当前位置:文档之家› 机械能守恒定律及其应用(含答案)

机械能守恒定律及其应用(含答案)

机械能守恒定律及其应用(含答案)
机械能守恒定律及其应用(含答案)

专题机械能守恒定律及其应用

【考情分析】

1.掌握重力势能、弹性势能的概念,并能计算。

2.掌握机械能守恒的条件,会判断物体的机械能是否守恒。

3.掌握机械能守恒定律的三种表达形式,理解其物理意义,并能熟练应用。

【重点知识梳理】

知识点一重力做功与重力势能

1.重力做功的特点

(1)重力做功与路径无关,只与初末位置的高度差有关。

(2)重力做功不引起物体机械能的变化。

2.重力势能

(1)公式:E p=mgh。

(2)特性:

①标矢性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同。

②系统性:重力势能是物体和地球所组成的“系统”共有的。

③相对性:重力势能的大小与参考平面的选取有关。重力势能的变化是绝对的,与参考平面的选取无关。

3.重力做功与重力势能变化的关系

(1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。

(2)定量关系:重力对物体做的功等于物体重力势能的减少量。即W G=E p1-E p2=-ΔE p。

知识点二弹性势能

1.定义:物体由于发生弹性形变而具有的能.

2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加,即W =-ΔE P.

知识点三机械能守恒定律及其应用

1.机械能:动能和势能统称为机械能,其中势能包括重力势能和弹性势能.

1

2.机械能守恒定律

(1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变.

(2)守恒条件:只有重力或系统内弹力做功.

(3)常用的三种表达式:

①守恒式:E1=E2或E k1+E P1=E k2+E P2.(E1、E2分别表示系统初末状态时的总机械能)

②转化式:ΔE k=-ΔE P或ΔE k增=ΔE P减.(表示系统势能的减少量等于动能的增加量)

③转移式:ΔE A=-ΔE B或ΔE A增=ΔE B减.(表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能)

【典型题分析】

高频考点一机械能守恒的理解与判断

【例1】(2019·浙江选考)奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是( )

A.加速助跑过程中,运动员的动能增加

B.起跳上升过程中,杆的弹性势能一直增加

C.起跳上升过程中,运动员的重力势能增加

D.越过横杆后下落过程中,运动员的重力势能减少动能增加

【答案】B

【解析】加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确。

2

【方法技巧】

1.利用机械能的定义判断(直接判断):分析动能和势能的和是否变化.

2.用做功判断:若物体或系统只有重力(或弹簧的弹力)做功,或有其他力做功,但其他力做功的代数和为零,则机械能守恒.

3.用能量转化来判断:若物体系统中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系统机械能守恒.

【变式探究】(2020·湖北黄冈模拟)如图所示,一轻弹簧一端固定在O点,另一端系一小球,将小球从与悬点O在同一水平面且使弹簧保持原长的A点无初速度释放,让小球自由摆下。不计空气阻力。在小球由A点摆向最低点B的过程中,下列说法正确的是()

A.小球的机械能守恒

B.小球的机械能减少

C.小球的重力势能与弹簧的弹性势能之和不变

D.小球和弹簧组成的系统机械能守恒

【答案】BD

【解析】小球由A点下摆到B点的过程中,弹簧被拉长,弹簧的弹力对小球做了负功,所以小球的机械能减少,故选项A错误,B正确;在此过程中,由于有重力和弹簧的弹力做功,所以小球与弹簧组成的系统机械能守恒,即小球减少的重力势能等于小球获得的动能与弹簧增加的弹性势能之和,故选项C错误,D正确。

高频考点二单物体的机械能守恒

【例2】(2017·全国卷Ⅱ·19)如图,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.一小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为(重力加速度大小为g)()

3

4

A .v 2

16g

B .v 2

8g

C .v 2

4g

D .v 22g

【答案】B

【解析】设小物块的质量为m ,滑到轨道上端时的速度为v 1.小物块上滑过程中,机械能守恒,有1

2mv 2

=12mv 21

+2mgR

小物块从轨道上端水平飞出,做平拋运动,设水平位移为x

,下落时间为t

,有 2R =12

gt 2

x =v 1t ③ 联立①②③式整理得

x 2=(

v 22g )2-(4R -v 22g

)2 可得x 有最大值v 22g ,对应的轨道半径R =v 2

8g

.

【方法技巧】求解单个物体机械能守恒问题的基本思路 1.选取研究对象——物体。

2.根据研究对象所经历的物理过程,进行受力、做功分析,判断机械能是否守恒。

3.恰当地选取参考平面,确定研究对象在过程的初、末状态时的机械能。

4.选取方便的机械能守恒定律的方程形式E k1+E p1=E k2+E p2、ΔE k =-ΔE p 进进进进进

【变式探究】(2020·宁夏石嘴山三中模拟)如图所示,P 是水平面上的固定圆弧轨道,从高台边B 点以速度v 0水平飞出质量为m 的小球,恰能从左端A 点沿圆弧切线方向进入。O 是圆弧的圆心,θ是OA 与竖直方向的夹角。已知m =0.5 kg ,v 0=3 m/s ,θ=53°,圆弧轨道半径R =0.5 m ,g 取10 m/s 2,不计空气阻力和所有摩擦,求:

5

(1)A 、B 两点的高度差;

(2)小球能否到达最高点C ?如能到达,小球对C 点的压力大小为多少?

【解析】(1)小球从B 到A 做平抛运动,到达A 点时,速度与水平方向的夹角为θ,则有v A =v 0

cos θ=5 m/s

根据机械能守恒定律,有mgh =12mv 2A -12mv 2

解得A 、B 两点的高度差h =0.8 m 。

(2)假设小球能到达C 点,由机械能守恒定律得 12mv 2C +mgR (1+cos θ)=1

2mv 2A 代入数据解得v C =3 m/s 小球通过C 点的最小速度为v , 则mg =m v 2

R ,v =gR = 5 m/s

因为v C >v ,所以小球能到达最高点C 在C 点,由牛顿第二定律得mg +F =m v 2C

R

代入数据解得F =4 N

由牛顿第三定律知,小球对C 点的压力大小为4 N 。 高频考点三

多物体机械能守恒

【例3】(2020·山东泰安二模)如图所示,可视为质点的小球1、2由不可伸长的细绳相连,小球1悬挂在定滑轮O 的下方,小球2在半径为R 的半球形固定容器内,定滑轮O 与容器的边缘D 及球心C 在同一水平线上。系统静止时,小球1在定滑轮正下方R 处的A 点,小球2位于B 点,BD 间的细绳与水平方向的夹角θ=60°。已知小球1的质量为m ,重力加速度为g ,不计一切摩擦,忽略滑轮的质量。(结果用根号表示)

(1)试求小球2的质量;

6

(2)现将小球2置于D 处由静止释放(小球1未触及地面),求小球1到达A 点时的动能;

(3)在第(2)问中,小球2经过B 点时,突然剪断细绳,求小球2经过容器最低点时对容器的压力。 【解析】(1)设系统静止时细绳中的拉力大小为T 。小球受到容器的支持力F B 方向沿BC 。由几何关系知△DBC 为正三角形,所以

∠DBC =θ

对小球1、小球2,根据共点力的平衡条件知 T =mg ② T cos θ=F B cos θ ③ T sin θ+F B sin θ=m 2g ④ 解得:m 2=3m 。

⑤ (2)设经过题中图示位置时小球1的速度为v 1,小球2的速度为v 2。v 1沿绳竖直向上,v 2沿圆弧切线斜向下。

由几何关系知,v 2与DB 延长线的夹角为90°-θ ⑥

由运动关系可知,v 1与v 2应满足 v 2sin θ=v 1

⑦ 由几何关系知,BD =R ⑧ 根据机械能守恒定律得 m 2gR sin θ-mgR =12mv 21+12m 2v 2

2 ⑨ 此时小球1的动能E k =12mv 21

⑩ 解得E k =3mgR

2(3+43)

=43-326mgR

? ? ??

