当前位置:文档之家› 网络规划与设计 ospf单区域和多区域

网络规划与设计 ospf单区域和多区域

网络规划与设计  ospf单区域和多区域
网络规划与设计  ospf单区域和多区域

网络规划与设计课程设计报告

(OSPF)

姓名:______成鹏___________

学号:____201101050502_____

班级:___网络工程11-1班___

指导老师:____王妍凤_______

完成日期:___2013-12-28_____

一、实验目的

1.了解ospf运作原理,并掌握其配置方法。

2.熟悉中小型网络的规划设计流程。

二、实验要求

1.根据网络需求实例,自行命题设计网络。

2.主要采用ospf动态路由协议。

3.分别设计ospf单区域和多区域。

三、实验内容

第一部分:单区域OSPF

3.1网络需求及需求分析

现有一家小型公司,公司主要由市场部、财务部、人事部、研发部构成,每个部门约有150人。现要为其实现公司内部的网络互联,并能够与外部通信。

为保证网络高效稳定的运行,需要对网络实施高可用性方案,其中最重要的就是要提供足够的冗余以便在网络出现故障时的快速收敛。

3.2网络详细设计

对该公司的网络设计我采用了如下图所示的经典网络拓扑。在该拓扑中,将园区网分为核心层,分布层,接入层三个层次,其中核心层与分布层之间采用的是三层链路,而分布层与接入层之间的链路是二层的。之所以采用分层化模型,是因为其具有以下几点优势:?提供了模块化的设计方案

?易于理解

?灵活性强

?易于扩展

?提高了网络的可预测性

?降低了排错的难度

在分层化模型的基础上,我又在核心层和分布层中提供了设备的冗余,在这里说明一下,为了使拓扑图看起来更加清晰简单,在此拓扑上我并没有对设备之间的连接使用双链路。下面,我将对该网络的各个功能做详细的分析说明,并附上主要的配置。

单区域ospf拓扑图

IP编址方案

核心层1 F0/1 192.168.1.1/24

F0/2 192.168.2.1/24

F0/5 192.168.5.1/24

核心层2 F0/1 192.168.1.2/24

F0/3 192.168.3.2/24

F0/4 192.168.4.2/24

分布层1 F0/2 192.168.2.3/24

F0/3 192.168.3.3/24

F0/6 192.168.6.3/24

分布层2 F0/4 192.168.4.4/24

F0/5 192.168.5.4/24

F0/6 192.168.6.4/24

市场部Vlan 10 192.168.10.10/24

财务部Vlan 20 192.168.20.10/24

人事部Vlan 30 192.168.30.10/24

研发部Vlan 40 192.168.40.10/24

该编址方案为每一个子网分配了一个网段,每个网段的块大小为254,这样做不仅为各部门提供了足够大冗余ip,而且使网络编址看起来简单易懂,方便后期的管理。

在编址完成之后,我首先在核心层与分布层之间建立起了连接。由于3560交换机接口默认是二层接口,所以要使用no swichport命令将其改为三层接口,并在全局配置模式下用ip routing命令打开路由功能。下面为核心层1交换机的配置示例:

Switch>ena

Switch#conf t

Enter configuration commands, one per line. End with CNTL/Z.

Switch(config)#hos hexin1

hexin1(config)#line con 0

hexin1(config-line)#no e

hexin1(config-line)#logg s

hexin1(config-line)#int range f0/1 - 6

hexin1(config-if-range)#no sw

hexin1(config-if-range)#int f0/1

hexin1(config-if)#ip add 192.168.1.1 255.255.255.0

hexin1(config-if)#int f0/2

hexin1(config-if)#ip add 192.168.2.1 255.255.255.0

hexin1(config-if)#int f0/5

hexin1(config-if)#ip add 192.168.5.1 255.255.255.0

hexin1(config-if)#ip routing

hexin1(config)#router os 1

hexin1(config-router)#net 192.168.1.1 0.0.0.0 a 0

hexin1(config-router)#net 192.168.2.1 0.0.0.0 a 0

hexin1(config-router)#net 192.168.5.1 0.0.0.0 a 0

之后,将进行分布层与接入层交换机的配置,为了减少vlan配置的工作量以及减少错误发生的概率,我使用了vtp。其中分布层1交换机作为server端,其余交换机作为client 端。

以下为主要配置示例:

fenbu1(config)#vtp domain cp

Changing VTP domain name from NULL to cp

fenbu1(config)#vtp mo s

Device mode already VTP SERVER.

fenbu2(config)#vtp domain cp

Changing VTP domain name from c to cp

fenbu2(config)#vtp mo c

Setting device to VTP CLIENT mode.

在进行vlan同步的过程中要注意几个问题,包括域名的一致,如果配置了密码还要检查密码的一致,以及交换机之间的链路要封装成trunk模式,以下是trunk模式的配置示例:

fenbu1(config)#int range f0/7 - 9

fenbu1(config-if-range)#sw tr en do

fenbu1(config-if-range)#sw mo tr

Vtp配置完成后,要在server端配置vlan:

fenbu1(config)#vlan 10

fenbu1(config-vlan)#name shichangbu

fenbu1(config-vlan)#vlan 20

fenbu1(config-vlan)#name caiwubu

fenbu1(config-vlan)#vlan 30

fenbu1(config-vlan)#name renshibu

fenbu1(config-vlan)#vlan 40

fenbu1(config-vlan)#name yanfabu

fenbu1(config-vlan)#exit

为了加快生成树的收敛速度,以及在交换机上实现负载均衡,我采用了PVRST+。其中分布层1交换机成为vlan10,vlan30的根桥,分布层2交换机成为vlan20,vlan30的根桥。以下是分布层1交换机上的配置示例:

fenbu1(config)#span mo rapid-pvst

fenbu1(config)#spanning-tree vlan 10,30 root primary

在接入层上,需要为主机划分vlan,注意要将与主机相连的接口模式设成access,以下为接入层1交换机上的配置示例:

jieru1(config)#int f0/1

jieru1(config-if)#sw mo ac

jieru1(config-if)#sw ac vlan 10

jieru1(config-if)#int f0/6

jieru1(config-if)#sw mo ac

jieru1(config-if)#sw ac vlan 20

要实现vlan间的通信,我在分布层交换机上设置了SVI接口,此外还需要采用路由协议使各个网段之间互联,在此采用的是ospf协议,由于在之前已经有了相似的配置,在这里便不再给出:

fenbu1(config)#int vlan 10

fenbu1(config-if)#ip add 192.168.10.3 255.255.255.0

fenbu1(config-if)#no sh

最后,为了进一步增强该网络的稳定性,我使用了HSRP协议,对主机的网关也提供了备份。在HSRP的配置中,要注意HSRP的活跃路由器与相应vlan的根网桥相同,以便防止次优路径的产生。以下为分布层1交换机上的配置示例:

fenbu1(config-if)#standby 10 ip 192.168.10.1

fenbu1(config-if)#standby 10 pri 110

fenbu1(config-if)#sta 10 pre

至此,整个园区网的配置已经完成,可以保证全网的互联互通,但由于Cisco Packet Tracer软件功能的限制,导致该网络设计中的部分功能不能够很好的实现,所以这里不能给出具体测试结果。在此只给出核心层交换机的路由表,以此证明ospf配置成功:

除该网络设计中实现的功能之外,还可以在该园区网中实施ACL、PBR、SNMP、SLA 等来改善网络功能,但由于课程设计侧重于OSPF的实施,所以在这里便不再实现过多的功能。

第二部分:多区域OSPF

3.3OSPF区域结构概念

在小型网络中,路由器链路构成的结构并不复杂,很容易确定前往各个目的地的路径。然而,在大型网络中,路由器链路组成的结构极其复杂,前往每个目的地的潜在路径为数众多。因此对所有可能路由器进行比较的SPF算法非常复杂,需要很长的时间,这可能导致很多问题:

?SPF算法的频繁计算

?路由表庞大

?LSDB庞大

OSPF通常将网络划分成区域,以减少SPF算法的计算量。区域内的路由器数量以及在区域内扩散的LSA数量较少,这意味着区域内的LSDB较小。其结果是,SPF算法的计算

量更小,需要的时间更短。在这种情况下,仍可进行区域间路由选择,但很多内部路由操作(如SPF计算)是在各个区域内进行的。例如,如果区域1存储链路时好时坏的问题,不会导致其他区域内的路由器不断运行SPF算法,因为它们不受区域1内这种问题的影响。

在使用了正确的IP编址层次结构和OSPF配置的情况下,使用多个OSPF区域具有下述重要优点:

?SPF的计算频率更低

?路由表更小

?降低了LSU开销

OSPF使用包含两层的层次区域结构:

?骨干区域

?常规区域

OSPF采用严格的两层区域结构。网络的底层物理连接必须与两层区域结构匹配,即所有非骨干区域都直接与area 0相连。

3.4网络需求及需求分析

多区域OSPF网络拓扑如下图所示,该拓扑的设计目标主要是要尽可能多的展示OSPF 的各种功能,在实际应用中,并不太可能出现如此结构的拓扑。

在该拓扑中,主要体现了OSPF虚链路的两种应用情况、OSPF网络运行模式、OSPF 末节区域以及各种LSA。

3.5网络详细设计

首先按照拓扑在各个接口配置完成IP地址,打开接口,检查各个直连链路能否PING 通,若直连链路没有问题,继续OSPF的相关配置。

由于OSPF区域必须构成层次结构,这意味着所有区域都必须直接与area 0相连,且area 0必须是连续的。但在实际应用中,一个公司可能由于收购了另一个公司而导致area 0不连续,也可能由于网络部分故障导致一些常规暂时无法与area 0直连。

通过使用虚链路,可以将不连续的area 0连接起来,还可以将区域通过中转区域连接到area 0。但虚链路只是一种临时的解决方案,应尽快过渡到稳定的网络。

以下是两种虚链路应用的配置实例,在此要注意配置中的IP地址要是对端要建立虚链路连接的路由器的router-id。

将不连续的area 0连接起来:

R1(config-router)#area 1 virtual-link 10.1.37.3

R3(config-router)#area 1 virtual-link 10.1.18.1

将常规区域与area 0直连:

R2(config-router)#area 2 virtual-link 10.1.28.8

R8(config-router)#area 2 virtual-link 10.1.245.2

在OSPF中,还提出了网络运行模式的概念,以适应不同的底层物理拓扑结构,简化配置流程,并减少网络中的LSU流量。以下是配置示例:

R2(config-router)#int f0/0

R2(config-if)#ip ospf network [point-to-multipoint|broadcast|non-broadcast|....]

在该拓扑中,路由器2,4,5之间采用的是以太网广播多路访问的方式,在多路访问的OSPF 网络中,需要进行DR和BDR的选举。以下是用show命令输出的配置结果:

在area 3中,我将其配置成了绝对末节nssa区域。NSSA让区域具备末节区域的特征——ABR将一条默认路由通告到区域中,同时允许区域内包含ASBR。完全末节区域同时阻止了3类LSA通告到NSSA中。

在ASBR上,将路由重分发到NSSA中时,将创建一种特殊的LSA——7类LSA,这种LSA只能出现在NSSA中,它是有NSSA ASBR生成的,而NSSA ABR将其转换为5类LSA并在OSPF域中传播。

以下是配置示例:

R2(config-router)#area 3 nssa no-summary

R6(config-router)#area 3 nssa

在R6上配置环回接口并将其重分发到OSPF中:

R6(config-router)#int l0

R6(config-if)#ip add 10.1.6.6 255.255.255.0

R6(config-if)#router os 1

R6(config-router)#redistribute connected subnets

通过R6的路由表可以证明NSSA区域中不存在3类和5类LSA,只有一条离开该区域的默认路由。

在R2上通过show命令查看OSPF database得到的5类和7类LSA,证明7类LSA不能跨越NSSA ABR传播到其他区域中,而是将其转换成了5类LSA进行传播。

