当前位置:文档之家› 龙贝格积分实验报告

龙贝格积分实验报告

龙贝格积分实验报告
龙贝格积分实验报告

二、R o m b e r g 积分法

1.变步长Romberg 积分法的原理

复化求积方法对于提高精度是行之有效的方法,但复化公式的一个主要缺点在于要事先估计出部长。若步长过大,则精度难于保证;若步长过小,则计算量又不会太大。而用复化公式的截断误差来估计步长,其结果是步长往往过小,而且''()f x 和(4)()f x 在区间[,]a b 上的上界M 的估计是较为困难的。在实际计算中通常采用变步长的方法,即把步长逐次分半(也就是把步长二等分),直到达到某种精度为止,这种方法就是Romberg 积分法的思想。

在步长的逐步分半过程中,要解决两个问题:

1. 在计算出N T 后,如何计算2N T ,即导出2N T 和N T 之间的递推公式;

2. 在计算出N T 后,如何估计其误差,即算法的终止的准则是什么。

首先推导梯形值的递推公式,在计算N T 时,需要计算1N +个点处的函数值在计算出N T 后,在计算2N T 时,需将每个子区间再做二等分,共新增N 个节点。为了避免重复计算,计算2N T 时,将已计算的1N +个点的数值保留下来,只计算新增N 个节点处的值。为此,把2N T 表示成两部分之和,即

由此得到梯形值递推公式 因此

由复化梯形公式的截断误差有

若''()f x 变化不大时,即''''12()()f f ηη≈,则有

式(2)表明,用2N T 作为定积分I 的近似值,其误差大致为21

()3

N N T T -,因

此其终止条件为

其中ε是预先给定的精度。 积分公式

将上述方法不断推广下去,可以得到一个求积分的序列,而且这个序列很快收敛到所求的定积分。记

(0)N N T T =,将区间N 等分的梯形值。(1)N N T S =,将区间N 等分的Simpson (2)N N T C =,将区间N 等分的Cotes 。(3)N N T R =,将区间N 等分的Romberg 。

由其可构造一个序列(){}k N T ,次序列称为Romberg 序列,并满足如下递推关系: 以上递推公式就是Romberg 积分递推公式。 积分程序

1. 置1N =,精度要求ε,1h b a =-;

2. 计算(0)1[()()]2

b a

T f a f b -=+; 3. 置22

N N

h h =,并计算(0)

(0)211((21))222N N N k b a b a T T f a k N N =--=++-∑; 4. 置,2,1;M N N N K ===

5. 计算(1)(1)

2441

k k k k M M

M

k T T T ---=-;

6. 若 1M =,则转(7);否则置2

M

M =

,1k k =+转(5); 7. 若()(1)11k k T T ε--≤,则停止计算(输出()1k T ),否则转(3)。

积分法的应用

function [T,n] = romb(f,a,b,eps) double R ;

if nargin<4,eps=1e-8;

end

h=b-a;R(1,1)=(h/2)*(feval(f,a)+feval(f,b));

n=1;J=0;err=1;

while (err>eps)

J=J+1;h=h/2;S=0;

for i=1:n

x=a+h*(2*i-1);

S=S+feval(f,x);

end

R(J+1,1)=R(J,1)/2+h*S;

for k=1:J

R(J+1,k+1)=(4^k*R(J+1,k)-R(J,k))/(4^k-1);

end

err=abs(R(J+1,J+1)-R(J+1,J));

n=2*n;

end

R;

T=R(J+1,J+1)

End

其中输入项:f为被积函数,ab为积分区间的端点值,ep为积分精度;输出项:T 是逐次积分表值,n是迭代次数,R是最后积分值。

程序调用

可以将被积分函数编成函数文件,也可以直接使用内联函数来表示被积分函数,

示例

如下: >>f=inli

ne('1/(1+x.^2)','x'); >> [T,n,R]=romb(f,2,9,1e-9)

运行后得出其迭代次数,最终积分结果以及龙贝格积分矩阵如表2-1所示, 迭代次数N=64,最终的积分值R=.

表2-1 龙贝格积分矩阵

3.课本例题求解

1 当迭代精度ep=1e-9的条件下,迭代次数N=32,迭代结果R=

表2-2 式1对应的龙贝格积分矩阵

2 当迭代精度ep=1e-9的条件下,迭代次数N=32,迭代结果R=.