??v 22=4gR 43+3,v

21=3gR 43+3。 (3)细绳剪断后,小球2以v 2为初速度,从B 点沿圆弧运动到最低点,设经过最低点的速度为v 3, 根据机械能守恒定律,得

7

12m 2v 22+m 2g (R -R sin θ)=12m 2v 23

?

设小球2经过容器最低点时受到的支持力为N ,根据牛顿第二定律得N -m 2g =m 2v 23R

?

解得N =353-23

13

mg

?

由牛顿第三定律知,小球2对容器的压力大小也为 353-23

13

mg ,方向向下。 ? 【答案】(1)3m (2)43-326mgR (3)353-23

13mg ,方向向下

【方法技巧】解决多物体机械能守恒问题的三点注意

1.对多个物体组成的系统,一般用“转化法”或“转移法”来判断系统的机械能是否守恒。

2.注意寻找用绳或杆相连接的物体间的速度关系和位移关系。

3.列机械能守恒方程时,一般选用ΔE k =-ΔE p 或ΔE A =-ΔE B 的形式。

【变式探究】 (2020·河北保定一中模拟)如图所示,在倾角为30°的光滑斜面上,一劲度系数为k =200 N/m 的轻质弹簧一端连接固定挡板C 上,另一端连接一质量为m =4 kg 的物体A ,一轻细绳通过定滑轮,一端系在物体A 上,另一端与质量也为m 的物体B 相连,细绳与斜面平行,斜面足够长.用手托住物体B 使绳子刚好没有拉力,然后由静止释放.求:

(1)弹簧恢复原长时细绳上的拉力;

(2)物体A 沿斜面向上运动多远时获得最大速度; (3)物体A 的最大速度的大小. 【解析】 (1)恢复原长时 对B 有mg -F T =ma 对A 有F T -mg sin 30°=ma 解得F T =30 N.

(2)初态弹簧压缩x 1=mg sin 30°

k =10 cm

当A

速度最大时mg =kx 2+mg sin 30°

8

弹簧伸长x 2=mg -mg sin 30°

k =10 cm

所以A 沿斜面上升x 1+x 2=20 cm. (3)因x 1=x 2,故弹性势能改变量ΔE P =0, 由系统机械能守恒

mg (x 1+x 2)-mg (x 1+x 2)sin 30°=1

2×2m ·v 2

得v =g ·

m

2k

=1 m/s. 【答案】 (1)30 N (2)20 cm (3)1 m/s 高频考点四 机械能守恒的应用

【例4】(2020·新课标Ⅰ)一物块在高3.0 m 、长5.0 m 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离s 的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取10 m/s 2。则( )

A. 物块下滑过程中机械能不守恒

B. 物块与斜面间的动摩擦因数为0.5

C. 物块下滑时加速度的大小为6.0 m/s 2

D.当物块下滑2.0 m 时机械能损失了12 J 【答案】AB

【解析】下滑5m 的过程中,重力势能减少30J ,动能增加10J ,减小的重力势能并不等与增加的动能,所以机械能不守恒,A 正确;斜面高3m 、长5m ,则斜面倾角为θ=37°。令斜面底端为零势面,则物块在斜面顶端时的重力势能mgh =30J ,可得质量m =

1kg 。下滑5m 过程中,由功能原理,机械能的减少量等于

9

克服摩擦力做的功,μmg ·cos θ·s =20J ,求得μ=0.5,B 正确;由牛顿第二定律mg sin θ-μmg cos θ=ma ,求得a =2m/s 2,C 错误;物块下滑2.0m 时,重力势能减少12J ,动能增加4J ,所以机械能损失了8J ,D 选项错误。故选AB 。

【举一反三】(2020·广东广雅中学模拟)如图所示,AB 为光滑的水平面,BC 是倾角为α的足够长的光滑斜面,斜面体固定不动。AB 、BC 间用一小段光滑圆弧轨道相连。一条长为L 的均匀柔软链条开始时静置在ABC 面上,其一端D 至B 的距离为L -a 。现自由释放链条,则:

(1)链条下滑过程中,系统的机械能是否守恒?简述理由; (2)链条的D 端滑到B 点时,链条的速率为多大?

【解析】(1)链条在下滑过程中机械能守恒,因为斜面BC 和水平面AB 均光滑,链条下滑时只有重力做功,符合机械能守恒的条件。

(2)设链条质量为m ,可以认为始、末状态的重力势能变化是由L -a 段下降引起的,如图所示。

该部分高度减少量

h =????

a +L -a 2sin α=L +a 2sin α

该部分的质量为m ′=m

L (L -a )

由机械能守恒定律可得m ′gh =1

2mv 2

解得v =

g L

(L 2

-a 2)sin α。 【答案】(1)机械能守恒,理由见解析 (2)

g L

(L 2-a 2

)sin α 【变式探究】(2019·高考全国卷Ⅱ)从地面竖直向上抛出一物体,其机械能E 总等于动能E k 与重力势能E p 之和.取地面为重力势能零点,该物体的E 总和E

p

随它离开地面的高度h 的变化如图所示.重力加速度

10

取10 m/s 2.由图中数据可得( )

A .物体的质量为2 kg

B .h =0时,物体的速率为20 m/s

C .h =2 m 时,物体的动能E k =40 J

D .从地面至h =4 m ,物体的动能减少100 J 【答案】AD

【解析】根据题给图象可知h =4 m 时物体的重力势能mgh =80 J ,解得物体质量m =2 kg ,抛出时物体的动能为E k =100 J ,由动能公式E k =1

2mv 2,可知h =0时物体的速率为v =10 m/s ,选项A 正确,B 错误;

由功能关系可知fh =|ΔE |=20 J ,解得物体上升过程中所受空气阻力f =5 N ,从物体开始抛出至上升到h =2 m 的过程中,由动能定理有-mgh -fh =E k -100 J ,解得E k =50 J ,选项C 错误;由题给图象可知,物体上升到h =4 m 时,机械能为80 J ,重力势能为80 J ,动能为零,即物体从地面上升到h =4 m ,物体动能减少100 J ,选项D 正确。

