当前位置:文档之家› 浅谈密码学的影响与应用

浅谈密码学的影响与应用

浅谈密码学的影响与应用
浅谈密码学的影响与应用

密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容密码学主要包括两个分支,即密码编码学和密码分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。

二、密码学的发展历程密码学的发展历程大致经历了三个阶段:古代加密方法、古典密码和近代密码。 1.古代加密方法(手工阶段)源于应用的无穷需求总是推动技术发明和进步的直接动力。存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。

我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音”。比如:我画蓝江水悠悠,爱晚亭枫叶愁。秋月溶溶照佛寺,香烟袅袅绕轻楼 2.古典密码(机械阶段)古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码及转轮密码。 3.近代密码(计算机阶段)密码形成一门新的学科是在20世纪70年代,这是受计算机科学蓬勃发展刺激和推动的结果。快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了有力武器。计算机和电子学时代的到来给密码设计者带来了前所未有的自由,他们可以轻易地摆脱原先用铅笔和纸进行手工设计时易犯的错误,也不用再面对用电子机械方式实现的密码机的高额费用。总之,利用电子计算机可以设计出更为复杂的密码系统20世纪中叶以前, 由于条件所限, 密码技术的保密性基于加密算法的秘密, 3 因此称之为古典密码体制或受限的密码算法。尽管古典密码体制受到当时历史条件的限制, 没有涉及非常高深或者复杂的理论, 但在其漫长的发展演化过程中, 已经充分表现出了现代密码学的两大基本思想一“代替”和“换位” , 而且还将数学的方法引人到密码分析和研究中。这为后来密码学成为系统的学科以及相关学科的发展莫定了坚实的基础。密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策.

从以上密码学的发展历史可以看出,整个密码学的发展过程是从简单到复杂,从不完美

到完美,从具有单一功能到具有多种功能的过程。这是符合历史发展规律和人类对客观事物的认识规律的。而且也可以看出密码学的发展受到其它学科如数学、计算机科学的极大促动。这说明,在科学的发展进程中,各个学科互相推动,互相联系,乃至互相渗透,其结果是不断涌现出新的交叉学科,从而达到人类对事物更深的认识。从密码学的发展中还可以看出,任何一门学科如果具有广泛的应用基础,那么这个学科就能从中汲取发展动力,就会有进一步发展的基础。我们这个社会已进入了信息时代,随着数据库技术和计算机网络应用的不断深入,信息的安全传输也有着广阔的应用前景。虽然密码可以追溯到古代,但密码作为一门学科还非常年轻,还有着更进一步的发展要求。三、密码学的基础知识密码学(Cryptogra phy),现代准确的术语为“密码编制学”,简称“编密学”,与之相对的专门研究如何破解密码的学问称之为“密码分析学”。密码学是主要研究通信安全和保密的学科,密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。

在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。这些密码算法大都十分简单,现在已经很少在实际应用中使用了。由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的基本原理和方法。但是对古典密码学的研究,对于理解、构造和分析现代实用的密码都是很有帮助。以下介绍我们所研究的古典密码学。小结像绝大多数领域的科学知识一样,密码学在完整的科学体系建立起来之前,古典密码学仅限于一些简单代替和置换算法,当然,这代替和置换如果经过了几次算法的加密就会一样复杂多变,而现代的算法经过科学体系的整理与发展,更加的完善一些复杂算法的应用和各种应用协议的产生。而由于网络的出现以及发展,未来的密码学也必定向这个方向发展。例如网络签名,网上银行的安全,个人邮件信息的保护,都很迫切需要密码学的支持,推动密码学的发展. 四、密码学的作用现代密码学研究信息从发端到收端的安全传输和安全存储,是研究“知己知彼”的一门科学。其核心是密码编码学和密码分析学。前者致力于建立难以被敌方或对手攻破的安全密码体制,即“知己”;后者则力图破译敌方或对手已有的密码体制,即“知彼”。人类有记载的通信密码始于公元前400年。古希腊人是置换密码的发明者。1881年世界上的第一个电话保密专利出现。电报、无线电的发明使密码学成为通信领域中不可回避的研究课题。 1.用来加密保护信息利用密码变换将明文变换成只有合法者才能恢复的密文,这是密码的最基本功能。信息的加密保护包括传输信息和存储信息两方面,后者解决起来难度更大。 2.采用数字证书来进行身份鉴别数字证书就是网络通讯中标志通讯各方身份信息的一系列数据,是网络正常运行所必须的。现在一般采用交互式询问回答,在询问和回答过程中采用密码加密,特别是采用密码技术的带CPU的职能卡,安全性好,在电子商务系统中,所有参与活动的实体都需要用数字证书来表明自己的身份,数字证书从某种角度上说就是“电子身份证蓬勃发展,密码算法设计与分析互相促进,出现了大量的密码算法和各种攻击方法。而且如今“密码学”不仅用于国家军事安全上,而且更多的集中在实际生活中。

如今在生活中,为防止别人查阅你的文件,可将文件加密;为防止窃取你的钱财,可在银行账户上设置密码等。随着科学技术的发展和信息保密的需求,密码学的应用将融人到人

们的日常生活中。

基于密码学有着坚实的应用基础,可以相信,密码学一定能不断地发展,不断地完善,从而会给全人类提供更加安全的各种服务,让我们祝福这一天的到来吧!随着科学技术的迅猛发展,人们对信息安全和保密的重要性认识不断提高,在信息安全中起着举足轻重作用的密码学也就成为信息安全中不可或缺的重要部分。

