当前位置:文档之家› 湘潭大学 刘任任版 离散数学课后习题答案 习题13

湘潭大学 刘任任版 离散数学课后习题答案 习题13

湘潭大学 刘任任版 离散数学课后习题答案 习题13
湘潭大学 刘任任版 离散数学课后习题答案 习题13

习 题 十 三

1. 证明:对网络N 中的任意一个流f 和)(N V s ?,均有

∑∈-=-s

v s s f s s f v V f V v f ),(),()],(),([

分析:根据定义∑∈=

∈∈=)

,()()(}|)(){()(V v f V v f V u N A u v V v α

α,,,, 显然若)(),(,,2121N A v v S v v ∈∈且,则在)V v f ,(1中含)21,(v v f ,而)1,(v V f 中也含)21,(v v f ,故f 对端点同属于S 的这种弧在

∑∈-s

v v V f V v f )],(),([中不产生影响,故有:

∑∈-=-s

v s s f s s f v V f V v f ),(),()],(),([

证明: 左式)),(),(()),(),(((v u f u v f v u f u v f s v s

u s

u ∑∑∑∈∈∈-+-=

∑∑∑∑∑∈∈∈∈∈--+=s v s

u s

u s

u s

u v u f v u f u v f u v f )),(),(),(),((

))),(),(()),(),(((∑∑∑∑∑∈∈∈∈∈-+-=s

v s

u s

u s

u s

u v u f u v f v u f u v f

)),(),((∑∑∑∈∈∈-=s

u s v s

u v u f u v f

∑∑∑∑∈∈∈∈-=s v s

u s v s

u v u f u v f ),(),(

),(),(S S f S S f -=

2.设),(S S 和),(T T 都是网络N 中的最小割,求证),(T S T S ??和),(T S T S ??也都是N 中

的最小割.

分析:由集合的运算和容量的定义,可直接验证下式成立:

),(),(),(),(T S T S C T T C S S C T S SUT C -+≤?

又由于),(S S 和),(T T 都是网络N 中的最小割,根据最小割的定义有: ),(),(T S SUT C S S C ?≤ ),(),(T S T S C T T C ??≤最后可得

),(T S T S C ??和),(T S T S C ??都等于最小割的容量。 证:设),(S S 和),(T T 都是小割,则 ),(),(T S S U T C S S C ?≤ (1) ),(),(T S T S C T T C ??≤ (2)

另一方面,易知 ),(),(),(),(T S T S C T T C S S C T S S U T C -+≤? 由此得 ),(),(S S C T S S U T C =? 因此,),(T S SUT ?是最小割

类似可得),(T S T S 也是最小割。

3.在图13-10所示的网络N 中:

(1)求N 的所有割 (2)求最小割的容量

分析:根据定义13.1.4可知,割是分离源点x 和汇点y 的 弧的集合。可用遍历法求出该图的所有割点及每个割得容 量。 解:(1)设)(N V s ?列表如下

(2)比较可得最小割的容量为5。

4.证明推论13.1.1

分析:推论13.1.1描述了网络N 的任意流值与任意割的容量的关系,即

),(,V V C f y x ≤

该题的证明用到了流的定义及定理13.1.1的结论。

证明:由定义13.1.2可知,一个流f 必须满足:对任意)()(0),(αααC f N A ≤≤∈ 因此有),(),(V V f V V C ≥

又由定理13.1.1有,对任意流f 的值y x f ,,和任意割),(V V 有:

S

),(S S

),(S S c

}{x xv xu ,

6 },{u x xv uw uv ,,

7 },{v x vy xu ,

7 },{w x wy wv xv xu ,,, 12 },,{v u x vy uw ,

5 },,{w u x xv wy wv uv ,,, 11 },,{w v x wy vy xu ,, 12 },,,{w v u x

wy vy ,

8

10

13-图

),(),(,V V f V V f f y x -=

因此有y x y x f V V f f V V f V V C ,,),(),(),(≥+=≥

5.对于图13-11中的(a )和(b ),确定所有可能的流及最大流。

分析:由定义13.1.2可知,一个流f 必须满足: (1)对任意)()(0),(αααC f N A ≤≤∈ (2)对任意中间点i ,又f(i,V)=f(V ,i)

对图13-11的两个图中的每一条弧,按自上而下、自左至右的顺序进行编号,使用枚举法可确定其所有可能的流及最大流。

解:对网络13-11(a )(b )的弧编号如下图所示:

对网络(a),遍历每条弧的流量使得f 满足流的两个条件,列出可能的流如下表所示。 共有44种不同的流。

由于e6的流量最大为1,所以e9的流量最大也为1,而e8的流量最大为3,所以网络(a)的最大流量为4。

对网络(b),遍历每条弧的流量使得f满足流的两个条件,列出可能的流如下表所示。

共有12种不同的流。由于e4、e6的流量和最大为2,所以e8、e9的流量和最大也为2。

所以网络(b)的最大流量为2。

6.求图13-12所示网络的最大流。

分析:根据定理13.2.1求网络的最大流的分析,可写出求最大流的算法如下,依据此算法可求出网络13-12的最大流。

求最大流的算法://该算法是求网络中的最大流。每条边的容量是非负整数。

输入:源点为x,汇点为y,容量为C,顶点为x=v0,v1,v2,…,v n=y的网络和n

输出:一个最大流F

Max_flow(x,y,c,v,n)