重力势能和机械能守恒定律的典型例题

“重力势能和机械能守恒定律”的典型例题 【例1】如图所示,桌面距地面0.8m,一物 体质量为2kg,放在距桌面0.4m的支架上. (1)以地面为零势能位置,计算物体具有的 势能,并计算物体由支架下落到桌面过程中, 势能减少多少? (2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少? 【分析】根据物体相对零势能位置的高度,直接应用公式计算即得. 【解】(1)以地面为零势能位置,物体的高 度h1=1.2m,因而物体的重力势能: Ep1=mgh1=2×9.8×1.2J=23.52J 物体落至桌面时重力势能: E p2=mgh2=2×9.8×0.8J=15.68J 物体重力势能的减少量: △E p=E p1-Ep2=23.52J-15.68J=7.84J

而物体的重力势能: 物体落至桌面时,重力势能的减少量 【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值 与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功: 【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气 阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2) 【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能. 【解】物体下落至2s末时的速度为: 2s内物体增加的动能: 2s内下落的高度为:

第4章 功和能 机械能守恒定律习题

第4章 功和能 机械能守恒定律习题 4-5 如图所示,A 球的质量为m ,以速度 v 飞行,与一静止的球B 碰撞后,A 球 的速度变为1 v ,其方向与 v 方向成90°角。B 球的质量为5m ,它被碰撞后以速 度2 v 飞行,2 v 的方向与 v 间夹角为arcsin(35)θ=。求: (1)两球相碰后速度1 v 、2 v 的大小; (2)碰撞前后两小球动能的变化。 解:(1)由动量守恒定律 12A A B m v m v m v =+ 即 12 12255c o s 5s i n m v i m v j m v m v j m v i m v j θθ=-+=-++ 于是得 2125cos 5sin mv mv mv mv θθ=??=? 21215cos 4335sin 5454v v v v v v v θθ= ====??= (2)A 球动能的变化 222 221111317()2224232 kA E mv mv m v mv mv ?=-=-=- B 球动能的变化 2222111505()22432 kB B E m v m v mv ?=-=?=

碰撞过程动能的变化 2222 12111222232 k B E mv m v mv mv ?=+-=- 或如图所示,A 球的质量为m ,以速度u 飞行,与一静止的小球B 碰撞后,A 球的速度变为1v 其方向与u 方向成090,B 球的质量为5m ,它被撞后以速度2v 飞行,2v 的方向与u 成θ (5 3arcsin =θ)角。求: (1)求两小球相撞后速度12υυ、的大小; (2)求碰撞前后两小球动能的变化。 解 取A 球和B 球为一系统,其碰撞过程中无外力作用,由动量守恒定律得 水平: 25cos mu m υθ= (1) 垂直: 2105sin m m υθυ=- (2) 联解(1)、(2)式,可得两小球相撞后速度大小分别为 134 u υ= 214u υ= 碰撞前后两小球动能的变化为 22232 7214321mu mu u m E KA -=-??? ??=? 22 32504521mu u m E KB =-?? ? ????=? 4- 6在半径为R 的光滑球面的顶点处,一物体由静止开始下滑,则物体与顶点的高度差h 为多大时,开始脱离球面? 解:根据牛顿第二定律 2 2c o s c o s v m g N m R v N m g m R θθ-==- 物体脱离球面的条件是N=0,即 2 c o s 0v m g m R θ-= 由能量守恒 图

机械能守恒定律及其应用

机械能守恒定律及其应用·典型例题精析 链,则当铁链刚挂直时速度多大? [思路点拨] 以铁链和地球组成的系统为对象,铁链仅受两个力:重力G和光滑水平桌面的支持力N,在铁链运动过程中,N与运动速度v垂直,N 不做功,只有重力G做功,因此系统机械能守恒.铁链释放前只有重力势能,但由于平放在桌面上与悬吊着两部分位置不同,计算重力势能时要分段计算.选铁链挂直时的下端点为重力势能的零标准,应用机械能守恒定律即可求解. [解题过程] 初始状态:平放在桌面上的部分铁链具有的重力势能

mv2,又有重力势能 根据机械能守恒定律有E1=E2.所以E p1+E p2=E k2+E p2,故 [小结] (1)应用机械能守恒定律解题的基本步骤由本题可见一斑.①根据题意,选取研究对象.②明确研究对象在运动过程中受力情况,并弄清各力做功情况,分析是否满足机械能守恒条件.③恰当地选取重力势能的零势能参考平面,确定研究对象在过程的始、末状态机械能转化情况.④应用机械能守恒定律列方程、求解. (2)本题也可从线性变力求平均力做功的角度,应用动能定理求解,也可应用F-h图线(示功图)揭示的功能关系求解,请同学们尽可发挥练习.

[例题2] 如图8-54所示,长l的细绳一端系质量m的小球,另一端固定于O点,细绳所能承受拉力的最大值是7mg.现将小球拉至水平并由静止释放,又知图中O′点有一小钉,为使小球可绕O′点做竖直面内的圆周运动.试求OO′的长度d与θ角的关系(设绳与小钉O′相互作用中无能量损失). [思路点拨] 本题所涉及问题层面较多.除涉及机械能守恒定律之外,还涉及圆周运动向心力公式.另外还应特别注意两个临界条件:①要保证小球能绕O′完成圆周运动,圆周半径就不得太长,即OO′不得太短;②还必须保证细绳不会被拉断,故圆周半径又不能太短,也就是OO′不能太长.本题的研究中应以两个特殊点即最高点D和最低点C入手,依上述两临界条件,按机械能守恒和圆运动向心力公式列方程求解. [解题过程] 设小球能绕O′点完成圆周运动,如图8-54所示.其最高点为D,最低点为C.对于D点,依向心力公式有 (1)

机械能守恒定律的理解与实际应用

机械能守恒定律的理解与实际应用 机械能守恒定律在动力学中是一条重要物理定律。它是功能转换的重要依据。同时也是物理学中的一种重要的解题方法。因此对于机械能守恒定律的掌握也尤为重要,对于机械能守恒定律的理解和应用我做了如下的总结,供大家参考。 首先我们先对机械能的概念做一下介绍,物体的机械能是指物体的动能和势能的总和。这是机械能的定义,在具体计算时,学生通常把不同状态下的动能和势能加在一起,这是概念不清。动能、势能和机械能都是状态量,同一物体不同状态下,这三个量是会变化的,所以要分别运算;同样即使是同一物体,状态不同,动能和势能是不能相加而等于物体的机械能。 机械能守恒定律的内容是:在只有重力或弹力做功的情况下,物体的动能和重力势能(或弹性势能)发生相互转化,机械能的总量保持不变。机械能守恒定律的公式: 机械能守恒定律能解决的问题(1)与物体位置变化有关的运动问题如:自由落体运动,抛体运动,物体在光滑斜面上的自由滑动等等。(2)求解动能、势能或只与物体速度和高度有关的问题。 每个物理定理和定律都会有它特定的应用条件,机械能守恒定律应用时也需要一定的条件:首先研究对象一般为一个物体(或一个系统即一个整体),同时这个物体只受重力(弹力);或者除重力(弹力)外其它的合力为零。 由于机械能守恒定律中涉及物体的两种状态和物体两种位置,初学者在应用时不容易掌握而且容易混淆。我们通过实例来具体分析一下: (1)自由落体过程物体机械能守恒。如图-1质量为m的物体,从高处自由下落。当它位于最高点(位置A时),高度是h1,速度v1=0.因此Ek1=0,Ep1=mgh1,物体的总机械能为:E1=Ek1+Ep1=mgh1 当物体下落到位置B时,它的高度是h2,这时它的速度 所以物体的总机械能为 (2)抛体运动过程中,物体的机械能守恒。无论物体做的是平抛、斜抛、竖直上抛或竖直上抛等等,只要是忽略空气阻力的抛体运动,由于物体在空中只受重力,只有位置的高低变化,所以只有重力在做功,物体在整个的运动过程中机械能不变,只有重力势能和动能之间进行相应的转化,但总的机械能保持不变。 例:一石子从离地面20m高处,以15m/s的速率水平抛出,则石子落地时的速率是多少?