至此,多区域OSPF已经全部配置完毕,通过show命令查看路由表,以及ping命令证明全网互联互通。下面是关键路由表及关键ping测试:

四、课程设计体会

在本次课程设计中,通过自己设计题目需求,将之前学过的大部分知识进行了整合应用。并通过该设计将之前学习过的内容重新复习了一遍。温故而知新,对很多问题又有了

新的理解。

在该设计中,我还发现了许多实际应用中的难点。技术是都掌握了,但是要在一个实际需求中使用却又存在很多的限制因素,而且还会存在个别技术之间并不能兼容的问题。在大型网络中,各种技术应用交织在一起,现在的我还是做不到对网络的总体把握。但是我想在日后的工作学习中,通过不断的实践练习,会逐步提升自己的能力。

成鹏

201101050502

网络工程11-1班

2013-12-28

思科OSPF的多区域配置及优化

思科OSPF的多区域配置及优化 实验拓扑如上图所示 各路由器配置接口IP地址,并均启用环回口,各路由器启用如图中的路由协议 更改R3、R4的接口优先级为0,使得R2成为DR 在R5上启用多个环回口,用于做路由汇总,配置如下: Loopback0 5.5.5.5 Loopback1 172.5.1.1

Loopback2 172.5.2.1 Loopback3 172.5.3.1 在R9上启用多个环回口,用于做路由汇总,配置如下: Loopback0 9.9.9.9 Loopback1 172.16.1.1 Loopback2 172.16.2.1 Loopback3

172.16.3.1 在R8上将EIGRP10的路由重发布到OSPF中,配置如下: router ospf 10 log-adjacency-changes redistribute eigrp 10 metric-type 1 subnets 在R8上使用ip default-network命令,给EIGRP10添加默认路由,配置如下: interface Loopback1 ipaddress 192.168.8.1 255.255.255.0 router eigrp 10

network 192.168.8.0 //将环回口所在的主类网段宣告进EIGRP中network 192.168.89.0 noauto-summary ip default-network 192.168.8.0 指定环回口所在网段为默认路由 在R4上将RIP的路由重发布到OSPF中,配置如下:router ospf 10

实验17 OSPF单区域

OSPF单区域1 实验目的: 能够在单区域环境中配置OSPF路由协议。 2 网络拓扑 3 试验环境: 网络中计算机和路由器的IP地址已经如图配置完成。 4 试验要求 ?在Area0配置OSPF。 ?查看路由表。 ?检查OSPF协议的收敛速度。

5 基本配置步骤 5.1在Router2上 Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#router ospf 1 Router(config-router)#network 192.168.0.0 0.0.0.3 area 0 Router(config-router)#network 172.16.0.0 0.0.255.255 area 0 Router(config-router)# OR Router(config)#router ospf 1 Router(config-router)#network 192.168.0.1 0.0.0.0 area 0 Router(config-router)#network 172.16.0.1 0.0.0.0 area 0 Router(config-router)# 5.2在Route0上 Router>en Router#config t Enter configuration commands, one per line. End with CNTL/Z. Router(config)#router ospf 1 Router(config-router)#network 192.168.0.0 0.0.0.3 area 0 Router(config-router)#network 192.168.0.4 0.0.0.3 area 0 Router(config-router)#network 192.168.0.12 0.0.0.3 area 0 Router(config-router)#ex 5.3在Router1上 Router>en

OSPF多区域原理与配置

OSPF多区域原理与配置 【OSPF三种配置方法】 1、network 192.168.1.0 0.0.0.255 area0 2、network 0.0.0.0 255.255.255.255 area0 3、network 192.168.1.1 0.0.0.0 area0 【OSPF通信量分三类】 域内通信量:LSA1、LSA2 域间通信量:LSA3 外部通信量:LSA4、LSA5、LSA7 a)标准区域允许‘域内’‘域间’及‘外部’通信量。LSA为(1.2.3.4.5) b)末梢区域不允许‘外部’通信量存在,允许‘域内’‘域间’通信量及一条默认路由。LSA为(1.2.3) c)完全末梢只允许‘域内’通信量及一条默认路由。LSA为(1.2) d)非纯末梢不允许其他区域的外部通信量,允许‘域内’‘域间’及‘本区域’外部通信量。LSA为(1.2.3.7) e)完全非纯末梢只允许本区域内部,本区域外部通信量及一条默认路由存

在,不允许区域间及其他区域外部通信量存在。LSA为(1.2.7) 表-LSA类型 一、OSPF的多区域 【使用OSPF协议经常遇到的问题】 ?在大型网络中,网络结构的变化是时常发生的,因些OSPF路由器就会经常运行SPF算法来重新计算路由信息,大量消耗路由器的CPU和内存资源?在OSPF网络中,随着多条路径的增加,路由表变得越来越庞大,每一次路径的改变都使路由器不得不花大量的时间和资源去重新计算路由表,路由器就会越来越低效 ?包含完整网络结构信息的链路状态数据库也会越来越大,这将有可能使路

由器CPU和内存资源彻底耗尽,从而导致路由器的崩溃 【解决OSPF协议的以上问题】 OSPF允许把大型区域划分成多个更易管理的小型区域。这些小型区域可以交 换路由汇总信息,而不是每一个路由的细节 (1)、生成OSPF多区的原因 1、生成OSPF多区域的原因 改善网络的可扩展性 快速收敛 2、OSPF区域的容量 ?单个区域所支持路由器的范围大约是30~200 ?一些区域包含25台都有可能会显多了,而另一些区域却可以容纳多于500台的路由器 【对于和区域相关的通信量定义了下面三种类型】 域内通信量(Intra-AreaTraffic):指单个区域内路由器之间交换的数据包构成的