//v的标号是(predecessor(v),val(v))

//从零流开始

1.For 每条边(i,j)

2.F i,j=0

3.While(true) {

//删除所有标号

4.For i=0 to n {

5.predecessor(v i)=null

6. val(v i)=null

7.}

//标号x

8.predecessor(x)=—

9.val(x)=∞

10.U={x} //U是未检查、已标号的顶点集

//进行下列循环,直到y被标号

11.While(val(y)==null) {

12.If(U==φ) //当前流是最大流

13.return F

14.从U中选择v

15.U=U-{v}

16.ε=val(v)

17.For每条满足val(w)==null的边(v,w)

18.if (F vw

19.predecessor(w)=v

20.val(w)=min{ε, C vw—F vw)

21.U=U∪{w}

22.}

23.For 每条满足val(w)==null的边(w,v)

24.if (F wv>0 ) {

25.predecessor(w)=v

26.val(w)=min{ε, F vw)

27.U=U∪{w}

28.}

29.}//end while(val(y)==null)循环

//找一条用来修正它上面流量的、从x到y的路径P 30.w0=y

31.k=0

32.While (w k≠x) {

33.w k+1= predecessor(w k)

34.k=k+1

35.}

36.P={ w k+1, w k,…w1,w0}

37.ε=val(y)

38.For i=1 to k+1 {

39.e=( w i, w i-1)

40.if (e是P中的正向边)

41.F e=F e+ε

42.else

43.F e=F e—ε

44.}

45.}//结束while循环

}

解:依照上述算法,可写出如下求网络3-12的最大流的步骤。由于网络中已存在一个流,所以算法不需从零流开始。

(1)执行算法步骤4—7,将所有顶点v,初始化predecessor(v)=null,val(v)=null

(2)执行算法步骤8—10,初始化predecessor(x)=—,val(x)=∞,U={x}

(3)执行算法步骤11,由于val(y)=null,执行while循环

(4)执行算法步骤14—16,从U中选择顶点x,U=φ,ε=∞

(5)执行算法步骤17—29,考虑与x邻接的顶点1,2,3:

得predecessor(v1)= predecessor(v3)=x;val(v1)=1 val(v3)=1;U={ v1,v3}

(6)执行算法步骤11,由于val(y)=null,再次执行while循环

(7)执行算法步骤14—16,从U中选择顶点v1,U={ v3},ε=1

(8)执行算法步骤17—29,考虑与v1邻接且满足val(v)=null的顶点4,由于不满足18和23行的if条件,所以返回到11行再次执行while循环。

(9)执行算法步骤14—16,从U中选择顶点v3,U=φ,ε=1

(10)执行算法步骤17—29,考虑与v3邻接且满足val(v)=null的顶点4和5:

得predecessor(v4)= predecessor(v5)= v3;val(v4)=val(v5)=1;U={ v4,v5}

(11)执行算法步骤11,由于val(y)=null,执行while循环

(12)执行算法步骤14—16,从U中选择顶点v4,U={ v5},ε=1

(13)执行算法步骤17—29,考虑与v4邻接且满足val(v)=null的顶点y:

得predecessor(y)= v4;val(y)=1;U={y,v5}

(14)执行步骤11,由于val(y)=1,退出while循环,转向步骤30执行,初始化w0=y,k=0 (15)执行步骤32—37,得增广路径P=yv4v3x ,ε=1

(16)执行步骤38—43,修改路径P中的值。

(17)去掉全部标记,得一新的网络如图13-13所示。

(18) 对图13-13所示的网络,重复上述过程得到增广路径P=yv 5v 3v 1x ,修正P 中的值。 (19)去掉全部标记,得一新的网络如图13-14所示。

(20)图13-14所示的网络,由于流向y 的流量已达饱和,因此网络13-14中不存在任何由x 到y 的可增广路。该网络的流量f x,y =11为所求网络的最大流。

7.试证明:若在网络N 中不存在有向(x, y)-通路,则最大流的值和最小割的容量都是零。 分析:若能利用已知条件构造出一个割,其容量等于零;同时还能构造一个流,其流量也为零,则根据定理13.2.1,可知:最大流的值和最小割的容量都是零。 证明:令S={v| 在N 中存在(x,v )-有向路}。