机械能守恒定律

机械能守恒定律 一、教法建议 抛砖引玉 我们建议:本单元的数学采用下述的三个步骤顺序进行 第一步:通过演示实验使学生认识到机械能的转化与守恒是客观存在的。 演示的项目可以选用下列一些内容: ①将小球竖直上抛——让学生观察动能转化为重力势能的过程;当小球达到最高点后自由落下——让学生观察重力势能转化为动能的过程。 ②用细绳拴小球构成“单摆”,使单摆往复摆动——让学生观察摆球在竖直面内沿圆弧线摆动过程中重力势能与动能之间的交替转化。 ③旋动“麦克斯韦滚摆”——使学生观察“滚摆”的重力热能与动能之间的交替转化。在此过程中既有因滚摆重心上下变化的移动动能的变化,也有滚摆绕轴的转动动能的变化,可以开阔学生的眼界,提高学生的兴趣,但不必对其中的转动动能作定量讲述。(注:在很多中学的物理实验室中都有“麦克斯韦滚摆”这种数学仪器。如果没有,借一成品进行仿制也不很困难。) ④拨动“弹簧振子”——使学生观察弹性势能与动能之间的相互转化。不必对弹性势能作定量的讲述。 作这些演示实验的目的是为了使学生认识到:“机械能守恒定律”是在科学实验的基础上总结出来的,是客观存在的,并不是单纯依靠数理推导得出的。 第二步:在“功能原理”的基础上,推导出“机械能守恒定律”的数学表达形式,并说明此定律成立的条件。 在本章第二单元中,我们导出“功能原理“最简单的数学表达形式: W F =ΔE 在此基础上,我们就可以导出下面的“机械能守恒定律”的最简单的数学表达形式: 当W F =0时——定律的条件 则ΔE=0——定律的结论 这种表达形式虽然简单,但是不便于应用,因此我们可以再写出本章第二单元中导出的“功能原理”的展开形式: ?? ? ??+-??? ??+=-02022121mgh mv mgh mv fs Fs i i 将W F =Fs-fs 代入上式可得: ?? ? ??+-??? ??+=02022121mgh mv mgh mv W i i F 在此基础上,我们就可以导出“机械能守恒定律”的展开形式: 当W F =0时——定律的条件 则 02022 121mgh mv mgh mv t i +=+ (注:关于W F =0的物理意义,我们将在后面“指点迷津”中作专题说明。) 第三步:通过例题和习题,使学生更深入具体地理解定律的物理意义,并能正确灵活地用于解答有关的物理问题。 我们将在后面的“学海导航”中讲述少量的例题,并在“智能显示”中提供大量的习题。请同学们不要先看答案,而应独立思考,求解以后再进行核对,并从中总结出思维方法来。 指点迷津 1.W F =0的物理意义是什么?在W F 中包括什么?不包括什么? 首先说明:这个论题有些超过了课本中讲述的内容,但是对于物理基础较好的学生是很有益处的,可以提高他们的理解能力;对于物理基础较差的学生也可作尝试性阅读,若感觉困难,可以不学。 在本章第二单元的推导过程和专题论述中,同学们已经知道:“功能原理”中的W F 是不包含重力做功W G 的。因此W F =0的意义就有下列两种说法(注意:说法虽不同,但本质相同):

机械能守恒定律及其应用

机械能守恒定律及其应用 一、重力做功与重力势能 1.重力做功的特点 (1)重力做功与路径无关,只与始、末位置的高度差有关. (2)重力做功不引起物体机械能的变化. 2.重力做功与重力势能变化的关系 (1)定性关系:重力对物体做正功,重力势能就减小;重力对物体做负功,重力势能就增大. (2)定量关系:重力对物体做的功等于物体重力势能的减小量.即W G =-(E p2-E p1)=E p1-E p2=-ΔE p . (3)重力势能的变化量是绝对的,与参考面的选取无关. 3.弹性势能 (1)概念:物体由于发生弹性形变而具有的能. (2)大小:弹簧的弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大. (3)弹力做功与弹性势能变化的关系:类似于重力做功与重力势能变化的关系,用公式表示:W =-ΔE p . 二、机械能守恒定律及其应用 1.机械能:动能和势能统称为机械能,其中势能包括弹性势能和重力势能. 2.机械能守恒定律 (1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变. (2)表达式:mgh 1+12m v 12=mgh 2+1 2m v 22. 3.守恒条件:只有重力或弹簧的弹力做功. ■判一判 记一记 (1)克服重力做功,物体的重力势能一定增加.( ) (2)发生弹性形变的物体都具有弹性势能.( ) (3)弹簧弹力做正功时,弹性势能增加.( ) (4)物体速度增大时,其机械能可能在减小.( ) (5)物体所受合外力为零时,机械能一定守恒.( ) (6)物体受到摩擦力作用时,机械能一定要变化.( ) (7)物体只发生动能和重力势能的相互转化时,物体的机械能一定守恒.( ) (8)做曲线运动的物体机械能可能守恒.( ) 例I :对机械能守恒的理解及判断 1.对机械能守恒条件的理解 (1)只受重力作用,例如做平抛运动的物体机械能守恒. (2)除重力外,物体还受其他力,但其他力不做功或做功代数和为零. (3)除重力外,只有系统内的弹力做功,并且弹力做的功等于弹性势能变化量的负值,那么系统的机械能守恒,注意并非物体的机械能守恒,如与弹簧相连的小球下摆的过程机械能减少. 2.机械能是否守恒的三种判断方法 (1)利用机械能的定义判断:若物体动能、势能之和不变,机械能守恒.