表2-3 式2对应的龙贝格积分矩阵

3对于积分

1

0ln(1)x

dx

x

+

?,由于积分下限0为其奇点,理论上无法进行数值积分,本题中近似取下限为1*10-9来进行计算。当迭代精度ep=1e-9的条件下,迭代次数N=16,迭代结果R=.

表2-4 式3对应的龙贝格积分矩阵

4.对于积分2

0sin()x

dx x

π

?,同样积分下限0为积分函数的奇点,理论上无法进行数值积分运算,本题中仍取积分下限近似为1*10-9进行计算。当迭代精度ep=1e-9的条件下,迭代次数N=16,迭代结果R=.

表2-5 式4对应的龙贝格积分矩阵

数值稳定性验证实验报告

实验课程:数值计算方法专业:数学与应用数学班级:08070141 学号:37 姓名:汪鹏飞 中北大学理学院

实验1 赛德尔迭代法 【实验目的】 熟悉用塞德尔迭代法解线性方程组 【实验内容】 1.了解MATLAB 语言的用法 2.用塞德尔迭代法解下列线性方程组 1234123412341234 54 1012581034 x x x x x x x x x x x x x x x x ---=-??-+--=?? --+-=??---+=? 【实验所使用的仪器设备与软件平台】 计算机,MATLAB7.0 【实验方法与步骤】 1.先找出系数矩阵A ,将前面没有算过的x j 分别和矩阵的(,)A i j 相乘,然后将累加的和赋值给sum ,即(),j s u m s u m A i j x =+?.算 出()/(,) i i x b sum A i i =-,依次循环,算出所有的i x 。 2.若i x 前后两次之差的绝对值小于所给的误差限ε,则输出i x .否则重复以上过程,直到满足误差条件为止. 【实验结果】 (A 是系数矩阵,b 是右边向量,x 是迭代初值,ep 是误差限) function y=seidel(A,b,x,ep) n=length(b); er=1; k=0; while er>=ep

k=k+1; for i=[1:1:n] q=x(i); sum=0; for j=[1:1:n] if j~=i sum=sum+A(i,j)*x(j); end end x(i)=(b(i)-sum)/A(i,i); er=abs(q-x(i)); end end fprintf('迭代次数k=%d\n',k) disp(x') 【结果分析与讨论】 >> A=[5 -1 -1 -1;-1 10 -1 -1;-1 -1 5 -1;-1 -1 -1 10]; b=[-4 12 8 34]; seidel(A,b,[0 0 0 0],1e-3) 迭代次数k=6 0.99897849430002 1.99958456867649 2.99953139743435 3.99980944604109

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

电路分析实验报告

电压源与电流源的等效变换 一、实验目的 1、加深理解电压源、电流源的概念。 2、掌握电源外特性的测试方法。 二、原理及说明 1、电压源是有源元件,可分为理想电压源与实际电压源。理想电压源在一定的电流 范围内,具有很小的电阻,它的输出电压不因负载而改变。而实际电压源的端电压随着电流变化而变化,即它具有一定的内阻值。理想电压源与实际电压源以及它们的伏安特性如图4-1所示(参阅实验一内容)。 2、电流源也分为理想电流源和实际电流源。 理想电流源的电流是恒定的,不因外电路不同而改变。实际电流源的电流与所联接的电路有关。当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电 并联来表示。图4-2为两种电流越大。实际电流源可以用一个理想电流源和一个内阻R S 流源的伏安特性。

3、电源的等效变换 一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。两者是等效的,其中I S=U S/R S或 U S=I S R S 图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的 电压源变换为一个参数为I s 和R S 的等效电流源。同时可知理想电压源与理想电流源两者 之间不存在等效变换的条件。 三、仪器设备 电工实验装置: DG011、 DG053 、 DY04 、 DYO31 四、实验内容 1、理想电流源的伏安特性 1)按图4-4(a)接线,毫安表接线使用电流插孔,R L 使用1KΩ电位器。 2)调节恒流源输出,使I S 为10mA。, 3)按表4-1调整R L 值,观察并记录电流表、电压表读数变化。将测试结果填入表4-1中。 2、实际电流源的伏安特性 按照图4-4(b)接线,按表4-1调整R L 值,将测试的结果填入表4-1中。

