于载波频率,“0”对应载波频率,但是它们的振幅和初始相位不变化。FSK 信号产生的两种方法:

(1)直接调频法

用二进制基带矩形脉冲信号去调制一个调频器,使其输出两个不同频率的码元。一般采用的控制方法是:当基带信号为正时(相当于“1”码),改变振荡器谐振回路的参数(电容或者电感数值),使振荡器的振荡频率提高(设为f1);当基带信号为负时(相当于“0”码),改变振荡器谐振回路的参数(电容或者电感数值),使振荡器的振荡频率降低(设为f2);从而实现了调频。这种方法产生的调频信号是相位连续的,虽然实现方法简单,但频率稳定度不高,同时频率转换速度不能做得太快,但是其优点是由调频器所产生的FSK 信号在相邻码元之间的相位是连续的

( 2 ) 频率键控法

频率键控法也称频率选择法。它有两个独立的振荡器,数字基带信号控制转换开关,选择不同频率的高频振荡信号实现FSK 调制。

图 2.1.1 频率健控法原理框图

图3.1 频率键控法原理框图

键控法产生的 FSK 信号频率稳定度可以做得很高并且没有过渡频率,它的转换速度快,波形好。频率键控法在转换开关发生转换的瞬间,两个高频振荡的输出电压通常不可能相等,于是uFSK (t )信号在基带信息变换时电压会发生跳变,这种现象也称为相位不连续,这是频率键控特有的情况。

3.1.2 2FSK 的调制方框图及电路符号

图3.2 2FSK 调制方框图

3.1.3 2FSK 的解调

~1f ~2f

)(t u FSK 基带 信号 FPGA 载波f1clk

start

基带信号

分频器1分频器2载波f2二选一选通开关调制信号

数字频率键控(FSK )信号常用的解调方法有很多种如:

(1) 同步(相干)解调法

在同步解调器中,有上、下两个支路,输入的 FSK 信号经过1f 和2f 两个带通滤波器后变成了上、下两路ASK 信号,之后其解调原理与ASK 类似,但判决需对上、下两支路比较来进行。假设上支路低通滤波器输出为1x ,下支路低通滤波器输出为2x ,则判决准则是:

图3.3相干解调法原理框图

接收信号经过并联的两路带通滤波器进行滤波与本地相干载波相乘和包络检波后,进行抽样判决,判决的准则是比较两路信号包络的大小。假设上支路低通滤波器输出为cos 1ωf ,下支路低通滤波器输出为cos f 2ω,则判决准则是:如果上支的信号包络较大,则判决为“1”;反之,判决为收到为“0”。

(2) 2FSK 滤波非相干解调

输入的FSK 中频信号分别经过中心频为FH 、FL 的带通滤波器,然后分别经过包络检波,包络检波的输出在t=kTb 时抽样(其中k 为整数),并且将这些值进行比较。根据包络检波器输出的大小,比较器判决数据比特是1还是0。

图3.4 滤波非相干解调原理框图

3.1.4 2FSK 解调方框图及电路符号

???<->-信号

判输入为信号

判输入为22112100f x x f x x - + 接收的FSK 信号 包络检波 包络检波

判决 带通滤波FH 带通滤波FL

clk

start

基带信号寄存器XX

分频器q 判决调制信号

FPGA

计数器m

图3.5 2 FSK 解调方框图

3.2 MFSK 简介

多进制数字频率调制(MFSK )简称多频制,是2FSK 方式的推广。它是用不同的载波频率代表种数字信息。多进制频键控(MFSK )的基本原理和2FSK 是相同的,其调制可以用频率键控法(频率选择法)和模拟的调频法来实现,不同之处在于使用键控法时其供选的频率有M 个,选择逻辑电路也比较复杂。

MFSK (多进制频移控),是一种在各种频率离散音频脉冲爆发传送数字信息的信号调制方法。它原来是欧洲和英国政府机构在20世纪中叶使用。在那时它叫做Piccolo,一种乐器的名字,这种乐器的声音音调很高,就像一个MFSK 信号经过收音机的喇叭时发出的声音。

MFSK 类似频移监控(FSK ),但是使用的频率要至少是两个。最常见的MFSK 形式使用16个频率,叫做MFSK16。这些音调一次传送一个。每个音调持续时间不到一秒。MFSK 中波特(每秒传输的数目)与比特/秒(bps )的比率要比二进制中小。这减少了噪音和对数据传输速率的干扰的错误的产生。为了提供更大的精确性,前向纠错技术(FEC )被使用。

MFSK 的主要缺点是信号频带宽,频带利用率低。因此,MFS K 多用于调制速率低及多径延时比较严重的信道,如无线短波信道。

3.3多进制数字频率调制的原理

串/并变换器和逻辑电路1将一组组输入的二进制码(每k 个码元为一组)对应地转换成有M 种状态的一个个多进制码。这M 个状态分别对应M 个不同的载波频率。当 某 组k 位二进制码到来时,逻辑电路1的输出一方面接通某个门电路,让相应的载频发送出去,另一方面同时关闭其余所有的门电路。于是当一组组二进制码元输入时,经相加器组合输出的便是一个M 进制调频波形,其原理框图如下:

f1

图3.6 多进制频率调制系统的调制方框图

3.4多进制数字频率解调的原理

MFSK 的解调同样有相干解调、非相干解调和锁相环法解调等多种解调方式,其中非相干解调的原理如下图所示M 频制的解调部分由M 个带通滤波器、包络检波器及一个抽样判决器、逻辑电路2组成。各带通滤波器的中心频率分别对应发送端各个载频。因而,当某一已调载频信号到来时,在任一码元持续时间内,只有与发送端频率相应的一个带通滤波器能收到信号,其它带通滤波器只有噪声通过。抽样判决器的任务是比较所有包络检波器输出的电压,并选出最大者作为输出,这个输出是一位与发端载频相应的M 进制数。逻辑电路2把这个M 进制数译成k 位二进制并行码,并进一步做并/串变换恢复二进制信息输出,从而完成数字信号的传输。 其原理框图如下:

图3.7 多进制频率调制系统的解调方框图 接受滤波器 带通滤

波器 f1

带通滤波器 f2 带通滤波器 f3 包络检波 包络

检波

包络

检波 抽样判决器 逻辑电路 MFSK 信息 1 2 二进制信息 。。。。

M

3.5 MFSK 调制解调原理

为了提高通信系统传输信息的有效性(信息传输速率或系统的频带利用率)和可靠性(抗噪声性能),常采用多进制数字调制技术。通常把状态数大于2 的数字信号称为多进制信号。多进制数字调制,即用多进制信号去调制载波,例如用M 进制的信号去键控载波而得到M 进制已调信号,一般取M=2k (k 为正整数),这样一个多进制码元所传输的信息量是二进制码元的k 倍。MFSK 系统又称为多进制调频或多频制,它是2FSK 系统的推广,该系统有 M 个不同的载波频率可供选择,每一个载波频率对应一个M 进制码元信息, 即用多个频率不同的正弦波分别代表不同的数字信号,在某一码元时间内只发送其中一个频率的信号。MFSK 系统框图如下图所示。当接收到某个载波时,只有一个带通滤波器有信号输出,其它的带通滤波器只有噪声输出,抽样判决电路和逻辑电路的任务就是在某一时刻比较所有包络检波器的输出电压,判断哪一路的输出最大,选出最大的输出,就得到一个多进制码元,经逻辑电路转变成k 位二进制并行码,再经并/串变换电路转换成串行二进制码,从而完成解调任务[1]。其原理框图如下:

图3.8 多进制频率调制解调系统的方框图

图中,串/并变换器和逻辑电路1将一组组输入的二进制码(每K 个码元为一组)对应地转换

成有()种状态的一个个多进制码。这个状态分别对应个不同的载波频率

(1f ,2f 、,,,M f )。当某组K 位二进制码到来时,逻辑电路1的输出一方面接通某个门电路,让相应的载频发送出去,另一方面同时关闭其余所有的门电路。于是当一组组二进制码元输入时,经相加器组合输出的便是一个

进制调频波形。

频制的解调部分由个带通滤波器、包络检波器及一个抽样判决器、逻辑电路2组成。各带通滤波器的中心频率分别对应发送端各个载频。因而,当某一已调载频信号到来时,在任一码元 持续时间内,只有与发送端频率相应的一个带通滤波器能收到信号,其它带通滤波器只有噪声通过。抽样判决器的任务是比较所有包络检波器输出的电压,并选出最 大者作为输出,这个输出

工程测量毕业设计

存档号:学号: 石家庄铁路职业技术学院 毕业设计 分析水准测量的误差的来源及控制方法---以山西省某高速公路一期工程TJ4-4标段为例 系部: 测绘工程系 专业名称: 工程测量 指导教师Ⅰ: 姓名:

二0一二年十二月 诚信承诺 本人慎重承诺和声明: 我承诺在毕业论文(设计)活动中遵守学校有关规定,恪守学术规范,在本人的毕业论文中未剽窃、抄袭他人的学术观点、思想和成果,未篡改研究数据,如有违规行为发生,我愿承担一切责任,接受学校的处理。 承诺人: 2012年 12 月 5

毕业设计(论文)评定表

毕业设计(论文)任务书

摘要 本次作业以山西省某高速公路一期工程TJ4-4标段控制点SB43至SB48的三等水准测量为实例,阐述了水准测量的基本原理及其水准测量的方法与水准路线。总结了在水准测量过程当中遇到的问题,并对山西省测量误差进行了详细的分析,指出了在测量过程中容易忽略的细节从而导致测量成果不符合要求的问题,进一步改进了在水准测量过程中发现的这些问题,最终得到满足要求的测量结果。 关键词:水准测量水准仪高程误差

目录 第1章绪论 (1) 1.1论文的背景和意义 (1) 1.2论文的主要内容 (1) 第2章水准测量的基本原理和方法 (2) 2.1 水准测量的基本原理 (2) 2.2 水准测量方法与水准路线 (3) 第3章勘察设计过程中水准测量的问题及控制方法 (5) 3.1 水准测量的现状 (5) 3.2水准测量中出现的问题 (5) 3.3仪器误差(系统误差)及控制方法 (8) 3.3.1 视准轴不平行水准管轴产生的误差及控制方法 (8) 3.3.2水准尺误差及控制方法 (9) 3.4观测误差(偶然误差)和控制方法 (9) 3.4.1符合水准管气泡居中误差及控制方法 (9) 3.4.2调焦误差和视差的影响及控制方法 (10) 3.4.3水准尺的倾斜误差及控制方法 (10) 3.5 外界条件(偶然误差)影响和控制方法 (11) 3.5.1 地球球气差和日照风力引起的误差及控制方法 (11) 3.5.2 仪器升降和水准尺下沉的影响 (12) 3.6水准测量时应注意的事项 (14) 第4章结论 (15) 参考文献 (16)

简易数字频率计设计

简易数字频率计设计报告 设计内容: 1、测量信号:方波、正弦波、三角波; 2、测量频率范围: 1Hz~9999Hz; 3、显示方式:4位十进制数显示; 4、时基电路由由555构成的多谐振荡器产生(当标准时间的精度要求较高时,应通过晶体振荡器分频获得); 5、当被测信号的频率超出测量范围时,报警。 设计报告书写格式: 1、选题介绍和设计系统实现的功能; 2、系统设计结构框图及原理; 3、采用芯片简介; 4、设计的完整电路以及仿真结果; 5、Protel绘制的电路原理图; 6、制作的PCB; 7、课程设计过程心得体会(负责了哪些内容、学到了什么、遇到的难题及解决方法等)。 电子课程设计过程: 系统设计→在Multisim2001下仿真→应用Protel 99SE绘制电路原理图→制作PCB →撰写设计报告

简易数字频率计课程设计报告 第一章技术指标 1.1整体功能要求 1.2系统结构要求 1.3电气指标 1.4扩展指标 1.5设计条件 第二章整体方案设计 2.1 算法设计 2.2 整体方框图及原理 第三章单元电路设计 3.1 时基电路设计 3.2闸门电路设计 3.3控制电路设计 3.4 小数点显示电路设计 3.5整体电路图 3.6整机原件清单 第四章测试与调整 4.1 时基电路的调测 4.2 显示电路的调测 4-3 计数电路的调测 4.4 控制电路的调测 4.5 整体指标测试 第五章设计小结 5.1 设计任务完成情况 5.2 问题及改进