机械能守恒定律的应用

7、7 机械能守恒定律的应用 一、教学目标 1.熟悉应用机械能守恒定律解题的步骤. 2.明了应用机械能守恒定律分析问题的注意点. 二、重点·难点及解决办法 1.重点:机械能守恒定律的具体应用。 2.难点:应用机械能守恒定律和动能定律分析解决较复杂的力学问题。 3.解决办法 (1)分析典型例题,解剖麻雀,从而掌握机械能守恒定律应用的程序和方法。 (2)比较研究,能准确选择解决力学问题的方法、灵活运用各种定律分析问题。 三、教学步骤 【引入新课】复习上节课的机械能守恒定律内容及数学表达式. 【新课教学】 1、应用机械能守恒定律解题的步骤: (1)根据题意选取研究对象(物体或系统); (2)分析研究对象在运动过程中的受力情况以及各力做功的情况,判断机械能是否守恒; (3)确定运动的始末状态,选取零势能面,并确定研究对象在始、末状态时的机械能; (4)根据机械能守恒定律列出方程进行求解 注意:列式时,要养成这样的习惯,等式作左边是初状态的机械能而等式右边是末状态的机械能,这样有助于分析的条理性。 例1:如图所示,光滑的倾斜轨道与半径为R 的圆形轨道相连接,质量为。的小球在倾斜轨道上由静止释放, 要使小球恰能通过圆形轨道的最高点,小球释放点离圆形轨道最低点多高?通过轨道点最低点时球对轨道压力多大? 分析及解答: 小球在运动过程中,受到重力和轨道支持力,轨道支持力对小球不做功,只有重力做功, 小球机械能守恒. 取轨道最低点为零重力势能面. 因小球恰能通过圆轨道的最高点C ,说明此时,轨道对小球作用力为零,只有重力提供向心力,根据牛顿第 二定律可列R v m mg c 2= 得 gR m R v m c 2 212= 在圆轨道最高点小球机械能mgR mgR E C 22 1 += 在释放点,小球机械能为 mgh E A = 根据机械能守恒定律 A C E E = 列等式:R mg mgR mgh 221+= 解设R h 2 5= 同理,小球在最低点机械能 2 2 1B B mv E = gR v E E B C B 5:= 小球在B 点受到轨道支持力F 和重力根据牛顿第二定律,以向上为正,可列mg F R v m mg F B 62==- 据牛顿第三定律,小球对轨道压力为6mg .方向竖直向下. 例2.长l=80cm 的细绳上端固定,下端系一个质量m =100g 的小球。 将小球拉起至细绳与竖立方向成60°角的位置,然后无初速释放。不计

高中物理专题:机械能守恒定律的应用

专题13 机械能守恒定律及其应用 1.机械能: 机械能是物体动能、重力势能、弹性势能的统称,也可以说成物体动能和势能之总和. 2.机械能守恒定律 (1)内容:在只有重力或弹力做功时,物体(系统)动能与重力势能可以相互转化,而总的机械能保 持不变. (2)表达式:E12或1122 3.机械能守恒定律的条件和机械能守恒定律的常用数学表达式: (1)守恒条件: ①一个物体:只有重力做功或弹力做功(看是否包含弹簧,包含弹簧,守恒;不包含则不守恒) ②物体系统:弹力和重力一起做功,只有重力势能和弹性势能的相互转化,没有其他形式的能量产生 ③如果有外力作用,但是外力不做功或做功为零,没有其他形式的能量产生,物体或系统机械能守恒。(2)常用数学表达式: ①守恒观点:1122 必须选择参考平面 ②转化观点:Δ=-Δ,(Δ增=Δ减或Δ减=Δ增).运用的关键在于弄清重力势能的增加(或减少)量, 可不选取参考面而直接计算初、末状态的势能差 ③转移观点:Δ=-Δ(Δ增=Δ减或Δ减=Δ增),“转移观点”, 4.应用机械能守恒定律解题的基本步骤 (1).根据题意,选取研究对象(物体或相互作用的物体系). (2).分析研究对象在运动过程中所受各力的做功情况,判断是否符合机械能守恒的条件. (3).若符合定律成立的条件,先要选取合适的零势能的参考平面,确定研究对象在运动过程的初、末 状态的机械能值. (4).根据机械能守恒定律列方程,并代人数值求解. 【问题一】物体或物体系统机械能守恒是否定律的条件的应用 1.一个物体:只有重力做功或只有弹力做功,只管整个过程始末状态,不管中间过程;有弹簧时要包含弹簧才守恒。 2.物体系统:系统只有动能和势能的转化,无其他形式能量的产生。 3.注意:无论是从做功来看还是从能量的转化来看都只有动能和势能的相互转化,无其他形式的能量产生。 4.如果其他除重力、弹力外的其他力做功,机械能不守恒 【例题1】如图5-4-1所示,一轻质弹簧固定于O点,另一端系一重物,将重物从与悬挂点等高的地方无初速 度释放,让其自由摆下,不及空气阻力,重物在摆向最低点的位置的过程中() 图5-4-1 A.重物重力势能减小 B.重物重力势能与动能之和增大 C.重物的机械能不变 D. 重物的机械能减少

高中物理机械能守恒定律知识点总结

高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: (1)当0°≤<90°时,0<≤1,则力对物体做正功,即外界给物体输送能量,力是动力; (2)当=90°时,=0,W=0,则力对物体不做功,即外界和物体间无能量交换. (3)当90°<≤180°时,-1≤<0,则力对物体做负功,即物体向外界输送能量,力是阻力.3、判断一个力是否做功的几种方法 (1)根据力和位移的方向的夹角判断,此法常用于恒力功的判断,由于恒力功W=Flcosα,当α=90°,即力和作用点位移方向垂直时,力做的功为零. (2)根据力和瞬时速度方向的夹角判断,此法常用于判断质点做曲线运动时变力的功.当力的方向和瞬时速度方向垂直时,作用点在力的方向上位移是零,力做的功为零. (3)根据质点或系统能量是否变化,彼此是否有能量的转移或转化进行判断.若有能量的变化,或系统内各质点间彼此有能量的转移或转化,则必定有力做功. 4、各种力做功的特点 (1)重力做功的特点:只跟初末位置的高度差有关,而跟运动的路径无关. (2)弹力做功的特点:对接触面间的弹力,由于弹力的方向与运动方向垂直,弹力对物体不做功;对弹簧的弹力做的功,高中阶段没有给出相关的公式,对它的求解要借助其他途径如动能定理、机械能守恒、功能关系等. (3)摩擦力做功的特点:摩擦力做功跟物体运动的路径有关,它可以做负功,也可以做正功,做正功时起动力作用.如用传送带把货物由低处运送到高处,摩擦力就充当动力.摩擦力

的大小不变、方向变化(摩擦力的方向始终和速度方向相反)时,摩擦力做功可以用摩擦力乘以路程来计算,即W=F·l. (1)W总=F合lcosα,α是F合与位移l的夹角; (2)W总=W1+W2+W3+?为各个分力功的代数和; (3)根据动能定理由物体动能变化量求解:W总=ΔEk. 5、变力做功的求解方法 (1)用动能定理或功能关系求解. (2)将变力的功转化为恒力的功. ①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程的乘积,如滑动摩擦力、空气阻力做功等; ②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值=2F1+F2,再由W=lcosα计算,如弹簧弹力做功; ③作出变力F随位移变化的图象,图线与横轴所夹的?°面积?±即为变力所做的功; ④当变力的功率P一定时,可用W=Pt求功,如机车牵引力做的功. 二、功率 1.计算式 (1)P=tW,P为时间t内的平均功率. (2)P=Fvcosα 5.额定功率:机械正常工作时输出的最大功率.一般在机械的铭牌上标明. 6.实际功率:机械实际工作时输出的功率.要小于等于额定功率. 方恒定功率启动恒定加速度启动