OSPF路由协议单区域概念及配置

OSPF路由协议单区域概念及配置 知识1:OSPF概述 开放式最短路径优先协议(Open Shortest Path First,OSPF)是基于开放标准的发链路状态路由选择协议 1.OSPF是内部网关路由协议 内部网关路由协议(IGP):用于在单一自治系统(Autonomous System-AS)内决策路由 自制系统(AS):执行统一路由策略的一组网络设备的组合 2.OSPF区域 为了适应大型的网络,OSPF在AS内划分多个区域;一定要划分区域0(骨干区域),其他区域必须和区域0相连。 每个OSPF路由器只维护所在区域的完整的链路状态信息 3.链路状态路由协议 OSPF是链路状态路由协议,链路状态路由协议中的路由器了解OSPF网络内的链路状态信息 链路状态路由协议中,直连的路由器之间建立邻接关系,互相“交流”链路信息,来“画”出完整的网络结构 知识2:Router ID Router ID 是在OSPF区域内唯一标识一台路由器的IP地址。 Router ID选取规则 ???首先,路由器选取它所有loopback接口上数值最高的IP地址 ???如果没有loopback接口,就在所有物理端口中选取一个数值最高的IP地址Router ID 不具备强占性,Router ID 只要选定就不会改变,即使是物理接口关闭,Router ID 也不会变,除非重启路由器或进程。 知识3:OSPF的工作过程 邻居列表 ?列出每台路由器全部已经建立邻接关系的邻居路由器 链路状态数据库(LSDB) ?列出网络中其他路由器的信息,由此显示了全网的网络拓扑 路由表 ?列出通过SPF算法计算出的到达每个相连网络的最佳路径 知识4:OSPF邻接关系 邻接关系的建立过程

大型企业网络配置系列课程详解(二) --OSPF多区域配置与相关概念的理解

大型企业网络配置系列课程详解(二) --OSPF多区域配置与相关概念的理解 试验目的: 1、使用OSPF划分多区域改善网络的可扩展性,其次减少各LSA通告 的范围,达到区域内部快速收敛。 2、通过配置末梢区域(Stub Area)、完全末梢区域(Totally Stubb y Area)以及非纯末梢区域(NSSA)达到各区域部分LSA通告的减少,从而减少区域内部路由器的路由表条目,增大路由器查找路由表的速度,从而减少了对路由器cpu以及内存的消耗,优化网络结构。3、通过配置路由重分发,让不同自治系统之间能够互相通信,其次结合 NSSA达到区域内部路由器条目的减少,从而减少了对路由器cpu以及内存的消耗,优化网络结构。 4、通过对试验结果的分析能够更清楚理解配置末梢区域、完全末梢区域 以及非纯末梢区域所达到的效果。 试验网络拓扑: 试验步骤:

一、根据网络拓扑图配置各个路由器接口的IP地址(注意端口的激活,非标准网络子网的划分),下面是以R1为例,其它的类似。 二、根据网络拓扑图指定的Loopback信息配置各个路由器loopback 接口的地址(用作路由器Router ID的标识符,在路由器上便于查看邻居的路由信息),当然如果试验需要过多的网络,Loopback接口也可以模拟外部网络。比如说,做路由器地址汇总的时候就会用到。同样以R1为例,其他的类似。 三、基本工作做完之后,开始配置OSPF,各个路由器进程号表示为(R 1:10,R2:20……),其次将相连的网段。首先启用路由器OSPF的进程号,然后将相应的网段都发布出去,注意:每个接口对应那个区域,在写的时候就写那个区域,不可混同。 R1的具体配置:

实验5 OSPF单区域

【实验名称】 OSPF单区域基本配置。 【实验目的】 掌握在路由器上配置OSPF单区域。 【背景描述】 假设校园网通过1台三层交换机连到校园网出口路由器,路由器再和校园外的另1台路由器连接,现做适当配置,实现校园网内部主机与校园网外部主机的相互通信。 本实验以两台R1762路由器、1台三层交换机为例。S3550上划分有VLAN10和VLAN50,其中VLAN10用于连接Router1,VLAN50用于连接校园网主机。 路由器分别命名为Router1和Router2,路由器之间通过串口采用V35 DCE/DTE电缆连接,DCE端连接到Router1(R1762)上。 PC1的IP地址和缺省网关分别为172.16.5.11和172.16.5.1,PC2的IP地址和缺省网关分别为172.16.3.22和172.16.3.1,网络掩码都是255.255.255.0。 【技术原理】 OSPF(Open Shortest Path First,开放式最短路径优先)协议,是目前网络中应用最广泛的路由协议之一。属于内部网关路由协议,能够适应各种规模的网络环境,是典型的链路状态(link-state)协议。OSPF路由协议通过向全网扩散本设备的链路状态信息,使网络中每台设备最终同步一个具有全网链路状态的数据库(LSDB),然后路由器采用SPF算法,以自己为根,计算到达其他网络的最短路径,最终形成全网路由信息。 OSPF属于无类路由协议,支持VLSM(变长子网掩码)。OSPF是以组播的形式进行链路状态的通告的。 在大模型的网络环境中,OSPF支持区域的划分,将网络进行合理规划。划分区域时必须存在area0(骨干区域)。其他区域和骨干区域直接相连,或通过虚链路的方式连接。 【实现功能】 实现网络的互连互通,从而实现信息的共享和传递。 【实验设备】 S3550(1台)、R1762路由器(两台)、V35线缆(1根)、交叉线或直连线(1条) 【实验拓扑】

华为ospf多区域配置

OSPF多区域配置 1.规划网络拓扑图如下: 文字说明: a.R1 与R2 作为末梢区域area 1 b.R2 与R3 作为主区域area 0 c.R3 与R4 作为末梢区域area 2 d.R1 上连接交换机LSW3,LSW3上拥有vlan 8,g0/0/1与g/0/2属于vlan 8 e.R1还直连一个主机,网段为192.168.7.0 网段。 2.配置: R1: sys Enter system view, return user view with Ctrl+Z. [Huawei]un in en Info: Information center is disabled. [Huawei]sysname R1 [R1]int e0/0/0 [R1-Ethernet0/0/0]ip add 12.1.1.1 30 [R1-Ethernet0/0/0]q [R1]int e0/0/1 [R1-Ethernet0/0/1]ip add 192.168.8.1 24 [R1-Ethernet0/0/1]q [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 192.168.7.1 24 [R1-GigabitEthernet0/0/0]q [R1]int loop [R1]int LoopBack 0 [R1-LoopBack0]ip add 1.1.1.1 24

