当前位置:文档之家› 制氢技术比较及分析

制氢技术比较及分析

制氢技术比较及分析
制氢技术比较及分析

制氢技术综述&制氢技术路线选择

一、工业制氢技术综述

1.工业制氢方案

工业制氢方案很多,主要有以下几类:

(1)化石燃料制氢:天然气制氢、煤炭制氢等。

(2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。

(3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。

(4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电

解、生物光解、热化学水解。

(5)生物质制氢。

(6)生物制氢。

2.工业制氢方案对比选择

(1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。

(2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。

(3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比:

(A)天然气制氢

(B)甲醇制氢

(C)水电解制氢

3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。

(2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。

(3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。

(4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。

(5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。

因此选用天然气水蒸汽重整制氢进行方案对比。

4.甲醇制氢

(1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。

(2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

行业。

(3)甲醇部分氧化制氢,由于通入空气氧化,产品气中氮气和氧气的含量较高。

因此选用甲醇水蒸汽重整制氢进行方案对比。

5.水解制氢

(1)电解水制氢,技术成熟、设备简单、运行可靠、管理方便、不产生污染、可制得氢气纯度高、杂质含量少,适用于各种应用场合。目前国内多晶硅企业多用此工艺制氢。

(2)聚合电解质薄膜电解制氢,由于相对成本高、容量小、效率低和使用期短,技术目前尚不成熟。

(3)光电解制氢,实际是利用太阳能制氢。

(4)生物光解制氢,是一种生物制氢工程。

(5)热化学水解技术目前尚不成熟。

因此选用电解水制氢进行方案对比。

6.工业化制氢现状

6.1 三种制氢方案对比

1)天然气水蒸汽重整制氢

2)甲醇水蒸汽重整制氢

3)电解水制氢

6.2 大型制氢:天然气水蒸汽重整制氢占主导地位

特点:

1) 天然气既是原料气也是燃料气,无需运输,氢能耗低,消耗低,氢气成本最低。

2) 自动化程度高,安全性能高。

3) 天然气制氢投资较高,适合大规模工业化生产,一般制氢规模在5000Nm3/h以上时选择天然气制氢工艺更经济。

6.3 小型制氢、高纯氢采用电解水方法

(1)多年来,水电解制氢技术自开发以来一直进展不大,其主要原因是需要耗用大量的电能,电价的昂贵,使得世界上除个别地区外,用水电解制氢都不经济。

(2)电解水制氢,规模一般小于200 Nm3/h,是较成熟的制氢方法,由于它的电耗较高,达到5~8 kwh/Nm3 H2,其单位氢气成本较高。

6.4甲醇水蒸汽重整制氢是中小型制氢的首选

1) 甲醇蒸汽重整制氢与大规模的天然气制氢或水电解制氢相比,投资省,能耗低。由于反应温度低(230℃~280℃),工艺条件缓和,燃料消耗也低。与同等规模的天然气制氢装置相比,甲醇蒸汽转化制氢的能耗约是前者的50%。

2)甲醇蒸汽重整制氢所用的原料甲醇易得,运输,储存方便。而且由于所用

的原料甲醇纯度高,不需要再进行净化处理,反应条件温和,流程简单,故易于操作。

7.氢气的提纯方法

7.1 深冷吸附和变压吸附提纯氢气

目前制备高纯氢多用变压吸附的方法进行提纯氢气。

变压吸附可将氢气纯度提高至99.99%以上。

7.2氢气的品质的要求

GT公司要求制氢装置提供氢气规格:

PPP公司要求还原氢气规格:

DEI公司要求还原氢气规格:

说明:

(1)上述几家提供的氢气规格均是还原用氢

气,冷氢化用氢气要求应该低一点,但到目前为止尚未得到相关数据。

(2)从上述几家提供的氢气规格要求看,纯度要求各不相同,但对氢气中的碳含量要求类似,都在1 ppm以下。

7.3 采用钯膜、深冷吸附与变温吸附进一步提纯氢气

从上表中可以看出,GT公司等技术提供商要求的,用于多晶硅还原炉生产所要求的氢气,其纯度指标要求很高,氢气中的总碳含量要求达到1ppm以下。

目前,通过变压吸附可将氢气的纯度提纯至99.99%~99.999%。但其总碳含量很难做到1ppm以下。

采用钯膜、深冷吸附或变温吸附这三种方法均可以进一步提纯氢气。

7.4 钯膜、深冷吸附与变温吸附

7.5 钯膜、深冷吸附与变温吸附比较

(1)钯膜吸附总投资约8、9百万元(按处理1200Nm3/h氢气),运行成本

0.2元/Nm3/h-H2。钯膜使用寿命约1年,在使用时,要求尽可能连续运行,短时间停车时,必须用高纯氮进行保护。钯膜能将四个九至五个九的氢气提纯至六个九。钯膜要求进口压力在1.5~2.0MPa范围内。国内多晶硅到目前为止只有一家采用了此技术,主要是处理CVD循环氢气,刚用了几个月。