2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习

2021届高三物理一轮复习力学功和能机械能守恒定律功能关系专题练习一、填空题 1.在雅典奥运会上,我国举重运动员取得了骄人的战绩.在运动员举起杠铃过程中,是___________能转化为杠铃的___________能. 2.如图所示,某兴趣小组希望通过实验求得连续碰撞中的机械能损失,做法如下:在光滑水平面上,依次有质量为m,2m,3m……10m的10个小球,排列成一直线,彼此间有一定的距离,开始时后面的九个小球是静止的,第一个小球以初速度v0向着第二个小球碰去,结果它们先后全部粘合到一起向前运动.求全过程中系统损失的机械能为__________, 3.一小物体以100J的初动能滑上斜面,当动能减少80J时,机械能减少32J,则当物体滑回原出发点时动能为__________ J 4.在某一高度用细绳提着一质量m=0.2kg的物体,由静止开始沿竖直方向运动过程中物体的机械能与位移关系的E,x图象如图所示,图中两段图线都是直线.取g=10m/s2,物体在0,6m过程中,速度一直_______(增加、不变、减小);物体在x=4m时的速度大小为________, 5.重为20N的物体从某一高度自由落下,在下落过程中所受的空气阻力为2N,则物体在下落1m的过程中,物体的重力势能减少了________,克服阻力做功________,物体动能增加了_________, 6.如图所示,一个质量为m的小球用细线悬挂于O点,用手拿着一根光滑的轻质细杆靠着线的左侧水平向右以速度v匀速移动了距离L,运动中始终保持悬线竖直,这个过程中小球的速度为是_________,手对轻杆做的功为是_________. 7.一只排球在A点被竖直抛出,此时动能为20 J,上升到最大高度后,又回到A点,动能变为12 J,假设排球在整个运动过程中受到的阻力大小恒定,A点为零势能点,则在整个运动过程中,排球的动能变为10 J 时,其重力势能的可能值为________,_________, 8.如图所示,水平传送带的运行速率为v,将质量为m的物体轻放到传送带的一端,物体随传送带运动到另一端。若传送带足够长,则整个传送过程中,物体动能的增量为_________,由于摩擦产生的内能为 _________,

机械能守恒定律应用

机械能守恒定律应用 本节教材分析 本节重点介绍机械能守恒定律的应用,要求学生知道应用机械能守恒定律解题的步骤以及用这个定律处理问题的优缺点,并会用机械能守恒定律解决简单的问题.另外,在本节中要学会据题设条件提供的具体情况,选择不同的方法,用机械能守恒定律以及学过的动量定理、动能定理、动量守恒定律等结合解决综合问题. 教学目标 一、知识目标 1.知道应用机械能守恒定律解题的步骤. 2.明确应用机械能守恒定律分析问题的注意点. 3.理解用机械能守恒定律和动能定理、动量守恒定律综合解题的方法. 二、能力目标 1.针对具体的物理现象和问题,正确应用机械能守恒定律. 2.掌握解决力学问题的思维程序,学会解决力学综合问题的方法. 三、德育目标 1.通过解决实际问题,培养认真仔细有序的分析习惯. 2.具体问题具体分析,提高思维的客观性和准确性. 教学重点 机械能守恒定律的应用. 教学难点 判断被研究对象在经历的研究过程中机械能是否守恒,在应用时要找准始末状态的机械能. 教学方法 1.自学讨论,总结得到机械能守恒定律的解题方法和步骤; 2.通过分析典型例题,掌握用机械能守恒定律、动能定律、动量守恒定律解决力学问题. 教学用具 自制的投影片、CAI课件

教学过程 出示本节课的学习目标: 1.会用机械能守恒定律解决简单的问题. 2.知道应用机械能守恒定律解题的步骤以及用该定律解题的优点. 3.会用机械能守恒定律以及与学过的动量定理、动能定理、动量守恒定律等结合解决综合问题. 学习目标完成过程: 一、导入新课 1.用投影片出示复习思考题: ①机械能守恒定律的容是什么? ②机械能守恒定律的数学表达形式是什么? 2.学生答: ①在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变;在只有弹力做功的情形下,物体的动能和弹性势能发生相互转化,但机械能的总量保持不变. ②机械能守恒定律数学表达式有两种: 第一种:-=-即动能的增加量等于重力势能的减小量 第二种:+=+即半初态的机械能等于初动态的机械能. 3.引入:本节课我们来学习机械能守恒定律的应用.板书:机械能守恒定律的应用 二、新课教学 1.关于机械能守恒定律解题的方法和步骤: (1)学生阅读本节课文的例1和例2 (2)用多媒体出示思考题 ①两道例题中在解题方法上有哪些相同之处? ②例1中如果要用牛顿第二定律和运动学公式求解,该如何求解? ③你认为两种解法解例1,哪种方法简单?为什么?

机械能守恒定律一

机械能守恒定律一 1. 下列所述的实例中(均不计空气阻力),机械能守恒的是() A.水平路面上汽车刹车的过程 B.投出的实心球在空中运动的过程 C.人乘电梯加速上升的过程 D.木箱沿粗糙斜面匀速下滑的过程 2. 将地面上静止的货物竖直向上吊起,货物由地面运动至最高点的过程中,图象如图所示.以下判断正确的是() A.前内货物处于失重状态 B.最后内货物处于失重状态 C.货物的总位移为 D.前内与最后内货物的平均速度相同 3. 下列关于功和能的说法正确的是() A.作用力做正功,反作用力一定做负功 B.物体在合外力作用下做变速运动,动能一定发生变化 C.若物体除受重力外,还受到其他力作用时,物体的机械能也可能守恒 D.竖直向上运动的物体重力势能一定增加,动能一定减少 4. 一个人站在阳台上,以相同的速率分别把三个球竖直向下、竖直向上、水平抛出,不计空气阻力,则三球落地时的速率() A.上抛球最大 B.下抛球最大 C.平抛球最大 D.一样大 5. 一个质量为的滑块以初速度沿光滑斜面向上滑行,重力加速度为,以斜面底端为参考平面,当滑块从斜面底端滑到高为的地方时,滑块的机械能为() A. B. C. D. 6. 把、两小球在离地面同一高度处以相同大小的初速度分别沿水平方向和竖直方向抛出,不计空气阻力,如图所示,则下列说法正确的是() A.两小球落地时速度相同 B.两小球落地时,重力的瞬时功率相同 C.从开始运动至落地,重力对两小球做的功相同 D.从开始运动至落地,重力对两小球做功的平均功率相同 7. 下列叙述中正确的是() A.物体所受的合外力为零时,物体的机械能守恒 B.物体只受重力、弹力作用,物体的机械能守恒 C.在物体系内,只有重力、弹力做功,物体系机械能守恒 D.对一个物体系,它所受外力中,只有弹力做功,物体系机械 能守恒 8. 图示为儿童蹦极的照片,儿童绑上安全带,在两根弹性绳的 牵引下上下运动。在儿童从最高点下降到最低点的过程中() A.重力对儿童做负功 B.合力对儿童做正功 C.儿童的机械能守恒 D.绳的弹性势能增大 9. 下列遵守机械能守恒定律的运动是() A.平抛物体的运动 B.雨滴匀速下落 C.物体沿斜面匀速下滑 D.竖直平面内匀速运动的物体 10. 如图所示,斜坡式自动扶梯将质量为的小华从地面送 到高的二楼,取,在此过程中小华的() A.重力做功为,重力势能增加了 B.重力做功为,重力势能增加了 C.重力做功为,重力势能减小了 D.重力做功为,重力势能减小了 11. 在下列所述实例中,若不计空气阻力,机械能守恒的是() A.抛出的铅球在空中运动的过程 B.木箱沿粗糙斜面匀速下滑的过程 C.汽车在关闭发动机后自由滑行的过程 D.电梯加速上升的过程 12. 如图所示,踢毽子是一项深受大众喜爱的健身运动项目。 在某次踢毽子的过程中,毽子离开脚后,恰好沿竖直方向向上 运动,毽子在运动过程中受到的空气阻力不可忽略。毽子在上 升的过程中,下列说法正确的是()