在今天,密码学仍然是信息技术非常重要的组成部分,它还在多个方面发挥着重要作用。比如对于用户的认证,对于信息的认证,信息的安全以及存储的安全等,但这些对于密码学而言,它需要同其他组件配合,比如管理软件等。密码学是和技术相关。作为一项技术本身有演进的需要,同时还要适应跟它相配合的技术组件发展的需要,要适应用户的新需求以及其他的新应用。密码学同信息技术所包括的组件一样,一直在发展变化中,这就需要我们要不断地发展密码学,使密码学能够适应其他应用的需求,同其他技术的进步齐头并进。信息安全有着众多基础研究的领域,这些基础研究构成了密码学的基础,也构成了通信、安全软件等系统的基础。

当我们在实施一个工程项目的时候,不能仅靠一个细分领域技术就能把这个项目完成密码学充满了神秘性,让我对她产生了浓厚的兴趣和好奇。最近的这次人类战争中,即二战,认识到密码和情报是一件事情。而在当代密码学跟数学,计算机只是一个大背景,因为信息将会以网络为媒介,所以现代密码学更多的是以数字化的信息而非纸质为研究对象。所以密码学归根结底是数学问题,计算能力是数学的一个方面,高性能的计算机可以成为国力的象征,分析情报就是一方面。数学研究等一些自然基础学科的研究才是国家实力的坚定的基石,才是一个自然科学的学生的理想所在。数学研究很广泛,而密码学涉及很有限,大多与计算机学科相关,如离散数学。从数学的分类包括:数论、近世代数、矩阵论、域论,以及其它结合较为紧密地理论:信息论、编码论、量子学、混沌论。密码学还有许许多多这样的问题。当前,密码学发展面临着挑战和机遇。计算机网络通信技术的发展和信息时代的到来,给密码学提供了前所未有的发展机遇。在密码理论、密码技术、密码保障、密码管理等方面进行创造性思维,去开辟密码学发展的新纪元才是我们的追求!

食品与生物工程学院陈多菲

学号:2013151180

密码学的发展历史与在战争中的应用

密码学的发展历史与在战争中的应用 摘要:本文分为两部分,一部分阐述了密码学的发展历史,分别介绍了古代加密方法、古典密码和近代密码,对不同阶段分别进行了详细的介绍,其中的许多方法至今沿用,对古代人们对密码学的应用进行了举例说明。另一部分介绍了密码学在战争的应用案例,通过甲午战争、抗日战争等说明了密码学在战争中的重要作用。 密码学包括密码编制学和密码分析学这两个相互独立又相互依存的分支。从其发展来看,可分为古典密码——以字符为基本加密单元的密码,以及现代密码——以信息块为基本加密单元的密码。 密码学的发展大致经过了三个历史阶段:古代加密方法、古典密码和近代密码。 古代加密方法(手工阶段) 存于石刻或史书中的记载表明许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求, 密码作为一种技术源远流长。 古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全的传送军事情报,奴隶主剃光奴隶的头发,将情报写在努力的光头上,待头发长起后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落的秘密通信。 我国古代也早有以藏头诗、藏尾诗、漏格诗以及回话等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不去注意或难于发现隐藏在其中的“话外之音”。

由上可见,自从有了文字和书写以来,为了某种需要人们总是尽力隐藏书面形式的信息,以起到摆正信息安全的目的。这些古代加密方法体现了后来发展起来的密码学的若干要素,但是只能限制在一定范围内(只知道保密构造方法的人)使用。 古代加密方法主要基于手工的方式实现,因此,称为密码学发展的手工阶段。以今天的眼光来看,古代加密方法通常原理简单、变化量小、时效性较差。 古典密码(机械阶段) 古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,他比古代加密方法更复杂,但其变化量仍然比较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码以及转轮密码。 阿拉伯人是第一个清晰的理解密码学原理的人,他们设计并且使用代替和换位加密,并且发现了密码分析中的字母频率分布关系。 欧洲的密码学起源于中世纪的罗马和意大利。到了1986年,密码系统在外交通信中已得到普遍适用,且已成为类似应用中的宠儿。当时,密码系统主要用于军事通信,如在美国国内战争期间,联邦军广泛的使用换位加密;联合军密码分析人员破译了截获的大部分联邦军密码,处于绝望中的联邦军有时在报纸上公布联合军的密码,请求读者帮助分析。 到了20世纪20年代,随着机械和机电技术的成熟,以及电报和无线电需求的出现,引起了密码设备方面的一场革命——发明了轮转

密码学与信息安全的关系

密码学与网络信息安全 【论文摘要】本文以优化中小企业信息化管理为思想,以系统开发为宗旨从系统企业的需求到信息化需要系统的支撑,然后设计出进销存管理系统,最后实现进销存管理系统的整个过程。关键词:信息化进销存优化管理。 【论文关键词】密码学信息安全网络 密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。 密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。 网络安全,这是个百说不厌的话题。因为在互联网上,每台计算机都存在或多或少的安全间题。安全问题不被重视,必然会导致严重后果。诸如系统被破坏、数据丢失、机密被盗和直接、间接的经济损失等。这都是不容忽视的问题。既然说到网络安全,我们经常提到要使用防火墙、杀毒软件等等。这些的确很重要,但是人们往往忽视了最重要的,那就是思想意识。 人类的主观能动性是很厉害的,可以认识世界、改造世界,正确发挥人的主观能动性可以提高认知能力。但是人类本身固有的惰性也是十分严重的,喜欢墨守成规、图省事。就是这点惰性给我的网络带来了安全隐患。据不完全统计,每年因网络安全问题而造成的损失超过300亿美元,其中绝大多数是因为内部人员的疏忽所至。所以,思想意识问题应放在网络安全的首要位置。 一、密码 看到这里也许会有读者以为我大放网词,那就先以我自己的一个例子来说起吧。本人也很懒,但是也比较注意安全性,所以能设置密码的地方都设置了密码,但是密码全是一样的。从E-mail信箱到用户Administrator,统一都使用了一个8位密码。我当初想:8位密码,怎么可能说破就破,固若金汤。所以从来不改。用了几年,没有任何问题,洋洋自得,自以为安全性一流。恰恰在你最得意的时候,该抽你嘴巴的人就出现了。我的一个同事竟然用最低级也是最有效的穷举法吧我的8位密码给破了。还好都比较熟,否则公司数据丢失,我就要卷着被子回家了。事后我问他,怎么破解的我的密码,答曰:只因为每次看我敲密码时手的动作完全相同,于是便知道我的密码都是一样的,而且从不改变。这件事情被我引以为戒,以后密码分开设置,采用10位密码,并且半年一更换。现在还心存余悸呢。我从中得出的教训是,密码安全要放在网络安全的第一位。因为密码就是钥匙,如果别人有了你家的钥匙,就可以堂而皇之的进你家偷东西,并且左邻右舍不会怀疑什么。我的建议,对于重要用户,诸如:Root,Administratoi的密码要求最少要8位,并且应该有英文字母大小写以及数字和其他符号。千万不要嫌麻烦,密码被破后更麻烦。为什么要使用8位密码呢,Unix一共是0x00