显然x ∈S ,又在网络N 中不存在有向(x, y)-有向路,所以S y ,因此(S ,S )构成N 的一个割,且C(S ,S )=0。

又零流;,了f 0的流量f x,y =0。

根据定理13.2.1,N 中最大流的值和最小割的容量都是零。

(完整版)离散数学试卷及答案

离散数学试题(A卷答案) 一、(10分)求(P↓Q)→(P∧?(Q∨?R))的主析取范式 解:(P↓Q)→(P∧?(Q∨?R))??(?( P∨Q))∨(P∧?Q∧R)) ?(P∨Q)∨(P∧?Q∧R)) ?(P∨Q∨P)∧(P∨Q∨?Q)∧(P∨Q∨R) ?(P∨Q)∧(P∨Q∨R) ?(P∨Q∨(R∧?R))∧(P∨Q∨R) ?(P∨Q∨R)∧(P∨Q∨?R)∧(P∨Q∨R) ? M∧1M ? m∨3m∨4m∨5m∨6m∨7m 2 二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。 乙说:王教授不是上海人,是苏州人。 丙说:王教授既不是上海人,也不是杭州人。 王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。试判断王教授是哪里人? 解设设P:王教授是苏州人;Q:王教授是上海人;R:王教授是杭州人。则根据题意应有: 甲:?P∧Q 乙:?Q∧P 丙:?Q∧?R 王教授只可能是其中一个城市的人或者3个城市都不是。所以,丙至少说对了一半。因此,可得甲或乙必有一人全错了。又因为,若甲全错了,则有?Q ∧P,因此,乙全对。同理,乙全错则甲全对。所以丙必是一对一错。故王教授的话符号化为:

((?P ∧Q )∧((Q ∧?R )∨(?Q ∧R )))∨((?Q ∧P )∧(?Q ∧R )) ?(?P ∧Q ∧Q ∧?R )∨(?P ∧Q ∧?Q ∧R )∨(?Q ∧P ∧?Q ∧R ) ?(?P ∧Q ∧?R )∨(P ∧?Q ∧R ) ??P ∧Q ∧?R ?T 因此,王教授是上海人。 三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。 若'R 是包含R 的且具有自反性、对称性和传递性的任意关系,则由闭包的定义知r (R )?'R 。由定理4.15和由定理4.16得sr (R )?s ('R )='R ,进而有tsr (R )?t ('R )='R 。 综上可知,tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。 四、(15分)集合A ={a ,b ,c ,d ,e }上的二元关系R 为R ={}, (1)写出R 的关系矩阵。 (2)判断R 是不是偏序关系,为什么? 解 (1) R 的关系矩阵为: ??? ??? ? ? ? ?=100001100010100 10110 11111 )(R M (2)由关系矩阵可知,对角线上所有元素全为1,故R 是自反的;ij r +ji r ≤1,故R 是反对称的;可计算对应的关系矩阵为:

山东大学离散数学题库及答案

《离散数学》题库答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q →P (2)?Q=>P →Q (3)P=>P →Q (4)?P ∧(P ∨Q)=>?P 答:(1),(4) 2、下列公式中哪些就是永真式?( ) (1)(┐P ∧Q)→(Q →?R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个就是永真蕴涵式?( ) (1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q (4)P ∧(P →Q)=>Q (5) ?(P →Q)=>P (6) ?P ∧(P ∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式?x((A(x)→B(y,x))∧ ?z C(y,z))→D(x)中,自由变元就是( ),约束变元就是( )。 答:x,y, x,z 5、判断下列语句就是不就是命题。若就是,给出命题的真值。( ) (1) 北京就是中华人民共与国的首都。 (2) 陕西师大就是一座工厂。 (3) 您喜欢唱歌不? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1) 就是,T (2) 就是,F (3) 不就是 (4) 就是,T (5) 不就是 (6) 不就是 6、命题“存在一些人就是大学生”的否定就是( ),而命题“所有的人都就是要死的”的否定就是( )。 答:所有人都不就是大学生,有些人不会死 7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q →? (2) Q P ?→ (3) Q P ?? (4)Q P →? 8、设个体域为整数集,则下列公式的意义就是( )。 (1) ?x ?y(x+y=0) (2) ?y ?x(x+y=0) 答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=0 9、设全体域D 就是正整数集合,确定下列命题的真值: (1) ?x ?y (xy=y) ( ) (2) ?x ?y(x+y=y) ( ) (3) ?x ?y(x+y=x) ( ) (4) ?x ?y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x 就是奇数,Q(x):x 就是偶数,谓词公式 ?x(P(x)∨Q(x))在哪个个体域中为真?( ) (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立 答:(1) 11、命题“2就是偶数或-3就是负数”的否定就是( )。 答:2不就是偶数且-3不就是负数。 12、永真式的否定就是( ) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能

屈婉玲版离散数学课后习题答案【3】

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+)(x). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 2=(x+)(x). G(x): x+5=9. (1)在两个个体域中都解释为) ?,在(a)中为假命题,在(b)中为真命题。 (x xF (2)在两个个体域中都解释为) xG ?,在(a)(b)中均为真命题。 (x 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在北京卖菜的人不全是外地人. 解: (1)F(x): x能表示成分数 H(x): x是有理数 命题符号化为: )) F x∧ ?? x ? ( ) ( (x H (2)F(x): x是北京卖菜的人 H(x): x是外地人 命题符号化为: )) F ?? x x→ (x ( H ) ( 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快 命题符号化为: )) F y x G ? y ? ∧ x→ , ( )) ( H ) x ((y ( (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快