第4章功和能机械能守恒定律习题说课材料

第 4 章功和能机械能守恒定律习题

第4章功和能机械能守恒定律习题 4-5如图所示, A 球的质量为m,以速度v飞行,与一静止的球B碰撞后,A球的速度变为V1,其方向与v方向成90°角。B球的质量为5m,它被碰撞后以速度V.2飞行,V2的方向与v间夹角为arcsin(3.;5)。求: (i)两球相碰后速度V i、V2的大小; (2)碰撞前后两小球动能的变化 v v 1 v? ------------------- v 5cos 5“ sin2 4 v 3 3 v-i 5v2 sin 5 v 4 5 4 2A球动能的变化 解: 于是得 mv 5mv? cos mq 5mv2si n (1)由动量守恒定律 5mv2cos 5mv2sin

B 球动能的变化 2 1 1 2 5 2 E kB m B v ; 0 5m(—v)2 mv 2 2 2 4 32 碰撞过程动能的变化 或如图所示,A 球的质量为m ,以速度u 飞行,与一静止的小球 度变为W 其方向与u 方向成900,B 球的质量为5m ,它被撞后以速度 V 2飞行,v 2的方向 3 arcs in )角。求: 5 (1)求两小球相撞后速度 「 2的大小; 碰撞前后两小球动能的变化为 1 3u 2 1 2 7 2 E KA m — mu mu KA 2 4 2 32 2 L 1厂 u 5 2 E KB 5m — 0 -- mu 2 4 32 4- 6在半径为R 的光滑球面的顶点处,一物体由静止开始下滑,则物体与顶点 的高度差h 为多大时,开始脱离球面? 解:根据牛顿第二定律 1m(3v)2 2 4 2 mv 2 2 mv 32 1 2 2 1 2 二 mv -m B v 2 mv 2 2 2 2 2 mv 32 B 碰撞后,A 球的速 水平: mu 5m 2 cos (1) 垂直: 0 5m 2sin m j (2) 联解(1) 、(2 )式,可得两小球相撞后速度大小分 别为 3u 1 4 1 2 4u A c r V] k (2)求碰撞前后两小球动能的变化。 解取A 球和B 球为一系统,其碰撞过程中无外力作用,由动量守恒定律得 图

机械能守恒定律及应用

三、机械能守恒定律及应用 一、 重力势能 1. 定义:由于受重力作用,物体具有的与______________有关的能量叫重力势能.其表达式为________. 2. 特点:重力势能是________,但有正负,正负表示大小,而不是方向.重力势能E p 具有相对性,与零势能面的选取有关,但重力势能的变化量ΔE p 具有绝对性,与零势能面的选取无关. 3. 重力做功的特点及与重力势能变化的关系 (1)重力做功________无关,只与始末位置 有关. (2)重力做正功,物体的重力势能________;重力做负功,物体的重力势能________. (3)重力做的功总等于物体重力势能增量的负值,即W =-ΔEp 或W ab =E pa -E pb . 二、 弹性势能 弹簧的弹性势能:弹性势能的大小与形变量及劲度系数有关,弹簧的形变量越大,劲度系数越大,弹簧的弹性势能越大.弹力做功与弹性势能变化W 弹=-ΔE p 三、 机械能守恒定律 1. 机械能:__________________________统称为机械能. 2. 机械能守恒定律:在只有重力和弹簧弹力做功时,物体的动能和势能相互转化,但机械能的总量保持不变. 另一种表述:如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变. 3. 机械能守恒的条件:只有重力或弹簧弹力做功. 4. 表达式 (1)mgh 1+12mv 21=mgh 2+12 mv 22;即E p +E k =E ′p +E ′k (2) K P E E ?=?- (3)ΔE 减=ΔE 增. 注意:用(1)时,需要规定重力势能的参考平面;用(2)(3)时则不必规定重力势能的参考面 四、对机械能守恒定律的理解: (1)当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。只有一个物体时,往往也可根据动能定理来解决问题。 (2)“只有重力做功”不等于“只受重力作用”。在该过程中,物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。 五、解题步骤 ⑴确定研究对象和研究过程。 ⑵判断机械能是否守恒。 ⑶选定一种表达式,列式求解。 当判断到机械能守恒后,就只看机械能是如何转化,看初状态和末状态的机械能的形式,如何表示,什么减少,什么增加。不再写做功表达式。 六、功能原理 (1)当W 其它=0时,说明只有重力、弹簧弹力做功,所以系统的机械能守恒。 (2)当系统除重力和弹簧弹力做功以外还有其他外力做功时,系统的机械能就不守恒。这时,机械能必发生变化。物体机械能的增量由重力、弹簧弹力以外的其他力做的功来量度:W 其它=ΔE 机,(W 其它表示除重力、弹簧弹力以外的其它力做的功)。其它力做正功,机械能增加,反之减少。 典例分析 一、基本概念题 1、如图所示,一轻质弹簧固定于O 点,另一端系一小球,将小球从与O 点 在同一水平面且弹簧保持原长的A 点无初速地释放,让它自由摆下,不计空