数值分析—龙贝格算法

数值分析 实 验 报 告 专业:信息与计算科学 班级: 10***班 学号: 1008060**** 姓名: ******

实验目的: 用龙贝格积分算法进行积分计算。 算法要求: 龙贝格积分利用外推方法,提高了计算精度,加快了收敛速度。 1--4R R R R 1-j 1-j 1-k 1-j k 1-j k j k ,,,,+= ,k=2,3,… 对每一个k ,j 从2做到k ,一直做到|R R 1-k 1-k k k -,,| 小于给定控制精 度时停止计算。 其中: T R h k 1k =,(复化梯形求积公式),2h 1-k k a -b = 程序代码: #include #include #define M 10 static float a, b, T[M], S[M], C[M], R[M]; float f(float x) { float y; if(0.0 == x) { x = 0.0000001f; } y = (float)1/sqrt(1-x*x); return y; } int p(int n) { int i=0,t=1;

while(t!=n) { t*=2; ++i; } return i; } float t(int n) { float g,h,q=0; if(1==n) { h = (float)fabs(b-a); q = (f(a)+f(b))*h/2; } else { float x = a; g = 0; h = (float)fabs(b-a)*2/n; x = x+h/2; while(x

数值计算实验报告

(此文档为word格式,下载后您可任意编辑修改!) 2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:宋元台 学号: 成绩:

数值计算方法与算法实验报告 学期: 2014 至 2015 第 1 学期 2014年 12月1日课程名称: 数值计算方法与算法专业:信息与计算科学班级 12级5班 实验编号: 1实验项目Neton插值多项式指导教师:孙峪怀 姓名:宋元台学号:实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页)

1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)* Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. 2.用C语言实现算法的程序代码 #includeMAX_N) { printf("the input n is larger than MAX_N,please redefine the MAX_N.\n"); return 1; } if(n<=0) { printf("please input a number between 1 and %d.\n",MAX_N); return 1; } printf("now input the (x_i,y_i)i=0,...%d\n",n); for(i=0;i<=n;i++) { printf("please input x(%d) y(%d)\n",i,i);

电路分析实验报告-第一次

电路分析实验报告

实验报告(二、三) 一、实验名称实验二KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图:

1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。 2.验证KVL: 以左侧的回路为研究对象,运行结果的截图如下:

由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回

原料药稳定性试验报告

L- 腈化物稳定性试验报告 一、概述 L-腈化物是L- 肉碱生产过程中的第一步中间体(第二步中间体: L-肉碱粗品;第三步中间体:L-肉碱潮品),由于L- 肉碱生产工艺为 间歇操作,即每生产一步中间体,生产完毕并出具合格检测报告后,存 入中间体仓库,以备下一步生产投料所需。根据本公司L- 肉碱产品的 整个生产周期,L- 腈化物入库后可能存放的最长时间为4 周(约28 天)。以此周期为时间依据制定了L- 腈化物稳定性试验方案,用于验 证L-腈化物在再试验期限内的各项质量指标数据的稳定性,并且能否符 合L- 腈化物的质量标准,此次稳定性试验的整个周期为28 天,具体 的稳定性试验方案以ICH 药物稳定性指导原则为基础制定,以确保L- 腈化化物稳定性试验的可操作性。 二、验证日期 2010 年1 月13 日- 2010 年2 月10 日 三、验证方案 1)样品储存和包装: 考虑到L- 腈化物今后的贮藏、使用过程,本次用于稳定性试验的样品 批次与最终规模生产所用的L- 腈化物的包装和放置条件相同。 2)样品批次选择:此次稳定性试验共抽取三批样品,且抽取样品的批次与 最终规模生产时的合成路线和生产工艺相同

3)抽样频率和日期:从2010.1.13 起,每隔7 天取样一次,共取五次,具体日期为:2010.1.13 、2010.1.20 、2010.1.27 、 2010.2.3 、2010.2.10 ,以确保试验次数足以满足L- 腈化物的稳 定性试验的需要。。 4)检测项目:根据L- 腈化物的质量标准的规定,此次稳定性试验的检测项目共五项,分别为外观、氯含量、熔点、比旋度、干燥失重。这 些指标在L- 腈化物的储存过程中可能会发生变化,且有可能影响 其质量和有效性。 5)试样来源和抽样:L- 腈化物由公司102 车间生产,经检测合格后储存于中间体仓库,本次稳定性试验的L- 腈化物均取自于该中间体仓 库,其抽样方法和抽样量均按照L- 腈化物抽样方案进行抽样。抽 样完毕后直接进行检测分析,并对检测结果进行登记,保存,作为稳 定性数据评估的依据。 四、稳定性试验数据变化趋势分析及评估 通过对三批L- 腈化物的稳定性试验,对其物理、化学方面稳定性资料进行评价,旨在建立未来相似情况下,大规模生产出的L- 腈化物是否适用 现有的再试验期(28天)。批号间的变化程度是否会影响未来生产的