浅谈数论在密码学上的应用

硕士研究生《应用密码学》课程论文浅谈数论在密码学上的应用 指导教师:王玉柱 专业:计算机应用技术 学号:1010706 姓名:杨玖宏 日期:2011年6月30日

浅谈数论在密码学上的应用 摘要:众所周知.数论是数学中最古老、最纯粹、最优美的一个学科.不过鲜为人知的还是,数论同时也是一门应用性极强的应用数学学科.著名国际数学大师陈省身教授早在1992年精辟地指出:“数学中我愿意把数论看作应用数学。”我想数学中有两个很重要的数学部门,一个是数论,另一个是理论物理。在本文中我将先扼要介绍下数论中的一些基本概念、几个主要难题,紧接着我们要介绍数论在现代密码学与计算机科学中的应用。 关键词:数论;计算数论;密码学; 1 引言 随着现代计算机网络通信的广泛使用,传统密码受到很大挑战,它们已经不能完全适应网络环境下使用密码的需求。于是在上世纪七十年代,提出了公钥密码的概念,并且利用数论方法设计了第一个公钥密码体制(RSA公钥密码),经过二十多年的研究,RSA已得到了广泛的应用。在RSA密码体制中,使用了一个大整数(目前通常取这个数有1024比特长),它是两个素数的乘积,这个大整数是公开的,而它的两个素因子是保密的。如果有人能将这个大整数分解因子而得到它的两个素因子,就能破译这个密码体制,所以RSA的安全性是建立在大整数因子分解问题的基础之上的。这是一个经典的数论问题,RSA的提出大大推动了大整数因子分解算法的研究。在上世纪八十年代,人们又提出了椭圆曲线公钥密码,它应用了更深刻的数论知识,它的安全性也得到了密码界的公认,现在也正逐步推向应用。公钥密码的出现,使数学在密码研究中发挥了更加核心的作用。 2 数论概述 数论,顾名思义,就是关于数的理论,数学,顾名思义,就是关于数的学问.高斯曾说过一句名言:“数学是科学的女王,而数论是数学的女王”。基础数论作为一门古老的数学学科,在很常时间内都属于一种纯数学,随着现代科技的发展,数论在整个科学中的应用非常重要[1]。数论中许多基本内容,如同余理论、中国剩余定理(CRT)、高次剩余理论等,在现代密码体制、密钥分配与管理、数字签名、身份认证等方面有重要的应用。 1 数论概述 1.1 整除理论 1)整除:设 a 和 b 是两个整数,且 b≠0,如果存在一个整数 q,使等式a=bq 成立,那么我们称 a 能被 b 整除或 b 整除 a,记作 b— a,其性质有: (1) 若 b | a,a ≠0,则 | b | ? | a | ; (2) 若 b | a,a | b,a ≠0,则 a=b 或 b=a; (3) 若 c | b,b | a, 则 c | a;(c≠0) (4) 若 b | a,则 cb | ca(c≠0); (5) 若 c | a,c | b,则 c | ma+nb,m,n∈Z(c≠0)。 2) 整除的基本定理:对于任意整数 a,b(b≠0)存在唯一的一对整数 q,r,