5.3心得体会附录 参考文献

第一章技术指标 1.整体功能要求 频率计主要用于测量正弦波、矩形波、三角波和尖脉冲等周期信号的频率值。其扩展功能可以测量信号的周期和脉冲宽度。 2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量,档位转换用于选择测试的项目------频率、周期或脉宽,若测量频率则进一步选择档位。 数字频率计整体方案结构方框图 3.电气指标 3.1被测信号波形:正弦波、三角波和矩形波。 3.2 测量频率范围:分三档: 1Hz~999Hz 0.01kHz~9.99kHz 0.1kHz~99.9kHz 3.3 测量周期范围:1ms~1s。 3.4 测量脉宽范围:1ms~1s。 3.5测量精度:显示3位有效数字(要求分析1Hz、1kHz和999kHz的测量误 差)。 3.6当被测信号的频率超出测量范围时,报警. 4.扩展指标 要求测量频率值时,1Hz~99.9kHz的精度均为+1。

单片机课程设计报告——智能数字频率计汇总

单片机原理课程设计报告题目:智能数字频率计设计 专业:信息工程 班级:信息111 学号:*** 姓名:*** 指导教师:*** 北京工商大学计算机与信息工程学院

1、设计目的 (1)了解和掌握一个完整的电子线路设计方法和概念; (2)通过电子线路设计、仿真、安装和调试,了解和掌握电子系统研发产品的一个基本流程。 (3)了解和掌握一些常见的单元电路设计方法和在电子系统中的应用: 包括放大器、滤波器、比较器、计数和显示电路等。 (4)通过编写设计文档与报告,进一步提高学生撰写科技文档的能力。 2、设计要求 (1)基本要求 设计指标: 1.频率测量:0~250KHz; 2.周期测量:4mS~10S; 3.闸门时间:0.1S,1S; 4.测量分辨率:5位/0.1S,6位/1S; 5.用图形液晶显示状态、单位等。 充分利用单片机软、硬件资源,在其控制和管理下,完成数据的采集、处理和显示等工作,实现频率、周期的等精度测量方案。在方案设计中,要充分估计各种误差的影响,以获得较高的测量精度。 (2)扩展要求 用语音装置来实现频率、周期报数。 (3)误差测试 调试无误后,可用数字示波器与其进行比对,记录测量结果,进行误差分析。 (4)实际完成的要求及效果 1.测量范围:0.1Hz~4MHz,周期、频率测量可调; 2.闸门时间:0.05s~10s可调; 3.测量分辨率:5位/0.01S,6位/0.1S; 4.用图形液晶显示状态、单位(Hz/KHz/MHz)等。 3、硬件电路设计 (1)总体设计思路

本次设计的智能数字频率计可测量矩形波、锯齿波、三角波、方波等信号的频率。系统共设计包括五大模块: 主芯片控制模块、整形模块、分频模块、档位选择模块、和显示模块。设计的总的思想是以AT89S52单片机为核心,将被测信号送到以LM324N为核心的过零比较器,被测信号转化为方波信号,然后方波经过由74LS161构成的分频模块进行分频,再由74LS153构成的四选一选择电路控制档位,各部分的控制信号以及频率的测量主要由单片机计数及控制,最终将测得的信号频率经LCD1602显示。 各模块作用如下: 1.主芯片控制模块: 单片机AT89S52 内部具有2个16位定时/计数器T0、T1,定时/计数器的工作可以由编程来实现定时、计数和产生计数溢出时中断要求的功能。利用单片机的计数器和定时器的功能对被测信号进行计数。以AT89S52 单片机为控制核心,来完成对各种被测信号的精确计数、显示以及对分频比的控制。利用其内部的定时/计数器完成待测信号周期/频率的测量。 2.整形模块:整形电路是将一些不是方波的待测信号转化成方波信号,便于测量。本设计使用运放器LM324连接成过零比较器作为整形电路。 3.分频模块: 考虑单片机利用晶振计数,使用11.0592MHz 时钟时,最大计数速率将近500 kHz,因此需要外部分频。分频电路用于扩展单片机频率测量范围,并实现单片机频率测量使用统一信号,可使单片机测频更易于实现,而且也降低了系统的测频误差。本设计使用的分频芯片是74LS161实现4分频及16分频。 4.档位选择模块:控制74LS161不分频、4分频或者 16分频,控制芯片是74LS153。 5.显示模块:编写相应的程序可以使单片机自动调节测量的量程,并把测出的频率数据送到显示电路显示,本设计选用LCD1602。 (2)测频基本设计原理 所谓“频率”,就是周期性信号在单位时间(1s)内变化 的次数。若在一定时间间隔T内测得这个周期性信号的重复变 化次数N,则其频率可表示为f=N/T(右图3-1所示)。其中脉 冲形成电路的作用是将被测信号变成脉冲信号,其重复频率等 。利用单片机的定时/计数T0、T1的定时、计数 于被测频率f x 功能产生周期为1s的时间脉冲信号,则门控电路的输出信号持图3-1

数字逻辑数字频率计的设计课程设计报告

滁州学院 课程设计报告 课程名称:数字逻辑课程设计 设计题目:数字频率计的设计 系别:网络与通信工程系 专业:网络工程(无线传感器网络方向)组别:第七组 起止日期:2012年5月28日~2012年6 月18日指导教师:姚光顺 计算机与信息工程学院二○一二年制

课程设计任务书

目录 1绪论 (1) 1.1设计背景 (1) 1.2主要工作和方法 (1) 1.3本文结构 (1) 2相关知识 (1) 2.1数字频率计概念...................................................................................................................... .. (1) 2.2数字频率计组成 (1) 3系统设计 (2) 4系统实现 (2) 4.1计数译码显示电路 (2) 4.2控制电路 (3) 5系统测试与数据分析 (5) 6课程设计总结与体会 (8) 6.1设计总结 (8) 6.2设计体会 (8) 结束语 (9) 参考文献 (9) 附录 (10) 致谢 (12)