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学 实验名称数值il?算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一. 各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程 *对于非线性方程,若已知根的一个近似值,将在处展开成一阶 xxfx ()0, fx ()xkk 泰勒公式 "f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2! 忽略高次项,有 ,fxfxfxxx 0 ()()(),,, kkk 右端是直线方程,用这个直线方程来近似非线性方程。将非线性方程的 **根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkk fx 0 fx 0 0,

解出 fX 0 *k XX,, k' fx 0 k 水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ik fx ()k 八XX, Ikk* fx()k 这就是牛顿迭代公式。 ,2,计算机程序框图:,见, ,3,输入变量、输出变量说明: X输入变量:迭代初值,迭代精度,迭代最大次数,\0 输出变量:当前迭代次数,当前迭代值xkl ,4,具体算例及求解结果: 2/16 华北电力大学实验报吿 开始 读入 l>k /fx()0?,0 fx 0 Oxx,,01* fx ()0 XX,,,?10 kk, ,1,kN, ?xx, 10 输出迭代输出X输出奇异标志1失败标志

,3,输入变量、输出变量说明: 结束 例:导出计算的牛顿迭代公式,并il ?算。(课本P39例2-16) 115cc (0), 求解结果: 10. 750000 10.723837 10. 723805 10. 723805 2、列主元素消去法求解线性方程组,1,算法原理: 高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角 3/16 华北电力大学实验报告方程组求解。 列选主元是当高斯消元到第步时,从列的以下(包括)的各元素中选出绝 aakkkkkk 对值最大的,然后通过行交换将其交换到的位置上。交换系数矩阵中的 两行(包括常ekk 数项),只相当于两个方程的位置交换了,因此,列选主元不影响求解的结 ,2,计算机程序框图:,见下页, 输入变量:系数矩阵元素,常向量元素baiji 输出变量:解向量元素bbb,,12n

电路分析-等效电源定理-实验报告.docx

电路分析等效电源定理实验报告 一、实验名称 等效电源定理 二、实验目的 1. 验证戴维宁定理和诺顿定理的正确性,加深对该定理的理解。 2. 掌握测量有源二端网络等效参数的一般方法。 三、原理说明 1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。 戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效内阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。 诺顿定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效内阻R0定义同戴维宁定理。 Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。 2. 有源二端网络等效参数的测量方法 (1) 开路电压的测量 在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。 (2)短路电流的测量 在有源二端网络输出端短路,用电流表测其短路电流Isc。 (3)等效内阻R0的测量 Uoc R0=── Isc 如果二端网络的内阻很小,若将其输出端口短路,则易损坏其内部元件,因此不宜用此法。

五、实验内容 被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/诺顿定理”线路。 (a) (b) 图5-1 1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。 按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。),并记录于表1。 表1 实验数据表一 2. 负载实验 按图5-1(a)接入可调电阻箱R L。按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。 表2 实验数据表二 3. 验证戴维宁定理 把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。 表3 实验数据表三 4. 验证诺顿定理 在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为诺顿定理中R0,然后令

计算方法算法的数值稳定性实验报告

专业 序号 姓名 日期 实验1 算法的数值稳定性实验 【实验目的】 1.掌握用MATLAB 语言的编程训练,初步体验算法的软件实现; 2.通过对稳定算法和不稳定算法的结果分析、比较,深入理解算法的数值稳定性及其重要性。 【实验内容】 1.计算积分 ()dx a x x I n ?+=1 0) (n (n=0,1,2......,10) 其中a 为参数,分别对a=0.05及a=15按下列两种方案计算,列出其结果,并对其可靠性,说明原因。 2.方案一 用递推公式 n aI I n 1 1n + -=- (n=1,2,......,10) 递推初值可由积分直接得)1 ( 0a a In I += 3. 方案二 用递推公式 )1 (11-n n I a I n +-= (n=N,N-1,......,1) 根据估计式 ()()()11111+<<++n a I n a n 当1 n a +≥n 或 ()()n 1 111≤<++n I n a 当1 n n a 0+< ≤ 取递推初值为 ()()()() 11212])1(1111[21N +++=++++≈N a a a N a N a I 当1 a +≥ N N 或