[R1-LoopBack0]q [R1]int loopback 1 [R1-LoopBack1]ip add 192.168.1.1 24 [R1-LoopBack1]q [R1]ospf 10 [R1-ospf-10]area 1 [R1-ospf-10-area-0.0.0.1]network 12.1.1.0 0.0.0.3 [R1-ospf-10-area-0.0.0.1]network 1.1.1.0 0.0.0.255 [R1-ospf-10-area-0.0.0.1]network 192.168.1.0 0.0.0.255 [R1-ospf-10-area-0.0.0.1]network 192.168.8.0 0.0.0.255 //为了能让192.168.8.0网段能够到达2.2.2.2 [R1-ospf-10-area-0.0.0.1]network 192.168.7.0 0.0.0.255 //为了能让192.168.7.0网段能够到达2.2.2.2 [R1-ospf-10-area-0.0.0.1]q [R1-ospf-10]q [R1]ip route-static 192.168.0.0 255.255.255.0 12.1.1.2 [R1]ip route-static 192.168.0.0 255.255.255.0 192.168.8.254 [R1] R2: [R2]int e0/0/0 [R2-Ethernet0/0/0]ip add 12.1.1.2 30 [R2-Ethernet0/0/0]int e0/0/1 [R2-Ethernet0/0/1]ip add 23.1.1.1 30 [R2-Ethernet0/0/1]q [R2]int loopback 0 [R2-LoopBack0]ip add 2.2.2.2 24 [R2-LoopBack0]q [R2]int loopback 1 [R2-LoopBack1]ip add 192.168.2.1 24 [R2-LoopBack1]q [R2]ospf 10 [R2-ospf-10]area 1 [R2-ospf-10-area-0.0.0.1]network 12.1.1.0 0.0.0.3 [R2-ospf-10-area-0.0.0.1]q [R2-ospf-10]area 0 [R2-ospf-10-area-0.0.0.0]network 23.1.1.0 0.0.0.3 [R2-ospf-10-area-0.0.0.0]network 2.2.2.0 0.0.0.255 [R2-ospf-10-area-0.0.0.0]network 192.168.2.0 0.0.0.255 [R2-ospf-10-area-0.0.0.0]q

路由单区域OSPF协议的配置方法

将路由器连接起来如下图: 接下来是为路由器添加模块(注意要关电添加):

下面配置路由器A的接口IP: Router# Router#config Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Router(config)#in Router(config)#interface se Router(config)#interface serial 1/1 Router(config-if)#ip ad Router(config-if)#ip address 192.168.1.1 255.255.255.0 Router(config-if)#co Router(config-if)#cl Router(config-if)#clock ? rate Configure serial interface clock speed Router(config-if)#clock ra Router(config-if)#clock rate 64000 Router(config-if)#no sh Router(config-if)#no shutdown %LINK-5-CHANGED: Interface Serial1/1, changed state to down Router(config-if)# %LINK-5-CHANGED: Interface Serial1/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial1/1, changed state to up

OSPF单区域配置

OSPF单区域配置 【学习日标】 掌挥OSPF中Router ID 的配置方法 掌握OSPF的配置力法 掌握通过display命令查看OSPP运行状态的方法 掌握使用OSPF发布缺省路由的方法 掌握修改OSPF hello 和dead 时间的配置方法 学握OSPF 路由优先级的修改力法 【理论知识】 OSPF是由IFIF 开发的基J链路状念的自治系统内部路由协议,用来代替RIP 路由协议自身的算法限。与距离矢量协议不同,链路状态路由协议使用Dijkstra 的最短路径优先算法计算和选择路由。OSPF 协议在有组播发送能力的链路层上以组播地址发送协议包,即达到了节约资源的目的,有最大限度地减少了对其他网络设备的干扰。 【实验拓扑】 步骤1.按照实验拓扑图规划IP 地址 步骤2.配置OSPF 路由协议 步骤3.在OSPP中下发默认路由 步骤4.查看R1的路由表、OSPP 邻居状态和链路状态数据库

步骤5.在R2上修改OSPF HELO和DEAD时间的配置方法并查看OSPF的邻居状态步骤6.修改OSPF 优先级控制DR BDR 的选举 【操作步骤】 步骤1.按照实验拓扑图规划IP地址查看接口ip地址配置 [Huawei] sysname R1 [RI]int loo 0 [R1-LoopBack0] ip add 1.1.1.132 [R1-LoopBack0] int g0/0/0 [Rl-GigabitEthernet0/0/01ip add 12.1.1.124 [Huawei] sys R2 [R2] int g0/0/0 [R2-Gigabi tEthernet0/0/0] ip add 12.1.1.2 255.255.255.0 [R2-Gigabi tEthernet0/0/0] int loo 0 [R2-LoopBack0] ip add 2.2.2.2 32 [R2-LoopBack0] int g0/0/1 [R2-GigabitEthernet0/0/1] ip add 23.1.1.2 24 [Huawei] sys R3 [R3]int loo 0 [R3-LoopBack0] ip add 3.3.3.3 32 [R3-LoopBack0] int g0/0/1 [R3-GitEthernet0/0/1] ip add 23.1.1.3 24 使用命令display ip interface birf查看接口ip地址配