命题符号化为: ))),()(()((y x H x F x y G y →?∧?? 9.给定解释I 如下: (a) 个体域D 为实数集合R. (b) D 中特定元素=0. (c) 特定函数(x,y)=xy,x,y D ∈. (d) 特定谓词(x,y):x=y,(x,y):x

离散数学题库及答案

数理逻辑部分 选择、填空及判断 ?下列语句不就是命题的( A )。 (A) 您打算考硕士研究生不? (B) 太阳系以外的星球上有生物。 (C) 离散数学就是计算机系的一门必修课。 (D) 雪就是黑色的。 ?命题公式P→(P∨?P)的类型就是( A ) (A) 永真式(B) 矛盾式 (C) 非永真式的可满足式(D) 析取范式 ?A就是重言式,那么A的否定式就是( A ) A、矛盾式 B、重言式 C、可满足式 D、不能确定 ?以下命题公式中,为永假式的就是( C ) A、p→(p∨q∨r) B、(p→┐p)→┐p C、┐(q→q)∧p D、┐(q∨┐p)→(p∧┐p) ?命题公式P→Q的成假赋值就是( D ) A、 00,11 B、 00,01,11 C、10,11 D、 10 ?谓词公式) x xP∧ ?中,变元x就是 ( B ) R , ( x ) (y A、自由变元 B、既就是自由变元也就是约束变元 C、约束变元 D、既不就是自由变元也不就是约束变元 ?命题公式P→(Q∨?Q)的类型就是( A )。 (A) 永真式 (B) 矛盾式 (C) 非永真式的可满足式 (D) 析取范式 ?设B不含变元x,) x x→ ?等值于( A ) A ) ( (B A、B (D、B x xA→ x ?) ( ( ?C、B x∧ A ?) (B、) ?) xA→ x ) ( A x (B x∨ ?下列语句中就是真命题的就是( D )。 A.您就是杰克不? B.凡石头都可练成金。 C.如果2+2=4,那么雪就是黑的。 D.如果1+2=4,那么雪就是黑的。 ?从集合分类的角度瞧,命题公式可分为( B ) A、永真式、矛盾式 B、永真式、可满足式、矛盾式 C、可满足式、矛盾式 D、永真式、可满足式 ?命题公式﹁p∨﹁q等价于( D )。 A、﹁p∨q B、﹁(p∨q) C、﹁p∧q D、 p→﹁q ?一个公式在等价意义下,下面写法唯一的就是( D )。 (A) 范式 (B) 析取范式 (C) 合取范式 (D) 主析取范式 ?下列含有命题p,q,r的公式中,就是主析取范式的就是( D )。

离散数学试题与答案

试卷二试题与参考答案 一、填空 1、 P:您努力,Q:您失败。 2、 “除非您努力,否则您将失败”符号化为 ; “虽然您努力了,但还就是失败了”符号化为 。 2、论域D={1,2},指定谓词P P (1,1) P (1,2) P (2,1) P (2,2) T T F F 则公式x ??真值为 。 3设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则 R= (列举法)。 R 的关系矩阵M R = 。 4、设A={1,2,3},则A 上既不就是对称的又不就是反对称的关系 R= ;A 上既就是对称的又就是反对称的关系R= 。 5、设代数系统,其中A={a,b,c}, 则幺元就是 ;就是否有幂等 性 ;就是否有对称性 。 6、4阶群必就是 群或 群。 7、下面偏序格就是分配格的就是 。 8、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件就是 。 * a b c a b c a b c b b c c c b

二、选择 1、在下述公式中就是重言式为( ) A.)()(Q P Q P ∨→∧; B.))()(()(P Q Q P Q P →∧→??; C.Q Q P ∧→?)(; D.)(Q P P ∨→。 2、命题公式 )()(P Q Q P ∨?→→? 中极小项的个数为( ),成真赋值的个数为 ( )。 A.0; B.1; C.2; D.3 。 3、设}}2,1{},1{,{Φ=S ,则 S 2 有( )个元素。 A.3; B.6; C.7; D.8 。 4、设} 3 ,2 ,1 {=S ,定义S S ?上的等价关系 },,,, | ,,,{c b d a S S d c S S b a d c b a R +=+?>∈∈<><><<=则由 R 产 生的S S ?上一个划分共有( )个分块。 A.4; B.5; C.6; D.9 。 5、设} 3 ,2 ,1 {=S ,S 上关系R 的关系图为 则R 具有( )性质。 A.自反性、对称性、传递性; B.反自反性、反对称性; C.反自反性、反对称性、传递性; D.自反性 。 6、设 ο,+ 为普通加法与乘法,则( )>+<ο,,S 就是域。 A.},,3|{Q b a b a x x S ∈+== B.},,2|{Z b a n x x S ∈== C.},12|{Z n n x x S ∈+== D.}0|{≥∧∈=x Z x x S = N 。 7、下面偏序集( )能构成格。