()()]1111[21N N a I N +++= 当1 a 0+< ≤N N 计算中取N=13开始 【解】:手工分析怎样求解这题。 【计算机求解】:怎样设计程序?流程图?变量说明?能否将某算法设计成具有形式参数的函数 形式? 【程序如下】: % myexp1_1.m --- 算法的数值稳定性实验 % 见 P11 实验课题(一) % function try_stable global n a N = 20; % 计算 N 个值 a =0.05;%或者a=15 % %-------------------------------------------- % % [方案I] 用递推公式 %I(k) = - a*I(k-1) + 1/k % I0 =log((a+1)/a); % 初值 I = zeros(N,1); % 创建 N x 1 矩阵(即列向量),元素全为零 I(1) =-a*I0+1; for k = 2:N I(k) =-a*I(k-1)+1/k; end % %--------------------------------------------

数值分析龙贝格实验报告

实验三 龙贝格方法 【实验类型】 验证性 【实验学时】 2学时 【实验内容】 1.理解龙贝格方法的基本思路 2.用龙贝格方法设计算法,编程求解一个数值积分的问题。 【实验前的预备知识】 1.计算机基础知识2.熟悉编程基本思想3.熟悉常见数学函数; 【实验方法或步骤】 龙贝格方法的基本思路龙贝格方法是在积分区间逐次二分的过程中,通过 对梯形之值进行加速处理,从而获得高精度的积分值。 1. 龙贝格方法的算法 步骤1 准备初值()f a 和()f b ,用梯形计算公式计算出积分近似值 ()()12b a T f a f b -=+??? ? 步骤2 按区间逐次分半计算梯形公式的积分近似值令 2i b a h -=,0,1,2,...i =计算12102122n n n i i h T T f x -+=??=+ ??? ∑,2i n = 步骤3 按下面的公式积分梯形公式:()223n n n n T T S T -=+ 辛普生公式:()2215n n n n S S C S -=+ 龙贝格公式:()2263n n n n C C R C -=+ 步骤4 精度控制 当2n n R R ε-<,(ε为精度)时,终止计算,并取2n R 为近似值否则将步长折 半,转步骤2。

[实验程序] #include #include # define Precision 0.00001//积分精度要求 # define e 2.71828183 #define MAXRepeat 10 //最大允许重复 double function(double x)//被积函数 { double s; s=2*pow(e,-x)/sqrt(3.1415926); return s; } double Romberg(double a,double b,double f(double x)) { int m,n,k; double y[MAXRepeat],h,ep,p,xk,s,q; h=b-a; y[0]=h*(f(a)+f(b))/2.0;//计算T`1`(h)=1/2(b-a)(f(a)+f(b)); m=1; n=1; ep=Precision+1; while((ep>=Precision)&&(m

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

电路分析实验报告第一次完整版

电路分析实验报告第一 次 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

电路分析实验报告 实验报告(二、三) 一、实验名称实验二 KCL与KVL的验证 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证基尔霍夫定理的正确性。 三、实验原理 KCL为任一时刻,流出某个节点的电流的代数和恒等于零,流入任一封闭面的电流代数和总等于零。且规定规定:流出节点的电流为正,流入节点的电流为负。 KVL为任一时刻,沿任意回路巡行,所有支路电压降之和为零。且各元件取号按照遇电压降取“+”,遇电压升取“-”的方式。沿顺时针方向绕行电压总和为0。电路中任意两点间的电压等于两点间任一条路径经过的各元件电压降的代数和。 四、实验内容 电路图截图: 1.验证KCL: 以节点2为研究节点,电流表1、3、5的运行结果截图如下: 由截图可知,流入节点2的电流为2.25A,流出节点2 的电流分别为750mA和1.5A。2.25=0.75+1.5。所以,可验证KCL成立。2.验证KVL:

以左侧的回路为研究对象,运行结果的截图如下: 由截图可知,R3两端电压为22.5V,R1两端电压为7.5V,电压源电压为30V。22.5+7.5-30=0。所以,回路电压为0,所以,可验证KVL成立。 一、实验名称实验三回路法或网孔法求支路电流(电压) 二、实验目的 1.熟悉Multisim软件的使用; 2.学习实验Multisim软件测量电路中电流电压; 3.验证网孔分析法的正确性。 三、实验原理 为减少未知量(方程)的个数,可以假想每个回路中有一个回路电流。若回路电流已求得,则各支路电流可用回路电流线性组合表示。这样即可求得电路的解。回路电流法就是以回路电流为未知量列写电路方程分析电路的方法。网孔电流法就是对平面电路,若以网孔为独立回路,此时回路电流也称为网孔电流,对应的分析方法称为网孔电流法。 四、实验内容 实验电路截图: 如图所示,i1,i2,i3分别为三个网孔的电流,方向如图所示,均为顺时针。 网孔一中含有一个电流源,而且电流源仅在网孔一中,所以,网孔一的电流就是电流源电流2A。设电流源两端电压为U7。