浅谈密码学的影响与应用

密码学是研究信息加密、解密和破密的科学,含密码编码学和密码分析学。密码技术是信息安全的核心技术。随着现代计算机技术的飞速发展,密码技术正在不断向更多其他领域渗透。它是集数学、计算机科学、电子与通信等诸多学科于一身的交叉学科。使用密码技术不仅可以保证信息的机密性,而且可以保证信息的完整性和确证性,防止信息被篡改、伪造和假冒。目前密码的核心课题主要是在结合具体的网络环境、提高运算效率的基础上,针对各种主动攻击行为,研究各种可证安全体制。密码学的加密技术使得即使敏感信息被窃取,窃取者也无法获取信息的内容;认证性可以实体身份的验证。以上思想是密码技术在信息安全方面所起作用的具体表现。密码学是保障信息安全的核心;密码技术是保护信息安全的主要手段。本文主要讲述了密码的基本原理,设计思路,分析方法以及密码学的最新研究进展等内容密码学主要包括两个分支,即密码编码学和密码分析学。密码编码学对信息进行编码以实现信息隐藏,其主要目的是寻求保护信息保密性和认证性的方法;密码分析学是研究分析破译密码的学科,其主要目的是研究加密消息的破译和消息的伪造。密码技术的基本思想是对消息做秘密变换,变换的算法即称为密码算法。密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。这两者之间既相互对立又相互促进。密码的基本思想是对机密信息进行伪装。 二、密码学的发展历程密码学的发展历程大致经历了三个阶段:古代加密方法、古典密码和近代密码。 1.古代加密方法(手工阶段)源于应用的无穷需求总是推动技术发明和进步的直接动力。存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。 我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音”。比如:我画蓝江水悠悠,爱晚亭枫叶愁。秋月溶溶照佛寺,香烟袅袅绕轻楼 2.古典密码(机械阶段)古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码及转轮密码。 3.近代密码(计算机阶段)密码形成一门新的学科是在20世纪70年代,这是受计算机科学蓬勃发展刺激和推动的结果。快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了有力武器。计算机和电子学时代的到来给密码设计者带来了前所未有的自由,他们可以轻易地摆脱原先用铅笔和纸进行手工设计时易犯的错误,也不用再面对用电子机械方式实现的密码机的高额费用。总之,利用电子计算机可以设计出更为复杂的密码系统20世纪中叶以前, 由于条件所限, 密码技术的保密性基于加密算法的秘密, 3 因此称之为古典密码体制或受限的密码算法。尽管古典密码体制受到当时历史条件的限制, 没有涉及非常高深或者复杂的理论, 但在其漫长的发展演化过程中, 已经充分表现出了现代密码学的两大基本思想一“代替”和“换位” , 而且还将数学的方法引人到密码分析和研究中。这为后来密码学成为系统的学科以及相关学科的发展莫定了坚实的基础。密码学真正成为科学是在19世纪末和20世纪初期,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策. 从以上密码学的发展历史可以看出,整个密码学的发展过程是从简单到复杂,从不完美

现代密码学 学习心得

混合离散对数及安全认证 摘要:近二十年来,电子认证成为一个重要的研究领域。其第一个应用就是对数字文档进行数字签名,其后Chaum希望利用银行认证和用户的匿名性这一性质产生电子货币,于是他提出盲签名的概念。 对于所有的这些问题以及其他的在线认证,零知识证明理论成为一个非常强有力的工具。虽然其具有很高的安全性,却导致高负荷运算。最近发现信息不可分辨性是一个可以兼顾安全和效率的性质。 本文研究混合系数的离散对数问题,也即信息不可识别性。我们提供一种新的认证,这种认证比因式分解有更好的安全性,而且从证明者角度看来有更高的效率。我们也降低了对Schnorr方案变形的实际安全参数的Girault的证明的花销。最后,基于信息不可识别性,我们得到一个安全性与因式分解相同的盲签名。 1.概述 在密码学中,可证明为安全的方案是一直以来都在追求的一个重要目标。然而,效率一直就是一个难以实现的属性。即使在现在对于认证已经进行了广泛的研究,还是很少有方案能兼顾效率和安全性。其原因就是零知识协议的广泛应用。 身份识别:关于识别方案的第一篇理论性的论文就是关于零知识的,零知识理论使得不用泄漏关于消息的任何信息,就可以证明自己知道这个消息。然而这样一种能够抵抗主动攻击的属性,通常需要许多次迭代来得到较高的安全性,从而使得协议或者在计算方面,或者在通信量方面或者在两个方面效率都十分低下。最近,poupard和stern提出了一个比较高效的方案,其安全性等价于离散对数问题。然而,其约减的代价太高,使得其不适用于现实中的问题。 几年以前,fiege和shamir就定义了比零知识更弱的属性,即“信息隐藏”和“信息不可分辨”属性,它们对于安全的识别协议来说已经够用了。说它们比零知识更弱是指它们可能会泄漏秘密消息的某些信息,但是还不足以找到消息。具体一点来说,对于“信息隐藏”属性,如果一个攻击者能够通过一个一次主动攻击发现秘密消息,她不是通过与证明者的交互来发现它的。而对于“信息不可分辨”属性,则意味着在攻击者方面看来,证据所用的私钥是不受约束的。也就是说有许多的私钥对应于一个公钥,证据仅仅传递了有这样一个私钥被使用了这样一个信息,但是用的是哪个私钥,并没有在证据传递的信息中出现。下面,我们集中考虑后一种属性,它能够提供一种三次传递识别方案并且对抗主动攻击。Okamoto 描述了一些schnorr和guillou-quisquater识别方案的变种,是基于RSA假设和离散对数子群中的素数阶的。 随机oracle模型:最近几年,随机oracle模型极大的推动了研究的发展,它能够用来证明高效方案的安全性,为设计者提供了一个有价值的工具。这个模型中理想化了一些具体的密码学模型,例如哈希函数被假设为真正的随机函数,有助于给某些加密方案和数字签名等提供安全性的证据。尽管在最近的报告中对于随机oracle模型采取了谨慎的态度,但是它仍然被普遍认为非常的有效被广泛的应用着。例如,在这个模型中被证明安全的OAPE加密