1绪论 1.1设计背景 数字频率计是一种基础测量仪器,到目前为止已有 30 多年的发展史。早期,设计师们追求的目标主要是扩展测量范围,再加上提高测量精度、稳定度等,这些也是人们衡量数字频率计的技术水平,决定数字频率计价格高低的主要依据。目前这些基本技术日臻完善,成熟。应用现代技术可以轻松地将数字频率计的测频上限扩展到微频段。 随着科学技术的发展,用户对数字频率计也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对于中高档产品,则要求有高分辨率,高精度,高稳定度,高测量速率;除通常通用频率计所具有的功能外,还要有数据处理功能,统计分析功能,时域分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正完美的实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 随着数字集成电路技术的飞速发展,应用计数法原理制成的数字式频率测量仪器具有精度高、测量范围宽、便于实现测量过程自动化等一系列的突出特点。 1.2主要工作和方法 设计一个数字频率计。要求频率测量范围为1Hz-10kHz。数字显示位数为四位静态十进制计数显示被测信号。先确定好数字频率计的组成部分,然后分部分设计,最后组成电路。 1.3本文结构 本文第1部分前言主要说明频率计的用处和广泛性。第2部分简要说明了本次课程设计的要求。第3部分概要设计大致的勾画出本次设计的原理框架图和电路的工作流程图。第4部分简要说明4位二进制计数器74160的原理和搭建计数译码显示电路的原理,同时分析控制电路的功能,形成控制电路图,及搭建显示电路和控制电路的组合原理图。第5部分调试与操作说明,介绍相关的操作和输入不同频率是电路的显示情况。 2相关知识 2.1数字频率计介绍 2.1.1数字频率计概念 数字频率计是一种直接用十进制数字现设被测信号频率的一种测量装置,它不仅可以测量正弦波、方波、三角波等信号的频率,而且还可以用它来测量被测信号的周期。经过改装,在电路中增加传感器,还可以做成数字脉搏计、电子称、计价器等。因此,数字频率计在测量物理量方面有广泛的应用。 2.1.2数字频率计组成 数字频率计由振荡器、分频器、放大整形电路、控制电路、计数译码显示电路等部分组成。其中的控制脉冲采用时钟信号源替代,待测信号用函数信号发生器产生。数字频结构原理框图如图3.1

工程测量毕业论文设计

包头铁道职业技术学院 毕业论文 学生姓名:孙文磊 年级:2011 专业:工程测量技术 指导教师:高润喜 完成日期:2014年5月1日 第一章绪论 第二章工程测量的测量仪器 第三章隧洞地面和地下高程控制网略图 第四章隧洞地面和地下平面控制测量设计说明 4.1 确定遂洞地面和地下平面控制网的等级进行遂洞横向贯通误差的预计4.2 地面和地下平面控制测量等级的各种技术要求 4.2.1 地面控制测量的等级标志形状和尺寸的设计 4.2.2 平面控制测量所用的仪器

第五章隧洞地面和地下高程控制测量设计说明 5.1 地上高程控制测量误差引起的竖向贯通误差≤15mm 5.1.1 竖向贯通误差的预算 5.2 地面和地下高程控制测量的等级的各种技术要求 5.2.1 高程控制点的标志设计 5.2.2 确定所使用的仪器和工具 5.2.3 高程控制测量的外业观测方法、各项限差及内业计算的计算要求5.2.4 外业成果的整理与平差计算 第六章隧洞施工放样方法、精度的设计说明 6.1 洞外中心线的测设方法及要求的设计 6.2 隧洞中心控制桩外的设计 6.3 洞内施工导线、基本导线、主要导线的精度、测量方法设计6.4 隧洞内高程控制点测量方法、精度要求 6.5 隧洞进出口点的设计高程、个100 整数桩的设计高程 6.6 隧洞施工面的放样方法

6.7 纵、横和竖向贯通误差的测定方法 第七章总结 第一章 东山隧洞施工测量工程位于维州市东山镇西南方向,其东南方向是东山小学,离东山镇约2km ,离东山小学约1.5km ,距其不远有一条穿过东山镇的南北公路。公路对隧洞的施工提供了比较方便的交通路线。 隧洞全长为3156m ,穿过东山山头,东山山头的高程H=198.236m 。隧洞进口的设计高程HA=78.000m ,隧洞的设计坡降为0.3% 。 第二章本工程测量单位所拥有的测量仪器为 (1)全站仪,测程3km ,测距精度:±(2mm +2ppm · D ) 测角精度:± 2 ″ (2)DS3 水准仪 (3)30m 钢尺 根据所拥有的仪器及遂洞的地形图采用光电测距导线网作为平面控制网。由东山地形图可知道该地形比较陡,通视条件差,不宜布设多边形的平面控制网,测角网测量的角数比较多降低测量的速度,随着全站仪测距精度的提高,采用边角网的平面控制网可以提高测量的速度同时也可以保证测量的精度。由表 2.1.1 可知道平面控制网的等级可能为三等或四等,而且三、四、五等平面控制网,可以用相应等级的导线网来代替。所以本工程的控制网采用了光电测距导线网。平面控制网见东山地形图。 表 2.1.1 洞外控制网等级选择

基于51单片机的数字频率计_毕业设计

毕业论文声明 本人郑重声明: 1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。 2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。 3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。 4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。 学位论文作者(签名): 年月

关于毕业论文使用授权的声明 本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据 库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。 论文作者签名:日期: 指导教师签名:日期:

简易数字频率计课程设计报告书

一、课题名称与技术要求 <1>名称:简易数字频率计 <2>主要技术指标和要求: 1. 被测信号的频率围100HZ~100KH 2. 输入信号为正弦信号或方波信号 3. 四位数码管显示所测频率,并用发光二极管表示单位 4. 具有超量程报警功能 二、摘要 以门电路,触发器和计数器为核心,由信号输入、放大整形、闸门电路、计数、数据处理和数据显示等功能模块组成。放大整型电路:对被测信号进行预处理;闸门电路:由与门电路通过控制开门关门,攫取单位时间进入计数器的脉冲个数;时基信号:周期性产生一秒高电平信号;计数器译码电路:计数译码集成在一块芯片上,计单位时间脉冲个数,把十进制计数器计数结果译成BCD码;显示:把BCD码译码在数码管显示出来。 关键字:比较器,闸门电路,计数器,锁存器,逻辑控制电路 三、方案论证与选择 <1>频率测量原理与方法 对周期信号的测量方法,常用的有下述几种方法。 1、测频法(M法) 对频率为f的周期信号,测频法的实现方法,是用以标准闸门信号对被测信号的重复周期数进行计数,当计数结果为N时,其频率为:f1=N1/TG。TG为标准闸门宽度,N1是计数器计出的脉冲个数,