《离散数学》题库及答案

《离散数学》题库与答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( A ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)可用蕴含等值式证明 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式 4、公式x((A(x)B(y,x))z C(y,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z(考察定义在公式x A和x A中,称x为指导变元,A为量词的辖域。在x A和x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。于是A(x)、B(y,x)和z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元) 5、判断下列语句是不是命题。若是,给出命题的真值。( )

(1)北京是中华人民共和国的首都。(2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗?(4) 若7+8>18,则三角形有4条边。 (5) 前进!(6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是(命题必须满足是陈述句,不能是疑问句或者祈使句。) 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死(命题的否定就是把命题前提中的量词“换成存在,换成”,然后将命题的结论否定,“且变或或变且”) 7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校(2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P ?(注意“只有……才……”和“除非……就……”两者都是一个 Q→ 形式的)(2)Q P→ ? P? ?(4)Q P? →(3)Q 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x存在整数y满足x+y=0 (2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1)F (反证法:假若存在,则(x- 1)*y=0 对所有的x都成立,显然这个与前提条件相矛盾) (2)F (同理)(3)F (同理)(4)T(对任一整数x存在整数y满足条件y=2x 很明显是正确的)

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

大学本科高等数学《离散数学》试题及答案

本科高等数学离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B=_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________,_____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

吉林大学离散数学课后习题答案

第二章命题逻辑 §2.2 主要解题方法 2.2.1 证明命题公式恒真或恒假 主要有如下方法: 方法一.真值表方法。即列出公式的真值表,若表中对应公式所在列的每一取值全为1,这说明该公式在它的所有解释下都是真,因此是恒真的;若表中对应公式所在列的每

一取值全为0,这说明该公式在它的所有解释下都为假,因此是恒假的。 真值表法比较烦琐,但只要认真仔细,不会出错。 例2.2.1 说明G= (P∧Q→R)∧(P→Q)→(P→R)是恒真、恒假还是可满足。 解:该公式的真值表如下: 表2.2.1 由于表2.2.1中对应公式G所在列的每一取值全为1,故

G恒真。 方法二.以基本等价式为基础,通过反复对一个公式的等价代换,使之最后转化为一个恒真式或恒假式,从而实现公式恒真或恒假的证明。 例2.2.2 说明G= ((P→R) ∨? R)→ (? (Q→P) ∧ P)是恒真、恒假还是可满足。 解:由(P→R) ∨? R=?P∨ R∨? R=1,以及 ? (Q→P) ∧ P= ?(?Q∨ P)∧ P = Q∧? P∧ P=0 知,((P→R) ∨? R)→ (? (Q→P) ∧ P)=0,故G恒假。 方法三.设命题公式G含n个原子,若求得G的主析取范式包含所有2n个极小项,则G是恒真的;若求得G的主合取范式包含所有2n个极大项,则G是恒假的。 方法四. 对任给要判定的命题公式G,设其中有原子P1,P2,…,P n,令P1取1值,求G的真值,或为1,或为0,或成为新公式G1且其中只有原子P2,…,P n,再令P1取0值,求G真值,如此继续,到最终只含0或1为止,若最终结果全为1,则公式G恒真,若最终结果全为0,则公式G

离散数学期末试卷及答案

一.判断题(共10小题,每题1分,共10分) 在各题末尾的括号内画 表示正确,画 表示错误: 1.设p、q为任意命题公式,则(p∧q)∨p ? p ( ) 2.?x(F(y)→G(x)) ? F(y)→?xG(x)。( ) 3.初级回路一定是简单回路。( ) 4.自然映射是双射。( ) 5.对于给定的集合及其上的二元运算,可逆元素的逆元是唯一的。( ) 6.群的运算是可交换的。( ) 7.自然数集关于数的加法和乘法构成环。( ) 8.若无向连通图G中有桥,则G的点连通度和边连通度皆为1。( ) 9.设A={a,b,c},则A上的关系R={,}是传递的。( ) 10.设A、B、C为任意集合,则A?(B?C)=(A?B)?C。( ) 二、填空题(共10题,每题3分,共30分) 11.设p:天气热。q:他去游泳。则命题“只有天气热,他才去游泳”可符号 化为。 12.设M(x):x是人。S(x):x到过月球。则命题“有人到过月球”可符号 化为。 13.p?q的主合取范式是。 14.完全二部图K r,s(r < s)的边连通度等于。 15.设A={a,b},,则A上共有个不同的偏序关系。 16.模6加群中,4是阶元。 17.设A={1,2,3,4,5}上的关系R={<1,3>,<1,5>,<2,5>,<3,3>,<4,5>},则R的传递闭包t(R) = 。. 18.已知有向图D的度数列为(2,3,2,3),出度列为(1,2,1,1),则有向图D的入度