稳定性试验办法

附件3 特殊医学用途配方食品稳定性研究要求(试行) 一、基本原则 特殊医学用途配方食品稳定性研究是质量控制研究的重要组成部分,其目的是通过设计试验获得产品质量特性在各种环境因素影响下随时间 稳定性研究用样品应在满足《特殊医学用途配方食品良好生产规范》要求及商业化生产条件下生产,产品配方、生产工艺、质量要求应与注册申请材料一致,包装材料和产品包装规格应与拟上市产品一致。 影响因素试验、开启后使用的稳定性试验等采用一批样品进行;加速试验和长期试验分别采用三批样品进行。 (二)考察时间点和考察时间

稳定性研究目的是考察产品质量在确定的温度、湿度等条件下随时间变化的规律,因此研究中一般需要设置多个时间点考察产品的质量变化。考察时间点应基于对产品性质的认识、稳定性趋势评价的要求而设置。加速试验考察时间为产品保质期的四分之一,且不得少于3个月。长期试验总体考察时间应涵盖所预期的保质期,中间取样点的设置应当考虑产品的稳定性特点和产品形态特点。对某些环境因素敏感的产品,应适当增加考 3.检验方法:稳定性试验考察项目原则上应当采用《食品安全国家标准特殊医学用途配方食品通则》(GB 29922)、《食品安全国家标准特殊医学用途婴儿配方食品通则》(GB 25596)规定的检验方法。国家标准中规定了检验方法而未采用的,或者国家标准中未规定检验方法而由申请人自行提供检验方法的,应当提供检验方法来源和(或)方法学验证资料。检验方法应当具有专属性并符合准确度和精密度等相关要求。

四、试验方法 (一)加速试验 加速试验是在高于长期贮存温度和湿度条件下,考察产品的稳定性,为配方和工艺设计、偏离实际贮存条件产品是否依旧能保持质量稳定提供依据,并初步预测产品在规定的贮存条件下的长期稳定性。加速试验条件由申请人根据产品特性、包装材料等因素确定。 %。如在6 温度 %, 25℃±2℃ 长期试验是在拟定贮存条件下考察产品在运输、保存、使用过程中的稳定性,为确认贮存条件及保质期等提供依据。长期试验条件由申请人根据产品特性、包装材料等因素确定。 长期试验考察时间应与产品保质期一致,取样时间点为第一年每3个月末一次,第二年每6个月末一次,第3年每年一次。 如保质期为24个月的产品,则应对0、3、6、9、12、18、24月样品进行

Romberg龙贝格算法实验报告.

Romberg龙贝格算法实验报告 2017-08-09 课程实验报告 课程名称: 专业班级: CS1306班学号: U201314967 姓名:段沛云指导教师:报 告日期: 计算机科学与技术学院 目录 1 实验目的 (1) 2 实验原理 (1) 3 算法设计与流程框图 (2) 4 源程序 (4) 5 程序运行 (7) 6 结果分析 (7) 7 实验体会 (7) 1 实验目的 掌握Romberg公式的用法,适用范围及精度,熟悉Romberg算法的流程,并能够设计算法计算积分 31 得到结果并输出。 1x 2 实验原理 2.1 取k=0,h=b-a,求T0= 数)。 2.2 求梯形值T0( b-a

),即按递推公式(4.1)计算T0。 k 2 h [f(a)+f(b)],令1→k,(k记区间[a,b]的二分次2 2.3 求加速值,按公式(4.12)逐个求出T表的第k行其余各元素Tj(k-j) (j=1,2,….k)。 2.4 若|Tk+1-Tk| n-1 11T2n=[Tn+hn∑f(xi+)] 22i=0 1 Sn=T2n+(T2n-Tn) 31 Cn=S2n+(S2n-Sn) 151 Rn=C2n+(C2n-Cn) 63 3 算法设计与流程框图 算法设计:(先假定所求积分二分最大次数次数为20) 3.1 先求T[k][0] 3.2 再由公式T (k)m 4m(k+1)1)=mTm-1-mTm(k-1(k=1,2,) 求T[i][j] 4-14-1 3.3 在求出的同时比较T[k][k]与T[k-1][k-1]的大小,如果二者之差的绝对 值小于1e-5,就停止求T[k][k];此时的k就是所求的二分次数,而此时的T[k][k]就是最终的结果 3.4 打印出所有的T[i][j];程序流程图