实验1 单区域OSPF基本配置

单区域OSPF基本配置 一、实验目的 1.掌握单区域OSPF的配置 2.理解链路状态路由协议的工作过程 3.掌握实验环境中虚拟接口的配置 二、应用环境 在大规模网络中,OSPF作为链路状态路由协议的代表应用非常广泛,具有无自环,收敛快的特点 三、实验设备 DCR-1702 两台 CR-V35MT 一条 CR-V35FC 一条 四、实验拓扑 五、实验要求 ROUTER-A ROUTER-B S1/1 192.168.1.1/24 S1/0 192.168.1.2/24 Loopback0 10.10.10.1/24 Loopback0 10.10.11.1/24 六、实验步骤 第一步:路由器环回接口的配置(其他接口配置请参见实验三) 路由器A: Router-A_config#interface loopback0 Router-A_config_l0#ip address 10.10.10.1 255.255.255.0 路由器B: Router-B#config Router-B_config#interface loopback0 Router-B_config_l0#ip address 10.10.11.1 255.255.255.0 第二步:验证接口配置 Router-B#sh interface loopback0 Loopback0 is up, line protocol is up Hardware is Loopback Interface address is 10.10.11.1/24 MTU 1514 bytes, BW 8000000 kbit, DLY 500 usec

实验 4 OSPF单区域配置

实验 4-1 OSPF单区域配置 学习目的 ●理解OSPF路由器Router ID的意义 ●掌握在特定接口或网络启用OSPF的方法 ●掌握使用display命令查看OSPF工作情况的方法●掌握使用OSPF发布默认路由的方法 ●掌握修改OSPF hello和dead时间的方法 ●掌握修改OSPF优先级的方法 ●理解OSPF在以太网上的DR/BDR选择过程 拓扑图

场景 你是公司的网络管理员。现在公司的网络准备使用OSPF协议来进行路由信息的传递。规划网络中所有路由器属于OSPF的区域0。实际使用中需要向OSPF发布默认路由,此外你也希望通过这次部署了解DR/BDR选举的机制。 学习任务 步骤一. 基本配置 system-view Enter system view, return user view with Ctrl+Z. [Huawei]sysname R1 [R1]interface serial1/0/0 [R1-Serial1/0/0]ip address 10.0.12.1 24 [R1-Serial1/0/0]interface GigabitEthernet 0/0/0 [R1-GigabitEthernet0/0/0]ip address 10.0.13.1 24 [R1-GigabitEthernet0/0/0]interface loopback 0 [R1-LoopBack0]ip address 10.0.1.1 24 system-view Enter system view, return user view with Ctrl+Z. [Huawei]sysname R2 [R2]interface serial 1/0/0 [R2-Serial1/0/0]ip address 10.0.12.2 24 [R2-Serial1/0/0]interface loopback 0 [R2-LoopBack0]ip address 10.0.2.2 24 system-view Enter system view, return user view with Ctrl+Z. [Huawei]sysname R3 [R3]interface GigabitEthernet 0/0/0 [R3-GigabitEthernet0/0/0]ip address 10.0.13.3 24 [R3-GigabitEthernet0/0/0]interface loopback 0 [R3-LoopBack0]ip address 10.0.3.3 24 [R3-LoopBack0]interface loopback 2 [R3-LoopBack2]ip address 172.16.0.1 24

OSPF多区域配置与汇总

R1的详细配置 Router>en Router#conf t Router(config)#int lo0 Router(config-if)#ip add 1.1.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int s0/0 Router(config-if)#ip add 12.12.12.1 255.255.255.0 Router(config-if)#no shut Router(config-if)#clock rate 64000 Router(config-if)#clock rate 64000 S0/0 S0/0 S0/1 S0/1 S0/0 S0/0 12.12..12.0/24 23.23.23.0/24 34.34.34.0/24 R1 R2 R4 R3 1 2 2 3 3 4 Area 0 Area 1 Lo0:2.2.2.2/24 Lo0:3.3.3.3/24 R4: Lo0:4.4.4.4/24 Lo10:10.1.0.4/24 Lo11:10.1.1.4/24 Lo12:10.1.2.4/24 Lo13:10.1.3.4/24 R1: Lo0:1.1.1.1/24 Lo10:172.16.0.1/24 Lo11:172.16.1.1/24 Lo12:172.16.2.1/24 Lo13:172.16.3.1/24

Router(config)#int lo1 Router(config-if)#ip add 172.16.1.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo2 Router(config-if)#ip add 172.16.2.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo3 Router(config-if)#ip add 172.16.3.1 255.255.255.0 Router(config-if)#exit Router(config)#int lo4 Router(config-if)#ip add 172.16.4.1 255.255.255.0 Router(config-if)#exit Router#conf t Router(config)#router ospf 1 Router(config-router)#exit Router(config)#router rip Router(config-router)#ve Router(config-router)#version 2 Router(config-router)#no au Router(config-router)#no auto-summary Router(config-router)#net 12.0.0.0 Router(config-router)#net 172.16.0.0

Ospfstub区域路由配置

Ospfstub路由分析 如下图所示,R2为ABR路由器,R1将直连路由重分布进ospf,在此主要测试ospf stub 以及no-summary等命令的使用技巧。 R1(config-router)#do show run | b router routerospf 1 router-id 1.1.1.1 redistribute connected subnets network 1.1.1.1 0.0.0.0 area 0 network 192.1.1.1 0.0.0.0 area 0 1.没有配置stub区域,查看R3上的路由 R2(config-router)#do show run | b route routerospf 1 router-id 2.2.2.2 network 2.2.2.2 0.0.0.0 area 0 network 192.1.1.2 0.0.0.0 area 0 network 193.1.1.1 0.0.0.0 area 1 R3(config-router)#do show ip route Gateway of last resort is not set 1.0.0.0/32 is subnetted, 1 subnets O IA 1.1.1.1 [110/66] via 193.1.1.1, 00:00:07, Serial0/0 2.0.0.0/32 is subnetted, 1 subnets O IA 2.2.2.2 [110/65] via 193.1.1.1, 00:00:07, Serial0/0 3.0.0.0/32 is subnetted, 1 subnets C 3.3.3.3 is directly connected, Loopback0 10.0.0.0/24 is subnetted, 4 subnets O E2 10.213.4.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0 O E2 10.213.3.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0 O E2 10.213.2.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0 O E2 10.213.1.0 [110/20] via 193.1.1.1, 00:00:07, Serial0/0