列为。 19.n阶无向简单连通图G的生成树有条边。 20.7阶圈的点色数是。 三、运算题(共5小题,每小题8分,共40分) 21.求?xF(x)→?yG(x,y)的前束范式。 22.已知无向图G有11条边,2度和3度顶点各两个,其余为4度顶点,求G 的顶点数。 23.设A={a,b,c,d,e,f},R=I A?{,},则R是A上的等价关系。求等价类[a]R、[c]R及商集A/R。 24.求图示带权图中的最小生成树,并计算最小生成树的权。 25.设R*为正实数集,代数系统< R*,+>、< R*,·>、< R*,/>中的运算依次为普通加法、乘法和除法运算。试确定这三个代数系统是否为群?是群者,求其单位元及每个元素的逆元。 四、证明题(共3小题,共20分) 26 (8分)在自然推理系统P中构造下述推理的证明: 前题:p→(q∨r),?s→?q,p∧?s 结论:r 27 (6分)设是群,H={a| a∈G∧?g∈G,a*g=g*a},则是G的子群 28.(6分)设G是n(≥3)阶m条边、r个面的极大平面图,则r=2n-4。

中国石油大学大学《离散数学》期末复习题及答案

《离散数学》期末复习题 一、填空题(每空2分,共20分) 1、集合A上的偏序关系的三个性质是、 和。 2、一个集合的幂集是指。 3、集合A={b,c},B={a,b,c,d,e},则A?B= 。 4、集合A={1,2,3,4},B={1,3,5,7,9},则A?B= 。 5、若A是2元集合, 则2A有个元素。 6、集合A={1,2,3},A上的二元运算定义为:a* b = a和b两者的最大值,则 2*3= 。 7、设A={a, b,c,d }, 则∣A∣= 。 8、对实数的普通加法和乘法,是加法的幂等元, 是乘法的幂等元。 9、设a,b,c是阿贝尔群的元素,则-(a+b+c)= 。 10、一个图的哈密尔顿路是。 11、不能再分解的命题称为,至少包含一个联结词的命题称 为。 12、命题是。 13、如果p表示王强是一名大学生,则┐p表示。 14、与一个个体相关联的谓词叫做。 15、量词分两种:和。 16、设A、B为集合,如果集合A的元素都是集合B的元素,则称A是B 的。 17、集合上的三种特殊元是、 及。 18、设A={a, b},则ρ(A) 的四个元素分别 是:,,,。

19、代数系统是指由及其上的或 组成的系统。 20、设是代数系统,其中是*1,*2二元运算符,如果*1,*2都满 足、,并且*1和*2满足,则称是格。 21、集合A={a,b,c,d},B={b },则A \ B= 。 22、设A={1, 2}, 则∣A∣= 。 23、在有向图中,结点v的出度deg+(v)表示,入度deg-(v)表示 以。 24、一个图的欧拉回路是。 25、不含回路的连通图是。 26、不与任何结点相邻接的结点称为。 27、推理理论中的四个推理规则 是、、、。 二、判断题(每题2分,共20分) 1、空集是唯一的。 2、对任意的集合A,A包含A。 3、恒等关系不是对称的,也不是反对称的。 4、集合{1,2,3,3}和{1,2,2,3}是同一集合。 5、图G中,与顶点v关联的边数称为点v的度数,记作deg(v)。 6、在实数集上,普通加法和普通乘法不是可结合运算。 7、对于任何一命题公式,都存在与其等价的析取范式和合取范式。 8、设(A,*)是代数系统,a∈A,如果a*a=a,则称a为(A,*)的等幂元。 9、设f:A→B,g:B→C。若f,g都是双射,则gf不是双射。 10、无向图的邻接矩阵是对称阵。 11、一个集合不可以是另一个集合的元素。 12、映射也可以称为函数,是一种特殊的二元关系。 13、群中每个元素的逆元都不是惟一的。

离散数学试题及答案(1)

离散数学试题及答案 一、填空题 1设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; ρ(A) - ρ(B)=__________________________ . 2. 设有限集合A, |A| = n, 则|ρ(A×A)| = __________________________. 3.设集合A = {a, b}, B = {1, 2}, 则从A到B的所有映射是__________________________ _____________, 其中双射的是__________________________. 4. 已知命题公式G=?(P→Q)∧R,则G的主析取范式是_______________________________ __________________________________________________________. 5.设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________,分枝点数为________________. 6设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A?B=_________________________; A?B =_________________________;A-B=_____________________ . 7. 设R是集合A上的等价关系,则R所具有的关系的三个特性是______________________, ________________________, _______________________________. 8. 设命题公式G=?(P→(Q∧R)),则使公式G为真的解释有__________________________, _____________________________, __________________________. 9. 设集合A={1,2,3,4}, A上的关系R1 = {(1,4),(2,3),(3,2)}, R1 = {(2,1),(3,2),(4,3)}, 则 R1?R2 = ________________________,R2?R1 =____________________________, R12 =________________________. 10. 设有限集A, B,|A| = m, |B| = n, 则| |ρ(A?B)| = _____________________________. 11设A,B,R是三个集合,其中R是实数集,A = {x | -1≤x≤1, x∈R}, B = {x | 0≤x < 2, x∈R},则A-B = __________________________ , B-A = __________________________ , A∩B = __________________________ , . 13.设集合A={2, 3, 4, 5, 6},R是A上的整除,则R以集合形式(列举法)记为___________ _______________________________________________________. 14. 设一阶逻辑公式G = ?xP(x)→?xQ(x),则G的前束范式是__________________________ _____. 15.设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。