电力系统分析实验报告

本科生实验报告 实验课程电力系统分析 学院名称核技术与自动化工程学院 专业名称电气工程及其自动化 学生姓名 学生学号 指导教师顾民 实验地点6C901 实验成绩

二〇一五年十月——二〇一五年十二月 实验一MATPOWER软件在电力系统潮流计算中的应用实例 一、简介 Matlab在电力系统建模和仿真的应用主要由电力系统仿真模块(Power System Blockset 简称PSB)来完成。Power System Block是由TEQSIM公司和魁北克水电站开发的。PSB是在Simulink环境下使用的模块,采用变步长积分法,可以对非线性、刚性和非连续系统进行精确的仿真,并精确地检测出断点和开关发生时刻。PSB程序库涵盖了电路、电力电子、电气传动和电力系统等电工学科中常用的基本元件和系统仿真模型。通过PSB可以迅速建立模型,并立即仿真。PSB程序块程序库中的测量程序和控制源起到电信号与Simulink程序之间连接作用。PSB程序库含有代表电力网络中一般部件和设备的Simulink程序块,通过PSB 可以迅速建立模型,并立即仿真。 1)字段baseMVA是一个标量,用来设置基准容量,如100MVA。 2)字段bus是一个矩阵,用来设置电网中各母线参数。 ①bus_i用来设置母线编号(正整数)。 ②type用来设置母线类型, 1为PQ节点母线, 2为PV节点母线, 3为平衡(参考)节点母线,4为孤立节点母线。 ③Pd和Qd用来设置母线注入负荷的有功功率和无功功率。 ④Gs、Bs用来设置与母线并联电导和电纳。 ⑤baseKV用来设置该母线基准电压。 ⑥Vm和Va用来设置母线电压的幅值、相位初值。 ⑦Vmax和Vmin用来设置工作时母线最高、最低电压幅值。 ⑧area和zone用来设置电网断面号和分区号,一般都设置为1,前者可设置范围为1~100,后者可设置范围为1~999。 3)字段gen为一个矩阵,用来设置接入电网中的发电机(电源)参数。 ①bus用来设置接入发电机(电源)的母线编号。 ②Pg和Qg用来设置接入发电机(电源)的有功功率和无功功率。 ③Pmax和Pmin用来设置接入发电机(电源)的有功功率最大、最小允许值。 ④Qmax和Qmin用来设置接入发电机(电源)的无功功率最大、最小允许值。 ⑤Vg用来设置接入发电机(电源)的工作电压。 1.发电机模型 2.变压器模型 3.线路模型 4.负荷模型 5.母线模型 二、电力系统模型 电力系统中输送和分配电能的部分称为电力网,它包括升降压变压器和各种电压等级的输电线路、动力系统、电力系统和电力网简单示意如图

数值计算实验报告

2012级6班###(学号)计算机数值方法 实验报告成绩册 姓名:安元龙 学号:2012060501 成绩:

数值计算方法与算法实验报告 学期: 2014 至___2015 第 1 学期 2014年 10月26日课程名称:__数值计算方法与算法 __ 专业:信息与计算科学 12级5班实验编号: 1实验项目Neton插值多项式指导教师__孙峪怀姓名:安元龙学号: 2012060501 实验成绩: 一、实验目的及要求 实验目的: 掌握Newton插值多项式的算法,理解Newton插值多项式构造过程中基函数的继承特点,掌握差商表的计算特点。 实验要求: 1. 给出Newton插值算法 2. 用C语言实现算法 二、实验内容 三、实验步骤(该部分不够填写.请填写附页) 1.算法分析: 下面用伪码描述Newton插值多项式的算法: Step1 输入插值节点数n,插值点序列{x(i),f(i)},i=1,2,……,n,要计算的插值点x. Step2 形成差商表 for i=0 to n for j=n to i f(j)=((f(j)-f(j-1)/(x(j)-x(j-1-i)); Step3 置初始值temp=1,newton=f(0) Step4 for i=1 to n temp=(x-x(i-1))*temp/*由temp(k)=(x-x(k-1))*temp(k-1)形成 (x-x(0).....(x-x(i-1)*/ Newton=newton+temp*f(i); Step5 输出f(x)的近似数值newton(x)=newton. #include #define MAX_N 20 typedef struct tagPOINT { double x; double y; }POINT; int main() { int n; int i,j; POINT points[MAX_N+1];double diff[MAX_N+1]; double x,tmp,newton=0;