设在TG期间,计数器的精确计数值为N,根据计数器的技术特性可知,N1的绝对误差是△N1=N ±1,N1的相对误差为&N1=(N1-N)/N=(N±1-N)/N=±1/N,由N1的相对误差可知,N(或N1)的数值愈大,相对误差愈小,成反比关系。因此,在f已确定的条件下,为减小N1的相对误差,可通过增大TG的方法来降低测量误差。但是,增大TG会使频率测量的响应时间长。当TG为确定值时(通常取TG=1s),则有f=N,固有f1的相对误差:&f1=(f1-f)/f=(f±1-f)/f=±1/f 由上式可知,f1的相对误差与f成反比关系,即信号频率越高,误差越小;而信号频率越低,则测量误差越大。因此,M法适合于对高频信号的测量,频率越高,测量精度也越高。 测频法原理图 2、测周法(T法) 首先把被测信号通过二分频,获得一个高电频时间和低电平时间都是一个信号周期T的方波信号;然后用一个已知周期的高频方波信号作为计数脉冲,在一个信号周期T的时间对此高频信号进行计数。若在T时间的计数值为N2,则有 T2=N2*Tosc f2=1/T=1/(N2* Tosc)= fosc/N2 N2的绝对误差为△N=±1 N2的相对误差为&N2=(N2-N)/N=(N±1-N)/N=±1/N 从T2的相对误差可以看出,周期测量的误差与信号频率成正比,而与高频你标准计数信号的频率成反比。当fosc为常数时,被测信号频率越低,误差越小,测量精度也就越高。

工程测量毕业论文范文2篇

工程测量毕业论文范文2篇 工程测量毕业论文范文一:建筑工程测量错误与对策 目前,我国建筑工程建设中存在一些问题,严重影响了工程建设和企业效益。其中建筑工程测量工作是工程建设中的重要基础工作,对工程建设具有重要意义。 1建筑工程测量工作中常见的错误 1.1轴线定位错误 轴线定位出现错误将会产生严重的后果,整体建筑物的定位会随之出现偏差,相应的规划布局和前期的设计工作都失去意义,会给建设单位造成巨大的经济损失。 1.2单根桩定位错误 由于桩基础测量定位的过程繁琐,实践当中有很多因素都能够对单根桩定位造成影响,进而产生错误。在施工中经常发生这种错误,对于基础开挖前的单根桩位定位错误通常可以采取补救措施,对于基础开挖后发生的单根桩位定位措施很难补救和处理。 1.3测量放样错误 有很多原因都能够造成测量放样错误,主要包括: (1)没有复核或正确理解红线交点和设计图纸尺寸。没有依据图纸上的建筑尺寸复核所交的红线点,因需根据设计图纸的相关坐标定位红线放样,所以在这个过程中经常出现此类错误。 (2)没有正确理解图纸。连体大型基础工程和建筑物相连接的

工程经常出现图纸理解错误问题。一般建筑设计通常分成几张图纸出图,局部和整体的关系错误经常出现在测量放样的过程中。 (3)标错施工桩位表编号图中的尺寸。设计基础平民图桩位的出图通常有桩基础施工单位编号进行,在当前的cad绘图中经常出现编号图尺寸标错,如果改正不及时施工测量也会发生错误。 (4)现场放样的过程中计算出现错误及尺寸拉错。天气、场地、其他因素都会对桩基基础施工造成影响,因此经常在施工前才开始实时测量定位所定位的桩位,计算错误、尺寸拉错、计算书写错误经常出现。 (5)因计算器、仪器等测量设备造成的错误。实践中一些单位使用的仪器经常存在有误差或者不准的情况,进而造成测量错误。还有一些测量错误是由于计算器没有进行校核、功能设置不当等原因造成的。 2基础工程测量的有效措施 2.1建筑物定位测量 根据设计所给定的条件,在地面上测设建筑物四周外廓主轴线交点,建筑物桩位轴线的据此进行测量,是建筑物定位测量的主要过程。 2.2编制桩位测量放线图和说明书 为了促进桩基础施工测量的顺利进行,工程人员应当根据工程资料在作业前对桩位测量放线图和说明书进行编制。 (1)对定位轴线进行确定。通常将外形整齐、平面呈矩形的建筑物的外廓墙体中心线作为建筑物定位主轴线,这样便于工程人员进行实测操作;外形不规则、平面呈弧形的复杂建筑物的定位主

毕业设计数字频率计的设计论文

数字频率计的设计 摘要:本论文是一种直接用十进制数字来显示被测信号频率的测量装置。它不仅可以测量正弦波、方波、三角波的频率,而且还可以测量其它各种单位时间内变化的物理量的频率。该频率计是首先将被测信号变成脉冲信号,其重复频率等于被测频率。时钟电路提供标准的时间脉冲信号。闸门电路由标准秒信号进行控制,当闸门信号为高电平时,闸门开通,被测信号的脉冲通过闸门送入计数显示电路进行显示;当闸门信号为低电平时,闸门关断,计数器没有时钟脉冲输出,计数器停止计数。 关键词:频率显示闸门秒信号 引言 随着无线电技术的发展与普及,“频率”已成为广大群众所熟悉的物理量。调节收音机上的频率刻度盘可以使我们选听到自己所喜欢的电台节目;调节电视机上的微调旋钮可使电视机对准电视台的广播频率,获得图像清晰的收看效果,这些已成为人们的生活常识。 人们在日常生活、工作中更离不开计时。学校何时上、下课?工厂几时上、下班等这些都涉及到计时。频率、时间的应用,在当代高科技中显得尤为重要。例如,邮电通讯,大地测量,地震预报等等,都与频率、时间密切相关,只是其精密度和准确度比人们日常生活中的要求高得多罢了。 本次设计主要采用计数法制成一个测量范围在0~9999Hz的频率计。该频率计闸门信号的采样时间为1s,并采用4位数码管显示。它不仅可以测量正弦波、方波、三角波的频率,而且还可以测量其它各种单位时间内变化的物理量的频率。 一、数字频率计的组成 数字频率计电路主要由串联型稳压电源、整形电路、10分频电路、时钟电路、闸门形成及控制电路、计数显示电路等组成。

电路组成框图1-1如下: 待测信号整形电路10分频电路闸门形成及控制电路 串联型稳压电源时钟电路计数显示电路 电路组成框图1-1 二、设计所用集成电路简介 1.集成电路NE555概述 NE555是一种集模拟、数字于一体的中规模集成电路,它常应用于信号的产生与变化、电路的检测与控制。芯片采用双列直插式封装,有八个管脚。NE555引脚图2-1和功能如下 图2-1 引出端功能符号: TR: 置位控置制端,也称电平触发端 RD: 复位端,低电平有效 Q: 电路的输出端 CO: 电压控制端 TH: 复位控制端 DIS: 放电端 Vcc: 电源端 GND: 接地脚 2.集成电路CD4518概述 集成电路CD4518是一个双BCD码加法计数器。它有两个时钟输