离散数学试卷及答案

填空10% (每小题 2 分) 1、若P,Q,为二命题,P Q 真值为0 当且仅当。 2、命题“对于任意给定的正实数,都存在比它大的实数” 令F(x):x 为实数,L(x, y) : x y 则命题的逻辑谓词公式为。 3、谓词合式公式xP(x) xQ(x)的前束范式为。 4、将量词辖域中出现的和指导变元交换为另一变元符号,公式其余的部分不变,这种方法称为 换名规则。 5、设x 是谓词合式公式A的一个客体变元,A的论域为D,A(x)关于y 是自由的,则被称为存 在量词消去规则,记为ES。 选择25% (每小题分) 1、下列语句是命题的有()。 A、明年中秋节的晚上是晴天; C、xy 0 当且仅当x 和y 都大于0; D 、我正在说谎。 2、下列各命题中真值为真的命题有()。 A、2+2=4当且仅当3是奇数; B、2+2=4当且仅当 3 不是奇数; C、2+2≠4 当且仅当3是奇数; D、2+2≠4当且仅当 3 不是奇数; 3、下列符号串是合式公式的有() A、P Q ; B、P P Q; C、( P Q) (P Q); D、(P Q) 。 4、下列等价式成立的有( )。 A、P QQ P ; B、P(P R) R; C、P (P Q) Q; D 、P (Q R) (P Q) R。 5、若A1,A2 A n和B为 wff ,且A1 A2 A n B 则 ( )。 A、称A1 A2 A n 为 B 的前 件; B 、称 B 为A1,A2 A n 的有效结论

C 、 x(M (x) Mortal (x)) ; D 、 x(M(x) Mortal (x)) 8、公式 A x(P(x) Q(x))的解释 I 为:个体域 D={2} ,P(x) :x>3, Q(x) :x=4则 A 的 真 值为( ) 。 A 、 1; B 、 0; C 、 可满足式; D 、无法判定。 9、 下列等价关系正确的是( )。 A 、 x(P(x) Q(x)) xP(x) xQ(x); B 、 x(P(x) Q(x)) xP(x) xQ(x); C 、 x(P(x) Q) xP(x) Q ; D 、 x(P(x) Q) xP(x) Q 。 10 、 下列推理步骤错在( )。 ① x(F(x) G(x)) P ② F(y) G(y) US ① ③ xF(x) P ④ F(y) ES ③ ⑤G(y) T ②④I ⑥ xG(x) EG ⑤ A 、②; B 、④; C 、⑤; D 、⑥ 逻辑判断 30% 1、 用等值演算法和真值表法判断公式 A ((P Q) (Q P)) (P Q) 的类型。 C 、当且仅当 A 1 A 2 A n D 、当且仅当 A 1 A 2 A n B F 。 6、 A ,B 为二合式公式,且 B ,则( )。 7、 A 、 A C 、 A B 为重言式; B 、 B ; E 、 A B 为重言式。 人总是要死的”谓词公式表示为( )。 论域为全总个体域) M (x ) : x 是人; Mortal(x) x 是要死的。 A 、 M (x) Mortal (x) ; B M (x) Mortal (x)

山东大学离散数学题库及答案

《离散数学》题库答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q →P (2)?Q=>P →Q (3)P=>P →Q (4)?P ∧(P ∨Q)=>?P 答:(1),(4) 2、下列公式中哪些是永真式?( ) (1)(┐P ∧Q)→(Q →?R) (2)P →(Q →Q) (3)(P ∧Q)→P (4)P →(P ∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P ∧Q (2) P ∧Q=>P (3) P ∧Q=>P ∨Q (4)P ∧(P →Q)=>Q (5) ?(P →Q)=>P (6) ?P ∧(P ∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式 x((A(x) B(y ,x)) z C(y ,z))D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1) 北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1) 是,T (2) 是,F (3) 不是 (4) 是,T (5) 不是 (6) 不是 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死 7、设P :我生病,Q :我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校 答:(1) P Q →? (2) Q P ?→ (3) Q P ?? (4)Q P →? 8、设个体域为整数集,则下列公式的意义是( )。 (1) x y(x+y=0) (2) y x(x+y=0) 答:(1)对任一整数x 存在整数 y 满足x+y=0(2)存在整数y 对任一整数x 满足x+y=0 9、设全体域D 是正整数集合,确定下列命题的真值: (1) x y (xy=y) ( ) (2) x y(x+y=y) ( ) (3) x y(x+y=x) ( ) (4) x y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x 是奇数,Q(x):x 是偶数,谓词公式 x(P(x)Q(x))在哪个个体域中为真?( ) (1) 自然数 (2) 实数 (3) 复数 (4) (1)--(3)均成立 答:(1) 11、命题“2是偶数或-3是负数”的否定是( )。 答:2不是偶数且-3不是负数。 12、永真式的否定是( ) (1) 永真式 (2) 永假式 (3) 可满足式 (4) (1)--(3)均有可能 答:(2) 13、公式(?P ∧Q)∨(?P ∧?Q)化简为( ),公式 Q →(P ∨(P ∧Q))可化简为( )。 答:?P ,Q →P