《应用密码学》学习笔记

以下是我对《应用密码学》这本书的部分学习笔记,比较简单。笔记中对现代常用的加密技术进行了简单的归类和解释,有兴趣的同学可以看一下,没看过的同学就当普及知识了,看过的同学就当复习了。笔记里面可能有错别字,有的话请各位看客帮忙指正。 第1章密码学概述 1-1、1-2 1.密码技术的发展历史大致可以划分为三个时期:古典密码、近代密码和现代密码时期。 2.公元前440多年的斯巴达克人发明了一种称为“天书”的加密器械来秘密传送军事情报。这是最早的移位密码。 3.1919年德国人亚瑟·谢尔比乌斯利用机械电气技术发明了一种能够自动编码的转轮密码机。这就是历史上最著名的德国“埃尼格玛”密码机。 4.1949年香农的奠基性论文“保密系统的通信理论”在《贝尔系统技术杂志》上发表。 5.1977年,美国国家标准局正式公布实施了美国的数据加密标准(DES)。 6.1976年11月,名美国斯坦福大学的著名密码学家迪菲和赫尔曼发表了“密码学新方向”一文,首次提出了公钥密码体制的概念和设计思想。 7.1978年,美国的里韦斯特(R.L.Rivest)、沙米尔(A.Shamir)和阿德勒曼(L.Adleman)提出了第一个较为完善的公钥密码体制——RSA体制,成为公钥密码的杰出代表和事实标准。 8.2000年10月,比利时密码学家Joan Daemen和Vincent Rijmen提出的“Rijndael数据加密算法”被确定为AES算法,作为新一代数据加密标准。 1-3 1.密码学的主要任务:密码学主要为存储和传输中的数字信息提供如下几个方面的安全保护:机密性、数据完整性、鉴别、抗抵赖性。 2.密码体制中的有关基本概念: 明文(plaintext):常用m或p表示。 密文(ciphertext):常用c表示。 加密(encrypt): 解密(decrypt): 密码算法(cryptography algorithm):简称密码(cipher)。

国内外密码学发展现状

国内外密码学发展现状 简述国内外密码学发展现状 一、近年来我国本学科的主要进展 我国近几年在密码学领域取得了长足进展,下面我们将从最新理论与技术、最新成果应用和学术建制三个方面加以回顾和总结。 (一)最新理论与技术研究进展 我国学者在密码学方面的最新研究进展主要表现在以下几个方面。 (1)序列密码方面,我国学者很早就开始了研究工作,其中有两个成果值得一提:1、多维连分式理论,并用此理论解决了多重序列中的若干重要基础问题和国际上的一系列难题。2、20世纪80年代,我国学者曾肯成提出了环导出序列这一原创性工作,之后戚文峰教授领导的团队在环上本原序列压缩保裔性方面又取得了一系列重要进展。 (2)分组密码方面,我国许多学者取得了重要的研究成果。吴文玲研究员领导的团队在分组密码分析方面做出了突出贡献,其中对NESSIE工程的候选密码算法NUSH的分析结果直接导致其在遴选中被淘汰;对AES、Camellia、SMA4等密码算法做出了全方位多角度的分析,攻击轮数屡次刷新世界纪录。 (3)Hash函数(又称杂凑函数)方面,我国学者取得了一批国际领先的科研成果,尤其是王小云教授领导的团队在Hash函数的安全性分析方面做出了创新性贡献:建立了一系列杂凑函数破解的基本理论,并对多种Hash函数首次给出有效碰撞攻击和原像攻击。 (4)密码协议方面,我国学者的成果在国际上产生了一定的影响,其中最为突出的是在重置零知识方面的研究:构造了新工具,解决了国际收那个的两个重要的猜想。

(5)PKI技术领域,我国学者取得了长足的发展,尤其是冯登国教授领导的团队做出了重要贡献:构建了具有自主知识产权的PKI模型框架,提出了双层式秘密分享的入侵容忍证书认证机构(CA),提出了PKI实体的概念,形成了多项国家标准。该项成果获得2005年国家科技进步二等奖。 (6)量子密码方面,我国学者在诱骗态量子密码和量子避错码等方面做出了开创性工作;在协议的设计和分析方面也提出了大量建设性意见。 (7)实验方面,主要有郭光灿院士领导的团队和潘建伟教授领导的团队取得了 一些令人瞩目的成绩,其中的“量子政务网”和“量子电话网”均属世界首创。 (二)最新成果应用进展 2009年是我国《商用密码管理条例》发布实施10周年。10年来我国的商用密码取得了长足发展。尤其值得一提的是可信计算和WAPI方面的密码应用。 (1)通过在可信计算领域中的密码应用推广,推出了我国自主的《可信计算密码支撑平台功能与接口规范》,大大提升了我国密码算法的应用水平和密码芯片的设计和研制水平。 (2)我国自主研发的宽带无线网络WAPI安全技术,弥补了同类国际标准的安全缺陷,形成并颁布了两项国家标准;其中的加密算法采用了自主研发的分组密码算法SMS4。该成果2005年获得国家发明二等奖。 二、密码学的发展趋势和展望 (1)密码的标准化趋势。密码标准是密码理论与技术发展的结晶和原动力,像AES、NESSE、eSTREAM和SHA 3等计划都大大推动了密码学的研究。 (2)密码的公理化趋势。追求算法的可证明安全性是目前的时尚,密码协议的形式化分析方法、可证明安全性理论、安全多方计算理论和零知识证明协议等仍将是密码协议研究的主流方向。