数电课程设计报告-数字频率计

数电课程设计报告:频率计 目录 一、设计指标 二、系统概述 1.设计思想 2.可行性论证 3.工作过程 三、单元电路设计及分析 1.器件选择 2.设计及工作原理分析 四、电路的组构及调试 1.遇到的问题 2.现象记录及原因分析 3.解决及结果 4.功能的测试方法、步骤、设备、记录的数据 五、总结 1.体会 2.电路总图 六、参考文献 一、设计指标 设计指标:要求设计一个测量TTL方波信号频率的数字系统。测试值采用4个LED七段数码管显示,并以发光二极管只是测量对象(频率)的单位:Hz、kHz。

频率的测量范围有四档量程。 1)测量结果显示四位有效数字,测量精度为万分之一。 2)频率测量范围:100.1Hz——999.9kHz,分为: 第一档: 100.0Hz——999.9Hz 第二档: 1.000kHz——9.999kHz 第三档: 10.00kHz——99.99kHz 第四档: 100.0kHz——999.9kHz 3)量程切换可以采用两个按键SWB、SWA手动切换。 扩展要求: 一、当被测频率大于999.9kHz,超出最大值时,设置亮一个警灯,并同时发出报警声音。 二、自动切换量程 提示: 1.计数器计到9999时,产生溢出信号CO,启动量程加档。 2.显示不足4位有效数字时量程减档。 三、各量程输出信号的频率最高位有效数字为1、2、3、4、5、6、7、8、9。 二、系统概述 1.设计思想 周期性信号频率可通过记录信号在1s内的周期数来确定其频率。

累计标准时间Ts中被测信号的脉冲个数Nx,被测信号频率:fx≈Nx/Ts 测量时间Ts选择:由于测量时间Ts需要根据被测信号的频率切换,所以通常对振荡时钟进行分频以获得不同的定时时间。 采样定时、显示锁存、计数器清零的控制时序波形图 2.可行性论证 用计数器实现记录周期数的功能;用时基信号产生计数时间作为采样时间;用四位动态扫描通过数码管显示结果;因为如果计数器直接把数据输入到数码管显示,那么数码管的数据就会不断变化,累计增加的情况,所以采用锁存器,在每个时间信号内,通过一个高电平使能有效,将计数器的数值锁存到寄存器或者锁存器;为了不要让每次锁存的数据会比上次

电子数字频率计测量方法毕业论文

电子数字频率计测量方法毕业论文 1绪论 1.1研究背景及主要研究意义 频率是电子技术领域永恒的话题,电子技术领域离不开频率,一旦离开频率,电子技术的发展是不可想象的,为了得到性能更好的电子系统,科研人员在不断的研究频率,CPU就是用频率的高低来评价性能的好坏,可见,频率在电子系统中的重要性。 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器,其最基本的工作原理为:当被测信号在特定的时间段T的周期个数N时,则被测信号的频率f=N/T.电子计数器是一种基础测量仪器,到目前为止已有三十多年的发展历史。早期,设计师们追求的目标主要是扩展测量围,再加上提高测量精度、稳定度等,这些也是人们衡量电子计算机的技术水平,决定电子技术器价格高低的主要依据。目前这些技术日臻完善,成熟。应用现代技术可以轻松地将电子计数器的频率扩展到微波频段。 1.2数字频率计的发展现状 随着科学技术的发展,用户对电子计数器也提出了新的要求。对于低档产品要求使用操作方便,量程(足够)宽,可靠性高,价格低。而对中高档产品,则要求有较高的分辨率,高精度,高稳定度,高测量速率;除通常通用计数器所具有的功能外,还要有数据处理功能,统计分析功能等等,或者包含电压测量等其他功能。这些要求有的已经实现或者部分实现,但要真正地实现这些目标,对于生产厂家来说,还有许多工作要做,而不是表面看来似乎发展到头了。 由于微电子技术和计算机技术的发展,频率计都在不断地进步着,灵敏度不断提高,频率围不断扩大,功能不断增加。在测试通讯、微波器件或产品时,通常都市较复杂的信号,如含有复杂频率成分、调制的含有未知频率分量的、频率固定的变化的、纯净的或叠加有干扰的等等。为了能正确的测量不同类型的信号,必须了解待测信号特性和各种频率测量仪器的性能。微波技术器一般使用类型频谱分析仪的分频或混频电路,另外还包含多个时间基准、合成器、中频放大器等。虽然所有的微波计数器都是用来完成技术任务的,但各自厂家都有各自的一套复

数字频率计设计报告

数字电子技术课程设计 数字频率计的设计 姓名:杜昌波 学院:工学院 专业:电气工程及其自动化 学号:12100 505 指导教师:刘权吴敏 2014年06月04日

目录 目录 (2) 1 设计任务与要求 (3) 1.1 基本功能 (3) 1.2 扩展功能 (3) 2 设计原理 (3) 3 电路设计 (4) 3.1 整形电路 (4) 3.2脉冲波形产生及分频电路 (6) 3.3 闸门电路 (8) 3.4 计数电路 (9) 3.5 锁存显示电路 (11) 3.6 超量程报警显示电路 (12) 3.7 单稳态触发器电路 (13) 3.8 整机电路 (14) 3.9 说明 (15) 3.10 仿真结果 (15) 4 元器件清单 (19) 5 设计体会 (21) 参考资料 (22)

数字频率计的设计(第十组) 1 设计任务与要求 1.1 基本功能 1)能够测量正弦信号,矩形信号等波形的频率; 2)测量信号的频率范围为1HZ~100KHZ,分辨率为1HZ; 3)测量结果直接用十进制数值计数,通过五个数码管显示; 4)具有自较和测量两种功能; 5)测量误差小于5%; 6)多谐振荡器采用12M晶振电路,闸门用与门实现,显示用共阳极数码管。 1.2 扩展功能 1)分成四个频段,即1~99Hz,100~1KHz,1~10KHz,10~100KHz; 2)有超量程警告功能,当测量信号频率超过所选档位的量程时,频率计发出铃声警报。 2 设计原理 脉冲信号的频率就是在单位时间(1s)里产生的脉冲个数,若在一定时间间隔tw内测得这个周期信号的重复变化次数为N,则其频率可表示为: f=N/T 数字频率计的总体框图如图1所示: 图1