离散数学章练习题及答案

离散数学练习题 第一章 一.填空 1.公式) ∨ ? ∧的成真赋值为 01;10 ? p∧ ( (q ) p q 2.设p, r为真命题,q, s 为假命题,则复合命题) ? ? →的真值为 0 p→ ( q (s ) r 3.公式) ∨ ? p∧ q ?与共同的成真赋值为 01;10 ? ∧ p ( ) ) (q q p ( 4.设A为任意的公式,B为重言式,则B A∨的类型为重言式 5.设p, q均为命题,在不能同时为真条件下,p与q的排斥也可以写成p与q的相容或。 二.将下列命题符合化 1. 7不是无理数是不对的。 解:) ? ?,其中p: 7是无理数;或p,其中p: 7是无理数。 (p 2.小刘既不怕吃苦,又很爱钻研。 解:其中 ?p: 小刘怕吃苦,q:小刘很爱钻研 p∧ ,q 3.只有不怕困难,才能战胜困难。 解:p →,其中p: 怕困难,q: 战胜困难 q? 或q →,其中p: 怕困难, q: 战胜困难 p? 4.只要别人有困难,老王就帮助别人,除非困难解决了。 解:) → ?,其中p: 别人有困难,q:老王帮助别人,r: 困难解决了 p (q r→ 或:q ?) (,其中p:别人有困难,q: 老王帮助别人,r: 困难解决了r→ ∧ p 5.整数n是整数当且仅当n能被2整除。 解:q p?,其中p: 整数n是偶数,q: 整数n能被2整除 三、求复合命题的真值 P:2能整除5, q:旧金山是美国的首都, r:在中国一年分四季 1. )) p∧ → q ∨ r → ∧ ((q r ( ) ( ) p 2.r ?) → (( → (( ∨ ) ( )) p r p ∨ p q ? ∧ ? q∧ 解:p, q 为假命题,r为真命题 1.)) p∧ → q ∨的真值为0 r → ∧ ( ) ( ) ((q p r

离散数学试卷及答案(1)

一、填空 20% (每小题2分) 1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =?B A 。 2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。 3.设P ,Q 的真值为0,R ,S 的真值为1,则 )()))(((S R P R Q P ?∨→?∧→∨?的真值= 。 4.公式P R S R P ?∨∧∨∧)()(的主合取范式为 。 5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ?→? 在I 下真值为 。 6.设A={1,2,3,4},A 上关系图为 则 R 2 = 。 7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为 则 R= 。

8.图的补图为 。 9.设A={a ,b ,c ,d} ,A 上二元运算如下: 那么代数系统的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。 10.下图所示的偏序集中,是格的为 。 二、选择 20% (每小题 2分) 1、下列是真命题的有( ) A . }}{{}{a a ? ; B .}}{,{}}{{ΦΦ∈Φ; C . }},{{ΦΦ∈Φ; D . }}{{}{Φ∈Φ。 2、下列集合中相等的有( ) A .{4,3}Φ?; B .{Φ,3,4}; C .{4,Φ,3,3}; D . {3,4}。 3、设A={1,2,3},则A 上的二元关系有( )个。

A.23 ;B.32 ;C.332?;D.223?。 4、设R,S是集合A上的关系,则下列说法正确的是() R 是自反的; A.若R,S 是自反的,则S R 是反自反的; B.若R,S 是反自反的,则S R 是对称的; C.若R,S 是对称的,则S R 是传递的。 D.若R,S 是传递的,则S 5、设A={1,2,3,4},P(A)(A的幂集)上规定二元系如下 t s p R= t s ∈ =则P(A)/ R=() < > ∧ A ) (| || |} ( , {t , | s A.A ;B.P(A) ;C.{{{1}},{{1,2}},{{1,2,3}},{{1,2,3,4}}};D.{{Φ},{2},{2,3},{{2,3,4}},{A}} 6、设A={Φ,{1},{1,3},{1,2,3}}则A上包含关系“?”的哈斯图为() 7、下列函数是双射的为() A.f : I→E , f (x) = 2x ;B.f : N→N?N, f (n) = ; C.f : R→I , f (x) = [x] ;D.f :I→N, f (x) = | x | 。 (注:I—整数集,E—偶数集,N—自然数集,R—实数集) 8、图中从v1到v3长度为3 的通路有()条。 A.0;B.1;C.2;D.3。 9、下图中既不是Eular图,也不是Hamilton图的图是()

文本预览
相关文档 最新文档