动能定理和机械能守恒定律

2013高考物理专题复习精品学案案―――动能定理和机械能守恒定律 【命题趋向】 《大纲》对本部分考点均为Ⅱ类要求,即对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。 功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分量重,而且还经常有高考压轴题。考查最多的是动能定理和机械能守恒定律。易与本部分知识发生联系的知识有:牛顿运动定律、圆周运动、带电粒子在电场和磁场中的运动等,一般过程复杂、难度大、能力要求高。本考点的知识还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。 【考点透视】 一、理解功的概念 1.功是力的空间积累效应。它和位移相对应。计算功的方法有两种: ⑴按照定义求功。即:W=Fscosθ。 在高中阶段,这种方法只适用于恒力做功。当2 0π θ<≤时F 做正 功,当2 π θ= 时F 不做功,当 πθπ≤<2 时F 做负功。 这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。 ⑵用动能定理W=ΔE k 或功能关系求功。当F 为变力时,高中阶段往往考虑用这种方法求功。 这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。 2.会判断正功、负功或不做功。判断方法有:○1用力和位移的夹角α判断;○2用力和速度的夹角θ判断定;○ 3用动能变化判断. 3.了解常见力做功的特点: 重力(或电场力)做功和路径无关,只与物体始末位置的高度差h (或电势差)有关:W=mgh (或W=qU ),当末位置低于初位置时,W >0,即重力做正功;反之则重力做负功。 滑动摩擦力做功与路径有关。当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。 在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。 二、深刻理解功率的概念 1.功率的物理意义:功率是描述做功快慢的物理量。 2.功率的定义式:t W P = ,所求出的功率是时间t 内的平均功率。 3.功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。该公式有两种用法:①求某一时刻的瞬时功率。这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②当v 为某段

机械能守恒定律及其应用(含答案)

专题机械能守恒定律及其应用 【考情分析】 1.掌握重力势能、弹性势能的概念,并能计算。 2.掌握机械能守恒的条件,会判断物体的机械能是否守恒。 3.掌握机械能守恒定律的三种表达形式,理解其物理意义,并能熟练应用。 【重点知识梳理】 知识点一重力做功与重力势能 1.重力做功的特点 (1)重力做功与路径无关,只与初末位置的高度差有关。 (2)重力做功不引起物体机械能的变化。 2.重力势能 (1)公式:E p=mgh。 (2)特性: ①标矢性:重力势能是标量,但有正、负,其意义是表示物体的重力势能比它在参考平面上大还是小,这与功的正、负的物理意义不同。 ②系统性:重力势能是物体和地球所组成的“系统”共有的。 ③相对性:重力势能的大小与参考平面的选取有关。重力势能的变化是绝对的,与参考平面的选取无关。 3.重力做功与重力势能变化的关系 (1)定性关系:重力对物体做正功,重力势能就减少;重力对物体做负功,重力势能就增加。 (2)定量关系:重力对物体做的功等于物体重力势能的减少量。即W G=E p1-E p2=-ΔE p。 知识点二弹性势能 1.定义:物体由于发生弹性形变而具有的能. 2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加,即W =-ΔE P. 知识点三机械能守恒定律及其应用 1.机械能:动能和势能统称为机械能,其中势能包括重力势能和弹性势能. 1

2.机械能守恒定律 (1)内容:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变. (2)守恒条件:只有重力或系统内弹力做功. (3)常用的三种表达式: ①守恒式:E1=E2或E k1+E P1=E k2+E P2.(E1、E2分别表示系统初末状态时的总机械能) ②转化式:ΔE k=-ΔE P或ΔE k增=ΔE P减.(表示系统势能的减少量等于动能的增加量) ③转移式:ΔE A=-ΔE B或ΔE A增=ΔE B减.(表示系统只有A、B两物体时,A增加的机械能等于B减少的机械能) 【典型题分析】 高频考点一机械能守恒的理解与判断 【例1】(2019·浙江选考)奥运会比赛项目撑杆跳高如图所示,下列说法不正确的是( ) A.加速助跑过程中,运动员的动能增加 B.起跳上升过程中,杆的弹性势能一直增加 C.起跳上升过程中,运动员的重力势能增加 D.越过横杆后下落过程中,运动员的重力势能减少动能增加 【答案】B 【解析】加速助跑过程中速度增大,动能增加,A正确;撑杆从开始形变到撑杆恢复形变时,先是运动员部分动能转化为杆的弹性势能,后弹性势能转化为运动员的动能与重力势能,杆的弹性势能不是一直增加,B错误;起跳上升过程中,运动员的高度在不断增大,所以运动员的重力势能增加,C正确;当运动员越过横杆下落的过程中,他的高度降低、速度增大,重力势能被转化为动能,即重力势能减少,动能增加,D正确。 2

2021届高三物理一轮复习力学功和能机械能守恒定律的应用专题练习

1 / 7 2021届高三物理一轮复习力学功和能机械能守恒定律的应用专题练习 一、填空题 1.如图所示,质量均为 m 的 A 、B 两小球,用长为l 的轻质细线相连,置于高为 h 的光滑水平桌面上, l >h ,A 球刚跨过桌边。若 A 球竖直下落着地后不再反跳,则 A 球刚要着时的速度大小为_____;B 球刚要着地时的速度大小为_____。 2.如图所示,铜棒ab 长0.1m ,质量为0.06kg ,两端由两根长都是1m 的轻铜线悬挂起来,铜棒ab 保持水平,整个装置静止于竖直平面内,装置所在处有竖直向下的匀强磁场,磁感应强度0.5T B ,现给铜棒如ab 中通入恒定电流,铜棒发生摆动.已知最大偏转角为37°,则铜棒从最低点运动到最高点的过程中,安培力做的功是___________J ,恒定电流的大小为_________A (不计感应电流影响). 3.如图所示,在光滑水平桌面上有一质量为M =2kg 的小车,小车跟绳一端相连,绳子另一端通过滑轮吊一个质量为m =0.5kg 的物体,开始绳处于伸直状态,物体从距地面h =1m 处由静止释放,物体落地之前绳的拉力为______N ;当物体着地的瞬间(小车未离开桌子)小车的速度大小为_______m/s.(g =10 m/s 2) 4.如图所示,轻质动滑轮下方悬挂质量为m 的物块A ,轻绳的左端绕过定滑轮连接质量为2m 的物块B ,开始时物块A 、B 处于静止状态,释放后A 、B 开始运动,假设摩擦阻力和空气阻力均忽略不计,重力加速度为g ,当物块B 向右运动的位移为L 时,物块A 的速度大小为__________,物块A 减少的机械能为_________。

机械能守恒定律知识点总结(精华版)

机械能知识点总结 一、功 1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。 2条件:. 力和力的方向上位移的乘积 3公式:W=F S cos θ W ——某力功,单位为焦耳(J ) F ——某力(要为恒力) ,单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m ) θ——力与位移的夹角 4功是标量,但它有正功、负功。某力对物体做负功,也可说成“物体克服某力做功”。 功的正负表示能量传递的方向,即功是能量转化的量度。 当)2, 0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2π θ=时,即力与位移垂直,力不做功,功为零; 当],2(ππ θ∈时,即力与位移成钝角,力做负功,功为负; 5功是一个过程所对应的量,因此功是过程量。 6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。 7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。 即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ 二、功率 1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。 2公式:t W P = (平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W 4分类: 额定功率:指发动机正常工作时最大输出功率 实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。 5应用: (1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。 (2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽

相关主题
文本预览
相关文档 最新文档