数字电路实验报告

数字电路实验报告 姓名:张珂 班级:10级8班 学号:2010302540224

实验一:组合逻辑电路分析一.实验用集成电路引脚图 1.74LS00集成电路 2.74LS20集成电路 二、实验内容 1、组合逻辑电路分析 逻辑原理图如下:

U1A 74LS00N U2B 74LS00N U3C 74LS00N X1 2.5 V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V GND 图1.1组合逻辑电路分析 电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。 真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 表1.1 组合逻辑电路分析真值表 实验分析: 由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。 2、密码锁问题: 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。

试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下: U1A 74LS00N U2B 74LS00N U3C 74LS00N U4D 74LS00N U5D 74LS00N U6A 74LS00N U7A 74LS00N U8A 74LS20D GND VCC 5V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V X1 2.5 V X2 2.5 V 图 2 密码锁电路分析 实验真值表记录如下: 实验真值表 A B C D X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 表1.2 密码锁电路分析真值表 实验分析: 由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。由此可见,该密码锁的密码ABCD 为1001.因而,可以得到:X1=ABCD ,X2=1X 。

稳定性数据评价

稳定性数据评价 1.介绍 1.1 指南的目的 该指南的目的是为了提供如何使用根据ICH指南Q1A(R)里详述的“新原料药和制剂稳定性试验”原则(以后提到即作为总指导原则)而产生的稳定性数据的介绍来建议再试验期或货架期。该指南描述了何时及如何使用有限外推法来建议关于原料药的再试验期或超出来自长期储存条件的数据的观测范围的原料药货架期。 1.2 背景 总指导原则提供的关于稳定性数据的评价和统计分析的指南是性质上简要和范围上有限制。尽管总指导原则指出回归分析是可接收的方法来分析关于再试验期或货架期评价的定量稳定性数据,并建议用0.25显著性水平操作合并批的统计测试,它很少包括细节。另外,总指导原则不包括当复合因素包含在全面或折合-设计调查的情况。当到该方针的第4步,总指导原则的评价部分将会重复,因此删去。 1.3 指南的范围 该指南,总指导原则的附件,目的是当基于定量和定性测试性质的稳定性数据评价而建议再试验期或货架期和贮存条件时提供预期值的清晰解释。该指南概括了基于单个或复合因素和全面或折合-设计调查得出的稳定性数据以确定再试验期或货架期的介绍。ICH Q6A 和Q6B提供了关于调整和证实认可标准的指南。 2. 指南 2.1 一般原则 正规稳定性调查的设计和实行应符合总指导原则列出的原则。稳

定性调查的目的是,在测试最少三批原料药或制剂基础上,确立适用于将来在相似环境下生产和包装批的再试验期或货架期和标签贮存说明。 在稳定性资料的说明和评价里应采用系统性方法,其中应包括,视情况而,从物理、化学、生物和微生物试验,包括从那些与剂型有关的特定性质(例如,固体口服剂型的溶解速率)的结果。如果合适,应注意回顾质量平衡的合适性。应该考虑能引起质量平衡明显不足的因素,例如,降解机理和稳定性-显示能力和分析方法内在可变性。单批的变化程度作用以后生产批次在其再试验期或货架期间仍保留在其认可标准内的信心。 该指南里关于统计法的介绍不意味着当统计计算被证明是多余时,用统计计算仍可取。但在一些情况下统计分析在再试验期或货架期的外推法里是有用的且在其它情况可能提倡将次用于核实再试验期或货架期。 稳定性数据测定的基本原则同于单个-与多个-因素调查和全面-与折合-设计调查。正规稳定性调查里的数据测定,并视情况而定,使用支持数据来确定可能作用原料药或制剂的质量和性能的关键质量性质。应各自评估每个性质和为了建议再试验期或货架期而由调查结果构成的全面评估。所提议的再试验期或货架期不应超过任何单个性质的预测。 附录A里提供的流程图和附录B里提供的关于如何分析和评价从多因素或折合设计得到的关于适当的定量试验性质的长期稳定性数据。用于数据分析的统计方法应该考虑稳定性调查为估计再试验期或货架期而提供有效统计结论。附录B也应该提供关于如何使用再试验

相关主题
文本预览
相关文档 最新文档