浅析现有密码技术的局限性及应用尴尬

采用密码技术可以隐藏和加密需要保护的信息,使未授权者不能提取原始的信息。被隐藏的原始信息称为明文,隐藏后的信息称为密文,将明文变换为密文的过程称为加密,其逆过程,即将密文变为明文的过程为解密,对明文加密操作时所采用的一组规则称为加密算法,对密文解密所采用的一组规则为解密算法,加密和解密算法的操作通常都是在一组密钥的控制下进行的,分别称为加密密钥和解密密钥。数据以密文的形式存储于计算机中,或者在数据通信网络中传输,因此即使数据被未授权者非法窃取,未授权者也不能理解它的真实含义,从而达到数据保密的目的,同样,未授权者也不能伪造合理的密文,因而不能纂改数据,从而达到确保数据真实性的目的。 一个密码系统,有五个部分组成: 1、明文空间M,它是全体明文的集合; 2、密文空间C,它是全体密文的集合; 3、密钥空间K,它是全体密钥的集合,其中每个密钥K,均有加密密钥Ke和解密密钥Kd 组成,即K=(Ke,Kd); 4、加密算法E,由加密密钥控制的加密变换的集合; 5、解密算法D,由解密密钥控制的解密变换的集合。由上五个组成部分可见,密码系统对加密信息机密性的强弱,关键取决于密钥管理的安全性和加密算法的复杂度。 现有密码系统有:古典密码系统和现代密码学。古典密码系统是加密和解密都使用相同密钥的密码系统。现代密码学由1976年Diffie和Hellman[2]提出的一种新型的密码学方法,它的加解密不再使用同一密钥,加密、解密的密钥一个被公开,成为公钥,另一个由使用者保密,称为私钥。而古典密码系统的两种基本类型是换位密码和替代密码。 换位密码 换位密码通过重新编排明文中的字母顺序得到密文,而所有的字母本身并没有改变。如:将明文写成两行,先向下写,然后横向写;密文则是先横向看,再向下看。如下: 明文“HELLO WORLD”被写成: H L O O L E L W R D 得到的密文:HLOOLELWRLD 因换位密码的加密算法过于简单,所以密码系统得以破解。 替代密码 替代密码是通过改变明文中的字符产生密文。一个最简单的单长度密钥的替代加密例子如下:假设密钥K是3(或C),那么字母A就变成D,B变成E,以次类推,Z变成C。那么对于明文“HLOOLELWRLD”,经过替代加密后变成“KHOORZRUOG”。 这种加密方法,可以很容易通过统计特性的唯密文攻击。在这个替代密码例子中因加密算法过于简单、密钥过于简短而密码系统被破解。 一次一密乱码本 一次一密乱码本的加密方法密钥不重复使用,而是随机产生密钥串。但一次一密乱码本的问题出现在密钥的生成和密钥分发及保存上。 数据加密标准(DES)

现代密码学课后题答案

《现代密码学习题》答案 第一章 判断题 ×√√√√×√√ 选择题 1、1949年,( A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由( D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是( B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不通,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是( D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 填空题: 5、1976年,和在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指 1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息寄信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法 5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 判断题: ×√√√ 选择题: 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码

密码学在网络安全中的应用

密码学在网络安全中的应用 0 引言 密码学自古就有,从古时的古典密码学到现如今数论发展相对完善的现代密码学。加密算法也经历了从简单到复杂、从对称加密算法到对称和非对称算法并存的过程。现如今随着网络技术的发展,互联网信息传输的安全性越来越受到人们的关注,很需要对信息的传输进行加密保护,不被非法截取或破坏。由此,密码学在网络安全中的应用便应运而生。 1 密码的作用和分类 密码学(Cryptology )一词乃为希腊字根“隐藏”(Kryptós )及“信息”(lógos )组合而成。现在泛指一切有关研究密码通信的学问,其中包括下面两个领域:如何达成秘密通信(又叫密码编码学),以及如何破译秘密通信(又叫密码分析学)。密码具有信息加密、可鉴别性、完整性、抗抵赖性等作用。 根据加密算法的特点,密码可以分为对称密码体制和非对称密码体制,两种体制模型。对称密码体制加密和解密采用相同的密钥,具有很高的保密强度。而非对称密码体制加密和解密是相对独立的,加密和解密使用两种不同的密钥,加密密钥向公众公开,解密密钥只有解密人自己知道,非法使用者根据公开的加密密钥无法推算出解密密钥[1]。 2 常见的数据加密算法 2.1 DES加密算法 摘 要:本文主要探讨的是当今流行的几种加密算法以及他们在网络安全中的具体应用。包括对称密码体制中的DES加密算法和AES加密算法,非对称密码体制中的RSA加密算法和ECC加密算法。同时也介绍了这些加密方法是如何应用在邮件通信、web通信和keberos认证中,如何保证网络的安全通信和信息的加密传输的。 关键词:安全保密;密码学;网络安全;信息安全中图分类号:TP309 文献标识码:A 李文峰,杜彦辉  (中国人民公安大学信息安全系,北京 102600) The Applying of Cryptology in Network Security Li Wen-feng 1, Du Yan-hui 2 (Information security department, Chinese People’s Public Security University, Beijing 102600, China) Abstract: This article is discussing several popular encryption methods,and how to use this encryption method during security transmittion.There are two cipher system.In symmetrical cipher system there are DES encryption algorithm and AES encryption algorithm.In asymmetrical cipher system there are RSA encryption algorithm and ECC encryption algorithm. At the same time, It introduces How is these encryption applying in the mail correspondence 、the web correspondence and the keberos authentication,how to guarantee the security of the network communication and the secret of information transmits. Key words: safe security; cryptology; network security; information security DES 算法为密码体制中的对称密码体制,又被成为美国数据加密标准,是1972年美国IBM 公司研制的对称密码体制加密算法。其密钥长度为56位,明文按64位进行分组,将分组后的明文组和56位的密钥按位替代或交换的方法形成密文组的加密方法。 DES 加密算法特点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。DES 工作的基本原理是,其入口参数有三个:Key 、Data 、Mode 。Key 为加密解密使用的密钥,Data 为加密解密的数据,Mode 为其工作模式。当模式为加密模式时,明文按照64位进行分组,形成明文组,Key 用于对数据加密,当模式为解密模式时,Key 用于对数据解密。实际运用中,密钥只用到了64位中的56位,这样才具有高的安全性。 2.2 AES加密算法 AES (Advanced Encryption Standard ):高级加密标准,是下一代的加密算法标准,速度快,安全级别高。2000年10月,NIST (美国国家标准和技术协会)宣布通过从15种候选算法中选出的一项新的密匙加密标准。Rijndael 被选中成为将来的AES 。Rijndael 是在1999年下半年,由研究员Joan Daemen 和 Vincent Rijmen 创建的。AES 正日益成为加密各种形式的电子数据的实际标准。 算法原理:AES 算法基于排列和置换运算。排列是对数据重新进行安排,置换是将一个数据单元替换为另一个。 doi :10.3969/j.issn.1671-1122.2009.04.014