单区域OSPF配置

实验六单区域OSPF路由配置 一、实验目的: 1. 了解OSPF协议的工作原理; 2. 熟悉三层交换机的VLAN划分; 3. 掌握三层交换机的路由配置方法 4. 掌握单区域OSPF路由配置方法; 二、实验环境: 本实验在PC机上利用模拟软件进行操作,需要的设备有:PC机,思科路由模拟软件Packet Tracer V5.2。 三、实验内容: 1. 配置路由器接口的IP地址; 2. 配置三层交换机的VLAN; 3. 在三层交换机和路由器中配置单区域OSPF协议。 四、实验步骤: 1. 规划如下的网络拓扑 2. 在三层交换机上划分VLAN 在三层交换机上划分两个VLAN,分别是VLAN 10和VLAN 20,三层交换机的F0/2口连接计算机Server0,F0/1口连接Router0,二者均划分到VLAN 10中,PC2为VLAN 20中的计算机。 (1)在三层交换机上创建VLAN 10 和VLAN 20,使用的命令为: SW(config)#vlan 10 SW(config-vlan)#exit SW(config)#vlan 20 SW(config-vlan)#exit (2)分别为VLAN 10和VLAN 20配置IP地址,使用的命令为: SW(config)# interface vlan 10 SW(config-if)#ip add 172.16.1.1 255.255.255.0 SW(config-if)#no shut SW(config-if)#exit SW(config)#interface vlan 20

SW(config-if)#ip add 172.16.5.1 255.255.255.0 SW(config-if)#no shut SW(config-if)#exit (3)PC2的IP地址为:_172.16.5.254/24______,网关为:_172.16.5.1/24_____ (4)Server0的IP地址为:_172.16.1.254/24____,网关为:__172.16.1.1/24__ 3. 配置路由器各接口IP地址 (1)配置Router0的F0/0接口,使用的命令为:(注意:该接口应和VLAN 10在同一网段) R0(config)#in f0/0 R0(config-if)#ip add 172.16.1.3 255.255.255.0 R0(config-if)#no shut (2)配置Router0的F1/0接口,Router1的F1/0接口和PC0的IP地址及网关,然后把各结点的IP地址归纳在下表中。 4. 配置单区域OSPF协议(三层交换机和路由器均处于一个区域中) (1)查看三层交换机的路由表,记录结果: SW#show ip route 172.16.0.0/24 is subnetted, 2 subnets C 172.16.1.0 is directly connected, Vlan10 C 172.16.5.0 is directly connected, Vlan20

ospf单区域配置的实验报告

单区域OSPF的配置 一、实验目的 掌握单区域的OSPF的配置方法; 理解链路状态路由协议的工作过程; 二、实验内容 实验的拓扑图如图2-1所示,要求通过配置单区域OSPF,实现RT1和RT2、RT2和RT3之间建立OSPF邻居,且互相学习到到loopback接口对应的路由信息。 图2-1 三、实验步骤 1.搭建实验环境并完成基本配置如表1-1。

表1-1 2.配置RT1的OSPF。 在RT1上启用OSPF协议,并在G0/0/0和Loopback0接口上使能OSPF,将它们加入OSPF的Area0。 [RT1] ospf 1 [RT1-ospf-1] area 0 [RT1-ospf-1-area-0.0.0.0] network 1.1.1.1 0.0.0.0 [RT1-ospf-1-area-0.0.0.0] network 10.0.0.0 0.0.0.255 3.配置RT2的OSPF。 在RT2上启用OSPF协议,并在G0/0、G0/1和Loopback0接口上使能OSPF,将它们加入OSPF的Area0。 [RT2] ospf 1 [RT2-ospf-1] area 0

[RT2-ospf-1-area-0.0.0.0] network 2.2.2.2 0.0.0.0 [RT2-ospf-1-area-0.0.0.0] network 10.0.0.0 0.0.0.255 [RT2-ospf-1-area-0.0.0.0] network 20.0.0.0 0.0.0.255 4.配置RT3的OSPF。 在RT3上启用OSPF协议,并在G0/0和Loopback0接口上使能OSPF,将它们加入OSPF的Area0。 [RT3] ospf 1 [RT3-ospf-1] area 0 [RT3-ospf-1-area-0.0.0.0] network 3.3.3.3 0.0.0.0 [RT3-ospf-1-area-0.0.0.0] network 20.0.0.0 0.0.0.255 四、实验结果 1.配置结束后,如图4=1所示。请在RT2上查看OSPF邻居表。OSPF邻居表中,RT2与RT1之间的状态是full,RT2与RT3之间的状态是full。说明RT2与RT1、RT2与RT3之间邻居关系建立成功。 图4-1

实验指导书:OSPF单区域配置

计算机网络实验实验指导书 实验名称OSPF单区域配置

一、实验目的 1.配置OSPF单区域实验 2.实现简单的OSPF配置 二、实验原理 在路由器上启用OSFP 进程,使用所有的路由信息通过OSFP 路由协议传递。 三、实验内容 (一)实验拓扑 图3-1 实验拓扑图 实验设备:路由器3台。 拓扑图中有三台路由器,共有五个网段,并且是无类的子网。在本拓扑图中使用OSPF 路由协议学习路由信息,并且使用的是单区域,所有的路由器都在区域0中。 (二)实验步骤 1. 在路由器上配置IP 地址 RA#config t RA(config)# interface FastEthernet 0/0 RA(config-if)#ip address 192.168.20.1 255.255.255.252 RA(config)#interface Loopback 0 RA(config-if)#ip address 192.168.30.9 255.255.255.248 RB#config t RB(config)# interface FastEthernet 0/0 RB(config-if)#ip address 192.168.20.2 255.255.255.252 RB(config)#interface FastEthernet 0/1 RB(config-if)#ip address 192.168.10.1 255.255.255.224 RC#config t RC(config)# interface FastEthernet 0/0