设计任意进制计数器

设计任意进制计数器 一、实验目的 掌握中规模集成计数器的使用方法及功能测试方法。 二、实验内容及要求 采用(74LS192)复位法或预置数法设计一个三位十进制计数器。要求各位同学设计的计数器的计数容量是自己学号的最后三位数字。 三、设计过程 74LS192是中规模同步十进制可逆计数器,具有双时钟输入,并具有清除和置数等功能,其引脚排列如图所示。74LS192(CC40192)的功能如下表所示。 1234A B C D 4 3 2 1 D C B A 161514131211109 Vcc D CR BO CO LD D D D Q Q CP CP Q Q GND 12345678 D 1 1 023 3 u2 74LS192 CR:清除端CP u:加计 数端 LD :置数端CP D:减计 数端 CO :非同步进位输出端 BO :非同步借位输出端 D3、D2、D1、D0:数据输入端 Q3、Q2、Q1、Q0:输出端 74LS192引脚排列图 表74LS192(CC40192)的功能 输入端输出端功能 CR LD CP u CP D D3 D2 D1 D0 Q3 Q2 Q1 Q0 1 ×××××××00 0 0 清零 0 0 ×× d c b a d c b a 置数 0 1 ↑ 1 ××××0000~1001加计数1001时CO=0 0 1 1 ↑××××1001~0000减计数0000时BO=0 用M进制集成计数器可以构成N(任意)进制的计数器。通常用反馈清零 法和反馈置数法。当计数器的计数N>M时,则要用多片M进制计数器构成。 其计数规律为:当低位计数器没有达到计数的最大值时,如74LS192的1001时, 其高位芯片应处于保持状态,只有当低位芯片计数达到最大值时,给相邻的高位 芯片计数器发一个信号,使其脱离保持状态,进入计数状态。现以233为例为计 数容量进行设计。由于233为三位数,因此需用三块74LS192。 1、清零法: CR(R D)=(Q1Q0)百(Q1Q0)拾(Q1)个 初态:0000 终态:233-1=232即:0010 0011 0010 状态转换图:(略)

工程测量毕业论文

工程测量毕业论文The final revision was on November 23, 2020

一、绪论 随着科技的不断进步,测绘仪器设备迅速发展,新仪器不断出现。在全站仪方面的重要发展是长距离棱镜全站仪的出现,免棱镜全站仪的免棱镜视距由初期几十米发展到当前的一千米以上。 地形测量指的是测绘地形图的作业。即对地球表面的地物、地形在水平面上的投影位置和高程进行测定,并按一定比例缩小,用符号和注记绘制成地形图的工作。 地形测量包括控制测量和碎部测量。①控制测量是测定一定数量的平面和高程控制点,为地形测图的依据。平板仪测图的控制测量通常分首级控制测量和图根控制测量。首级控制以大地控制点为基础,用三角测量或导线测量方法在整个测区内测定一些精度较高、分布均匀的控制点。图根控制测量是在首级控制下,用小三角测量、交会定点方法等加密满足测图需要的控制点。图根控制点的高程通常用三角高程测量或水准测量方法测定。②碎部测量是测绘地物地形的作业。地物特征点、地形特征点统称为碎部点。碎部点的平面位置常用极坐标法测定,碎部点的高程通常用视距测量法测定。按所用仪器不同,有平板仪测图法、经纬仪和小平板仪联合测图法、经纬仪(配合轻便展点工具)测图法等。它们的作业过程基本相同。测图前将绘图纸或聚酯薄膜固定在测图板上,在图纸上绘出坐标格网,展绘出图廓点和所有控制点,经检核确认点位正确后进行测图。测图时,用测图板上已展绘的控制点或临时测定的点作为测站,在测站上安置整平平板仪 并定向,然后用望远镜照准碎部点,通过测站点的直尺边即为指向碎部点的方向线,再用视距测量方法测定测站至碎部点的水平距离和高程,按测图比例尺沿直尺边沿自测站截取相应长,即碎部点在图上的平面位置,并在点旁注记高程。这样逐站边测边绘,即可测绘出地形图。传统的平板仪测图和经纬仪(或测距经纬仪)测图通称白纸测图,它

数字频率计设计 毕业设计

毕业设计(论文)任务书 课题名称数字频率设计课题性质毕业论文 专业楼宇智能化工程技术班级 11级学生姓名学号 113121 指导教师教研室主任系部主任 发放日期 一、课题条件: 1.分析频率计的设计方法; 2.利用现有的仿真软件进行波形仿真; 二、毕业论文(设计)主要内容: 1、测量信号:方波; 2、测量频率范围:1KHZ~9999HZ;10KHZ~100KHZ; 3、显示方式:4位十进制数显示; 4、时基电路由555定时器及分频器组成,555振荡器产生脉冲信号,经分频器分频产生的时基信号,其脉冲宽度分别为:1秒,0.1秒; 5、当被测信号的频率超出测量范围时,报警。 三、计划进度: 1. 资料的收集撰写开题报告 7月18日至9月8日 2. 方案设计 9月9日至9月15日 3. 电路的设计指标分析与确定;后期的电路优化元器件的选择与参数确定 9月16日至11月2日 4. 毕业设计论文的修改、完善 11月3日至11月10日 5. 毕业设计答辩11月15 日至11月20日 6. 毕业设计工作总结11月20日至11月25日 四、主要参考文献: (1)电子技术基础(第三版) (2)电子产品的设计与制作工艺 (3)电子设计技术杂志 (4)现代电子学及应用1 (5)AD (6)数字电子技术基础阎石主编高等教育出版社 指导教师(系)教研室主任 年月日年月日