信息安全与密码学上机报告

《信息安全与密码学》实验报告 姓名: 学号: 学院: 班级: 成绩: 2014年12月31日 目录

1移位密码 (44) 1.1算法原理 (44) 1.2实现过程 (44) 1.2.1 程序代码 (44) 1.2.2运行界面 (77) 2置换密码 (88) 2.1算法原理 (88) 2.2实现过程 (99) 2.2.1 程序代码 (99) 2.2.2运行界面 (1111) 3 维吉尼亚密码 (1212) 3.1算法原理 (1212) 3.2实现过程 (1212) 3.2.1程序代码 (1212) 3.2.1运行界面................. 错误!未定义书签。错误!未定义书签。 4 Eulid算法....................... 错误!未定义书签。错误!未定义书签。 4.1算法原理................... 错误!未定义书签。错误!未定义书签。 4.2实现过程................... 错误!未定义书签。错误!未定义书签。 4.2.1程序代码................. 错误!未定义书签。错误!未定义书签。 4.2.2运行界面................. 错误!未定义书签。错误!未定义书签。 5 Eulid扩展算法................... 错误!未定义书签。错误!未定义书签。 5.1算法原理................... 错误!未定义书签。错误!未定义书签。 5.2实现过程................... 错误!未定义书签。错误!未定义书签。 5.2.1程序代码................. 错误!未定义书签。错误!未定义书签。 5.2.2运行界面................. 错误!未定义书签。错误!未定义书签。 6 素性检验 ........................ 错误!未定义书签。错误!未定义书签。 6.1算法原理................... 错误!未定义书签。错误!未定义书签。

现代密码学教程课后部分答案考试比用

第一章 1、1949年,(A )发表题为《保密系统的通信理论》的文章,为密码系统建立了理论基础,从此密码学成了一门科学。 A、Shannon B、Diffie C、Hellman D、Shamir 2、一个密码系统至少由明文、密文、加密算法、解密算法和密钥5部分组成,而其安全性是由(D)决定的。 A、加密算法 B、解密算法 C、加解密算法 D、密钥 3、计算和估计出破译密码系统的计算量下限,利用已有的最好方法破译它的所需要的代价超出了破译者的破译能力(如时间、空间、资金等资源),那么该密码系统的安全性是(B )。 A无条件安全B计算安全C可证明安全D实际安全 4、根据密码分析者所掌握的分析资料的不同,密码分析一般可分为4类:唯密文攻击、已知明文攻击、选择明文攻击、选择密文攻击,其中破译难度最大的是(D )。 A、唯密文攻击 B、已知明文攻击 C、选择明文攻击 D、选择密文攻击 5、1976年,W.Diffie和M.Hellman在密码学的新方向一文中提出了公开密钥密码的思想,从而开创了现代密码学的新领域。 6、密码学的发展过程中,两个质的飞跃分别指1949年香农发表的保密系统的通信理论和公钥密码思想。 7、密码学是研究信息及信息系统安全的科学,密码学又分为密码编码学和密码分析学。 8、一个保密系统一般是明文、密文、密钥、加密算法、解密算法5部分组成的。 9、密码体制是指实现加密和解密功能的密码方案,从使用密钥策略上,可分为对称和非对称。 10、对称密码体制又称为秘密密钥密码体制,它包括分组密码和序列密码。 第二章 1、字母频率分析法对(B )算法最有效。 A、置换密码 B、单表代换密码 C、多表代换密码 D、序列密码 2、(D)算法抵抗频率分析攻击能力最强,而对已知明文攻击最弱。 A仿射密码B维吉利亚密码C轮转密码D希尔密码 3、重合指数法对(C)算法的破解最有效。 A置换密码B单表代换密码C多表代换密码D序列密码 4、维吉利亚密码是古典密码体制比较有代表性的一种密码,其密码体制采用的是(C )。 A置换密码B单表代换密码C多表代换密码D序列密码 5、在1949年香农发表《保密系统的通信理论》之前,密码学算法主要通过字符间的简单置换和代换实现,一般认为这些密码体制属于传统密码学范畴。 6、传统密码体制主要有两种,分别是指置换密码和代换密码。 7、置换密码又叫换位密码,最常见的置换密码有列置换和周期转置换密码。 8、代换是传统密码体制中最基本的处理技巧,按照一个明文字母是否总是被一个固定的字母代替进行划分,代换密码主要分为两类:单表代换和多表代换密码。 9、一个有6个转轮密码机是一个周期长度为26 的6次方的多表代替密码机械装置。 第四章 1、在( C )年,美国国家标准局把IBM的Tuchman-Meyer方案确定数据加密标准,即DES。 A、1949 B、1972 C、1977 D、2001 2、密码学历史上第一个广泛应用于商用数据保密的密码算法是(B )。 A、AES B、DES C、IDEA D、RC6 3、在DES算法中,如果给定初始密钥K,经子密钥产生的各个子密钥都相同,则称该密钥K为弱密钥,DES算法弱密钥的个数为(B )。 A、2 B、4 C、8 D、16