2. 配置OSPF 3.验证测试

OSPF单区域 实验报告

实验报告 课程名称网络规划与管理 实验项目名称OSPF单区域 班级与班级代码 实验室名称(或课室)实验楼808 专业信息管理与信息系统 任课教师 学号: 姓名: 实验日期:2014 年9月25 日 广东财经大学教务处制

姓名实验报告成绩 评语: 指导教师(签名) 年月日

OSPE单区域实验 一、【实验名称】 OSPE单区域基本配置。 二、【实验目的】 掌握在路由器上配置OSPE单区域。 三、【实验原理】 OSPE(Open Shortest Path First,开放式最短路径优先)协议,是目前网络中应用最广泛的路由协议之一。属于内部网关路由协议,能够适应各种规模的网络环境,是典型的链路状态(link-state)协议。 OSPE路由协议通过向全网扩散本设备的链路状态信息,使网络中每台设备最终同步一个具有全网链路状态的数据库,然后路由器采用SPF算法,以自己为根,计算到达其他网络的最短路径,最终形成全网路由信息。 OSPF属于无类路由协议,支持VLSM(变长子掩码)。OSPE是以组播的形式进行链路状态的通告的。 在大规模的网络环境中,OSPE支持区域的划分,将网络进行合理规划。划分区域时必须存在area0(骨干区域)。其他区域和骨干区域直接相连,或通过虚链路的方式连接。 四、【实现功能】 实现网络的互连互通,从而实现信息的共享和传递。 五、【实验设备】 S3350(1台)、R1762路由器(两台)、V35线缆(1根)、交叉线或直连线(1条) 六、【实验步骤与结果】 步骤1基本配置。 三层交换机基本配置

验证测试

路由器基本配置1)路由器1

多区域OSPF配置实例

多区域OSPF配置实例 多区域配置OSPF网络大型服务 【实验环境】 BENET公司总部位于北京,在上海和广州拥有分公司,现希望把三个地方的办公网络用OSPF连接起来,希望你为他们实现这个办公网络的搭建! 【实验目的】 按照现有拓扑图的规划,配置多区域的OSPF在他的上面配置末梢区域(Stub Area)和完全末梢区域(Totally Stublly Area) 以及知道为什么要换分多区域的原因? 【实验拓扑】

【实验步骤】 网络拓扑图的具体布线: Router1 S0/0 <----> Router2 S0/0 Router2 S1/0 <----> Router3 S0/0 Router3 E1/0 <----> Router4 E0/0 第一步:配置路由器的回环地址和接口的IP地址; (1) 、配置Router1的回环地址和接口的IP地址; (2)、配置Router2的回环地址和接口的IP地址;(注意:在Router2上配置回环地址是根据情况而定的;Router2是属于Area2是属于骨干区域,但同时它也是一个ABR路由器;所以要配置两个接口的IP地址;因为R2是区域边界系统路由器(ABR)所以在它上面要配置两个接口的IP地址)!

(3)、配置Router3的回环地址和接口的IP地址(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了;因为R3是区域边界路由器(ABR)所以在它上面要配置两个接口的IP地址) (4)、配置Router4的回环地址和接口的IP地址;(他和Router2一样是一个ABR路由器又是Area0所以要配置两个接口的IP地址;而回环地址就在这里不在做具体的介绍了) (1)、在Router1上配置OSPF进程以及宣告他所在的末梢区域(Stub Area)(注意:宣告OSPF的进程和宣告RIP的进程的配置是不一样的,在配置OSPF时他的进程号时本地路由器的进程号,他是来标识一台路由器的多个OSPF的进程的;) 末梢区域(Stub Area )他是一个不允许自治系统外部LSA通告在其内进行泛洪的区域。他是不需要学习5类和4类的LSA;如果在没有学习到5类的时候那么4类的也不必要的,因此这些端口也将会被阻塞。

实验十六-OSPF多区域的配置

实验十六OSPF多区域的配置 当某大型企业整个路由协议都是OSPF时,为了减少路由表中的路由条目,提高路由器的路由效率,可以将整个网络划分为若干个区域,实现分层管理。 一、实验目的 1.了解OSPF多区域的工作原理 2.掌握OSPF多区域的配置命令 二、原理概述 OSPF是典型的链路状态路由协议,采用最短路径优先的算法来进行最佳路由的计算,OSPF把网络划分为不同层次的区域,成为一个路由域。一个路由域也可以看成是一个自治系统,在同一个路由域中,所有的OSPF路由器都维护一个相同的描述这个域结构的数据库,该数据库中存放的是该域中相应链路的状态信息,路由器正是通过这个数据库计算出OSPF 路由表;对于每一个路由域,其网络拓扑结构在路由域外是不可见的,同样,每一个区域内的路由器对陆游与外的其余网络结构也是不可见的;这意味着OSPF路由域中的网络链路状态的广播报文被区域的边界挡住了,这有利于减少链路状态数据包在全网范围内的广播。 OSPF多区域路由协议中存在一个骨干区域,该区域包括了属于该区域所有的路由器,骨干区域必须是连接的,同时其它区域必须与骨干区域直接相连。骨干区域的区域标识符一般为0,主要作用是在其它区域间传递路由信息。当某区域的路由信息对外广播时,先传递到骨干区域,再由骨干区域传递给其它区域。 OSPF将链路状态广播数据包传送给某一区域的所有路由器,OSPF提供了不同的网络通过同一种TCP/IP交换网络信息的途径,主要具备以下几个特点: 1.用增量方式更新路由表,即只更新变化的路由表项,节约带宽资源。 2.支持可变长子网掩码。 3.支持CIDR以及路由聚合。 4.支持路由信息验证。 5.路由器用整个网络的拓扑结构的信息,路由收敛快速。 三、实验内容 配置OSPF协议使得不同子网之间能够相互连通,图1中的R2和R3为边界路由器。 四、实验环境 2811系列的路由器四台,2960系列的交换机四台(路由器之间利用DCE的连接,路由器和主机之间利用交叉线连接)串行通信线和以太网通信线若干,PC机六台。实验拓扑图如图7-12所示。

相关主题
文本预览
相关文档 最新文档