摘要 频率计又称为频率计数器,是一种专门对被测信号频率进行测量的电子测量仪器。其最基本的工作原理为:当被测信号在特定时间段T内的周期个数为N 时,则被测信号的频率f=N/T。 频率计主要由四个部分构成:时基(T)电路、输入电路、计数显示电路以及控制电路。在一个测量周期过程中,被测周期信号在输入电路中经过放大、整形、微分操作之后形成特定周期的窄脉冲,送到主门的一个输入端。主门的另外一个输入端为时基电路产生电路产生的闸门脉冲。在闸门脉冲开启主门的期间,特定周期的窄脉冲才能通过主门,从而进入计数器进行计数,计数器的显示电路则用来显示被测信号的频率值,内部控制电路则用来完成各种测量功能之间的切换并实现测量设置。 在传统的电子测量仪器中,示波器在进行频率测量时测量精度较低,误差较大。频谱仪可以准确的测量频率并显示被测信号的频谱,但测量速度较慢,无法实时快速的跟踪捕捉到被测信号频率的变化。正是由于频率计能够快速准确的捕捉到被测信号频率的变化,因此,频率计拥有非常广泛的应用范围。 在传统的生产制造企业中,频率计被广泛的应用在产线的生产测试中。频率计能够快速的捕捉到晶体振荡器输出频率的变化,用户通过使用频率计能够迅速的发现有故障的晶振产品,确保产品质量。 在计量实验室中,频率计被用来对各种电子测量设备的本地振荡器进行校准。在无线通讯测试中,频率计既可以被用来对无线通讯基站的主时钟进行校准,还可以被用来对无线电台的跳频信号和频率调制信号进行分析。 常用的频率测量方法有测频法、测周法、测周期/频率法、F/V与A/D法。本文阐述了用测频法构成的数字频率计。 关键词:逻辑控制,计数器,时基(T)电路、输入电路、计数显示电路以及控制电路。

数字频率计课程设计

课程设计任务书 学生姓名:覃朝光专业班级:通信1103 指导教师:工作单位:信息工程学院 题目: 数字频率计的设计与实现 初始条件: 本设计既可以使用集成脉冲发生器、计数器、译码器、单稳态触发器、锁存器、放大器、整形电路和必要的门电路等,也可以使用单片机系统构建简易频率计。用数码管显示频率计数值。 要求完成的主要任务: (包括课程设计工作量及技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: 1)设计一个频率计。要求用4位7段数码管显示待测频率,格式为0000Hz。 2)测量频率范围:10~9999Hz。 3)测量信号类型:正弦波、方波和三角波。 4)测量信号幅值:0.5~5V。 5)设计的脉冲信号发生器,以此产生闸门信号,闸门信号宽度为1s。 6)确定设计方案,按功能模块的划分选择元、器件和中小规模集成电路,设计分电路,画出总体电路原理图,阐述基本原理。 3、查阅至少5篇参考文献。按《武汉理工大学课程设计工作规范》要求撰写设计报告书。全文用A4纸打印,图纸应符合绘图规范。 时间安排: 1、2013年5 月17日,布置课设具体实施计划与课程设计报告格式的要求说明。 2、2013 年 6 月18 日至2013 年6 月22 日,方案选择和电路设计。 3、2013 年6 月22 日至2013 年7 月1 日,电路调试和设计说明书撰写。 4、2013年7月5日,上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (3) 1电路的设计思路与原理 (4) 1.1电路设计方案的选择 (4) 1.1.1方案一:利用单片机制作频率计 (4) 1.1.2方案二:利用锁存器与计数器制作频率计 (5) 1.1.3方案三:利用定时电路与计数器制作频率计 (5) 1.1.4方案确定 (6) 1.2 原理及技术指标 (6) 1.3 单元电路设计及参数计算 (8) 1.3.1时基电路 (8) 1.3.2放大整形电路 (9) 1.3.3逻辑控制电路 (9) 1.3.4计数器 (11) 1.3.5锁存器 (12) 1.3.6译码电路 (13) 2仿真结果及分析 (13) 2.1仿真总图 (13) 2.2单个元电路仿真图 (14) 2.3测试结果 (17) 3测试的数据和理论计算的比较分析 (17) 4制作与调试中出现的故障、原因及排除方法 (17) 4.1故障a (17) 4.2故障b (18) 4.3故障c (18) 4.4故障d (18) 4.5故障e (18) 5 心得体会 (19)

数字频率计_课程设计报告

电气与信息工程学院 数字频率计 设计报告书 前言 摘要:在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的 测量就显得更为重要。测量频率的方法有多种,其中数字计 数器测量频率具有精度高、使用方便、测量迅速,以及便于 实现测量过程自动化等优点,是频率测量的重要手段之一。 其原理为通过测量一定闸门时间内信号的脉冲个数。本文阐 述了设计了一个简单的数字频率计的过程。 关键词:频率计,闸门,逻辑控制,计数-锁存

目录 第一章设计目的 第二章设计任务和设计要求 2.1 设计任务及基本要求 2.2.系统结构要求 第三章系统概述 3.1概述 3.2设计原理及方案 第四章单元电路设计及分析 4.1 时基电路 4.2逻辑控制电路 4.3计数电路 4.4锁存电路 4.5显示译码电路 4.6 闸门电路 第五章安装与调试过程 5.1 电路的安装过程 5.2 电路的调试过程 5.3 出现的问题及解决办法 第六章结果分析 第七章收获与体会

第八章元件清单 第九章实现结果实物图 附录A 参考文献 第一章 设计目的: 1.了解数字频率计测量频率与测量周期的基本原理; 2.熟练掌握数字频率计的设计与调试方法及减小测量误 差的方法。 3.本设计与制作项目可以进一步加深我们对数字电路应 用技术方面的了解与认识,进一步熟悉数字电路系统设计、制作与调试的方法和步骤。 4.针对电子线路课程要求,对我们进行实用型电子线路设 计、安装、调试等各环节的综合性训练,培养我们运用课程中所学的理论与实践紧密结合,独立地解决实际问题的能力。

第二章 设计任务及要求: 2.1设计任务及基本要求: 设计一简易数字频率计,其基本要求是: 1)测量频率范围0~9999Hz; 2)最大读数9999HZ,闸门信号的采样时间为1s;. 3)被测信号可以是正弦波、三角波和方波; 4)显示方式为4位十进制数显示; 5)完成全部设计后,可使用EWB进行仿真,检测试验设计电路的正确性。 2.2.系统结构要求 数字频率计的整体结构要求如图所示。图中被测信号为外部信号,送入测量电路进行处理、测量。 波形 整 形 计 数 器 数 码 显 示 振荡 电 路分 频 器 控 制 门 数 据 锁 存 器 显 示 译 码 器 被测 信 号

相关主题
文本预览
相关文档 最新文档