密码学发展史

密码学发展简史 学院:数学与统计学院专业:信息与计算科学学生:卢富毓学号:20101910072 密码是什么?什么是密码学? 信息泛指人类社会传播的一切内容。人通过获得、识别自然界和社会的不同信息来区别不同事物,得以认识和改造世界。而密码便是对信息进行隐藏的一种手段。它既是一种工具又是一门艺术。 《破译者》一书说:“人类使用密码的历史几乎与使用文字的时间一样长。”因为自从有了文字以来,人们为了某种需要总是想方设法隐藏某些信息,以起到保证信息安全的目的。人们最早为了包通信的机密,通过一些图形或文字互相传达信息的密令。连闯荡江湖的侠士和被压迫起义者各自有一套秘密的黑道行话和地下联络的暗语。 而在今天信息泛滥的计算机世界里,如何保护好自己的重要信息不被泄露,保护自己的通讯不被窃听等一系列与信息有关的内容中,同样需要一个较好的密码协议来完成对信息的私密化!可以看出密码学在不同的时代里有着不同的诠释。 所以密码学是一门既古老又新兴的学科。 古典密码学 密码学大致可以分为五个时期: 1、第一阶段从古代到1949,这一时期称为古典密码时期,密码学可以 说是一门艺术,而不是一种学科。(发展缓慢) 2、第二阶段是从1949年到1976年,这一时期,由香浓发表的“保密系 统的信息理论”一文产生了信息论,信息论为对称密码系统建立了理论基础,从此密码学成为一门学科。 3、第三个阶段是从1976年到1984年。1976年Diffie和Hellman发表了 《密码学新方向》一文,从而导致了密码学上的一场革命。他们首次证明了发送端和接收端无密钥传输的保密通讯是可能的,从而开创了公钥密码学的新纪元。 4、第四个阶段是从1984年至今,1984年Goldwasser和Micali首次提出 了证明安全的思想。他们讲概率论中的东西引入到密码学,在计算复杂度理论假设下,安全性是可以证明的。 5、第五个阶段,这是我个人认为有必要写出来的——两字密码学时期: 当量子计算机大量的投入使用后,可以预见好多目前主流的加密算法将不再实用,新的方案新的体系将被人们发现利用。 公元前400年,斯巴达人就发明了“塞塔式密码”,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。这是最早的密码技术。

网络信息安全_密码学基本概念

密码学基本概念 一.学科分类 密码术(Cryptology) (1)密码学(Cryptography) 研究如何构建强大、有效的加密/解密方法体系的学科 (2)密码分析学(Cryptanalysis) 研究加密/解密方法体系所存在的弱点,找出破译密码方法的学科 二. 基本加密通信模型 Alice Bob & Eve 的加密通信: Alice和Bob 要进行通信,而Eve将会截获他们的消息,所以他们使用加密的方法通信 1. 基本概念 明文(Plaintext)是一组Alice和Bob都能够理解其含义的消息或者数据 密文(Cipher text )是一组变换后的数据或消息,它使得非法用户不能理解其中的信息 密钥(Key)能控制变化结果的参数信息 加密 (Encryption)使用一套变换方法,使其输出的密文依赖于输入的明文和加密密钥(eKey)

解密 (Decryption)使用一套变换方法,使其输出的明文依赖于输入的密文和解密密钥(dKey) 用符号表示 加密:Cipher text = Encryption (Plaintext, eKey) 解密:Plaintext = Decryption (Cipher text, dKey) 2. 体系划分 以加密密钥和解密密钥的关系来划分为体系: 1。如果加密密钥(eKey)和解密密钥(dKey)相同,或者实质上相同,这样的加密体系称为单钥或对称密钥体系 2。如果加密密钥(eKey)和解密密钥(dKey)不相同,或者很难从其中一个密钥推导出另一个密钥,这样的加密体系称为双钥或非对称密钥体系 三. 实例 1 对称密钥 在经典加密方法中使用两种类型进行变换: (1)换位法(Permutation cipher / Transposition cipher):明文中 的每个字母或符号没有改变,但它们在密文中的位置进行了重新 排列。 经典换位加密法 (2)替换法(Substitution cipher):将明文中每个字母、数字、符号按 一定规则替换成另外一个符号。 又可分为单码替换、多码替换、多图替换 单码替换:明文被映射到一个固定的替换表中 多码替换:明文被映射到多于一个替换表中 多图替换:

密码学论文

通过这个学期对应用密码学的学习,我深刻地体会到应用密码学的魅力,也认识到随着科学的发展,密码学越来越成为一个国家不可缺少的一项科学技术。密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。 密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。 密码学主要经历了三个阶段:古代加密方法、古代密码和近代密码。首先,古代加密方法处于手工阶段,其源于应用的无穷需求总是来推动技术发明和进步的直接动力。存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。从某种意义上说,战争是科学技术进步的催化剂。人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。公元前 400 年,斯巴达人就发明了“塞塔式密码” ,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。这是最早的密码技术。我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语” 隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音” 。比如:我画蓝江水悠悠,爱晚亭枫叶愁。秋月溶溶照佛寺,香烟袅袅绕轻楼其次是古典密码(机械阶段),古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。古典密码的代表密码体制主要有:单表代替密码、多表代替密码及转轮密码。最后是近代密码,这是计算机阶段,密码形成一门新的学科是在 20 世纪 70 年代,这是受计算机科学蓬勃发展刺激和推动的结果。快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。 在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。这些密码算法大都十分简单,现在已经很少在实际应用中使用了。由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的基本原理和方法。但是对古典密码学的研究,对于理解、构造和分析现代实用的密码都是很有帮助。然后是古典密码学的基础运用:从密码学发展历程来看,可分为古典密码(以字符为基本加密单元的密码)以及现代密码(以信息块为基本加密单元的密码)两类。凯

相关主题
文本预览
相关文档 最新文档