(2)深冷吸附能将氢气提纯至九个九以上,总投资约100万欧元(按处理1200Nm3/h氢气初步估价)。运行成本极低,平均电耗低于0.5kwh/h。吸附柱使用寿命15年。在国内多晶硅还没有应用,目前只知道法液空有此技术,国内还不清楚有谁能做。

(3)变温吸附总投资约30余万元,初始使用时效果很好,但使用后效率有衰减,切换频率提高较快。吸附剂使用寿命约1~2年。通常用碳吸附剂。使用效果不好时可能有碳带入。

(4)使用建议,如仅考虑CVD初次开车用新鲜氢气的提纯,可考虑使用变温吸附,这种方案投资最低。如考虑CVD循环氢气的提纯,钯膜和深冷吸附均可。

四、天然气重整制氢和甲醇重整制氢对比

五、备选制氢工艺的技术经济评价

1. 1200Nm3/h电解制氢、甲醇制氢和天然气制氢投资成本和运行成本对比(不包括土建)

2.制氢方案氢气质量指标对比

2.1 甲醇制氢和天然气制氢指标是厂家提供能达到的指标,水电解制氢指标是某公司参考指标。

2.2 甲醇制氢在采用二段吸附后,质量指标可达到GT要求,而天然气制氢的总碳含量指标明显达不到要求,如要达到GT要求,则在吸附提纯段的投资要大大增加(初步估计要增加投资6、7百万)。

2.3 水电解制氢的氢气虽然碳含量偏高,但实际检测结果碳含量要低于此,据某厂分析数据显示(CO未检出,CH4未检出,CO2 :0.5PPm ,O2:1.2 ppm),其总碳含量能控制在1 PPm以下。

3.原材料能源价格变化的影响

3.1 我国天然气价格现状及市场走势

(1)我国天然气定价机制及存在的问题

- 长期以来,我国为了鼓励天然气消费,国内天然气的定价相对较低。目前进口天然气价格和国内天然气价格严重倒挂。目前我国的天然气出厂价格大约为1.18元/m3,而通过中亚管道进口的天然气到达中国口岸的完税价格高达2元/m3以上。

- 挂钩的替代能源选择不合理。

- 天然气价格不反映季节需求差异。

- 机制不顺等问题影响天然气供应。

(2)供需状况及价格走势

- 天然气消费量加速上升,供需缺口明显。

- 天然气消费比重逐渐提高,价格上涨压力较大。

国内天然气消费需求的快速增长与供给不足之间的矛盾势必会推高价格。加上进口气价较高的压力,可预见国内气价将逐渐与国际接轨,国内天然气价格走高将是必然趋势。

3.2 我国甲醇价格现状及市场走势

年份国内价格(元/吨)

2003年2150~2550

2004年2300~2650

2005年2400~2800

2006年2600~2900

2007年3200~4500

2008年3300~3500

2009年2200~2600

2010年2000~2600

2011年2200~2800

根据设计院可研报告预测:国内甲醇生产能力和产量逐年上升,市场供应量偏高,抑制了甲醇价格上涨的空间。预计未来几年甲醇价格不会有大的波动,国内市场价格将维持在2200~2800元/吨左右。

六、结论和建议

1. 采用天然气的蒸汽重组方案,优点是原料价格低廉,运行成本低,制氢规模在5000Nm3/h以上时优势明显。缺点是投资规模大,工艺复杂,操作难度大,安全性差,2000Nm3/h以下时无规模优势,从长远看,天然气价格有上升趋势,运行费用将来会逐渐增加,日后的运行成本相对于甲醇制氢并无优势

2. 采用甲醇的蒸汽重组工艺,优点是原料价格相对低廉,投资规模小,运行成本低,装置简单,开车后受外界影响小,开停车方便,工艺简单。缺点是运行成本比天然气法略高。

建议采用方案:

工艺路线:甲醇的蒸汽重组工艺。

氢气规格:

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

生物质制氢技术研究进展

中国生物工程杂志 China B i otechnol ogy,2006,26(5):107~112 生物质制氢技术研究进展 于 洁 1,2  肖 宏 13 (1中国科学院上海生命科学研究院生命科学信息中心 上海 200031 2中国科学院研究生院 北京 100039) 摘要 氢能以其清洁,来源及用途广泛等优点成为最有希望的替代能源之一,用可再生能源制氢是氢能发展的必然趋势。由于生物质制氢具有一系列独特的优点,它已成为发展氢经济颇具前景的研究领域之一。生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学方法制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等热化学法制氢,以及基于生物质的甲烷、甲醇、乙醇的化学重整转化制氢等;另一类是利用生物转化途径转换制氢,包括直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池等技术。综述了目前主要的生物质制氢技术及其发展概况,并分析了各技术的发展趋势。关键词 生物质 制氢 气化 高温分解 超临界水 微生物电池中图分类号 Q819 收稿日期:2006201209 修回日期:2006204210 3通讯作者,电子信箱:hxiao@sibs .ac .cn 化石能源的渐进枯竭,国际市场油价的日高一日,给我国高速发展的社会经济带来越来越大的压力。根据国家海关总署提供的资料,我国从1993年变为石油净进口国。过去的10年中,我国石油需求量几乎翻了一番。同时,环境生态问题与国家安全问题日益受到各国的高度重视,新替代能源的研制和开发已成为各国科研生产的战略重点之一。 氢能被誉为21世纪的绿色能源。氢气的燃烧只产生水,能够实现真正的“零排放”。相比于目前已知的燃料,氢的单位质量能量含量最高,其热值达到 143MJ /kg,约为汽油的3倍,并且氢的来源广泛。鉴于 化石能源的不可再生性及其造成的环境污染问题,特别是石化资源渐趋枯竭,利用可再生能源制氢已成为当务之急和氢能发展的长久之计。目前,“氢经济”已引起世界很多国家的高度重视,并已被纳入发展计划。 生物质制氢技术不同于风能、太阳能、水能之处在于生物质制氢技术不仅可以有“生物质产品”的物质性生产,还可以参与资源的节约和循环利用。例如气化制氢技术可用于城市固体废物的处理,微生物制氢过 程能有效处理污水,改造治理环境。微生物燃料电池 (MFC ),可以处理人类粪便、农业和工业废水等有机废 水。微生物发酵过程还能生产发酵副产品,例如重要的工业产品辅酶Q ,微生物本身又是营养丰富的单细胞蛋白,可用于饲料添加剂等。 1 技术概述及研究进展 生物质制氢技术可以分为两类,一类是以生物质为原料利用热物理化学原理和技术制取氢气,如生物质气化制氢,超临界转化制氢,高温分解制氢等。以及基于生物质的甲烷、甲醇、乙醇转化制氢;另一类是利用生物途径转换制氢,如直接生物光解,间接生物光解,光发酵,光合异养细菌水气转移反应合成氢气,暗发酵和微生物燃料电池技术。基于生物质发酵产物的甲烷、甲醇、乙醇等简单化合物也可以通过化学重整过程转化为氢气。目前生物质制氢的研究主要集中在如何高效而经济地转换和利用生物质。高温裂解和气化制氢适用于含湿量较小的生物质,含湿量高于50%的生物质可以通过细菌的厌氧消化和发酵作用制氢。有些湿度较大的生物质亦可利用超临界水气化制氢 [1] 。 一些主要的生物质制氢原料及常用方法见表1。

新能源制氢技术发展现状及前景分析

新能源制氢技术发展现状及前景分析 摘要:化学链式制氢,生物质制氢,利用废弃风/光发射电解水制氢,日光分解 水制氢等清洁能源制氢新技术的研究与应用现状被介绍了。分析了产业发展的前景。氢燃料电池在汽车工业的发展过程中,由化石原料生产氢(包括工业副产品 氢和化合物热分解产生氢)是氢生产技术的主要工艺路线,而生物质氢生产,使 用“绿色电力”电解水制氢,将水进行太阳能催化分解以产生氢气和其他新能源, 是从化石原料中制氢的重要补充。 关键词:新能源;制氢技术;发展现状;前景 引言 由于传统的制氢技术消耗了煤,石油和天然气等化石原料,因此从长远来看,原料资源的供应是不可持续的,并且制氢过程具有大量污染物和CO2排放的缺点。因此,需要一种改善传统制氢技术,提高制氢效率并减少碳排放的方法(工艺简单,能耗低,易于分离氢以及基于易于捕获CO2的化学链)。 一、化学链制氢技术 化学链制氢反应器总共由三个反应器,一个燃料反应器,一个蒸汽反应器和 一个空气反应器组成,并且在燃料反应器,燃料,氧气载体的所有步骤中都进行 制氢和二氧化碳回收。化学链制氢的优势包括几个主要方面:(1)相对简单的 设备,蒸汽转化器,氢气和CO2净化没有分离装置。(2)仅氧气载体1需要固 体颗粒,并且常规的蒸汽重整过程应包括蒸汽重整,高温蒸汽变换剂,低温蒸汽 变换催化剂和CO2吸附剂。 二、可再生能源制氢技术 1.电力电解水制氢技术 1.1传统水电解制氢 通过电解水产生氢是在电解槽中添加电解质,然后施加电流(直流电)使水 分子解离,氢气沉积在负极上,氧气沉积在正极上。作为一种传统技术,电解水 制氢设备简单,无污染。所产生的氢具有高纯度和低杂质含量,适用于各种情况。缺点是能量消耗高和制氢成本高。外国技术公司主要包括法国Mephy,美国Teledyne和Norwegian Nel。国内对此技术的研究主要包括中国船舶工业总公司 718研究所,中国电力工业总公司,中国科学院大连化学研究所等。PEM纯水制 氢工艺是一种纯净水电解制氢技术,它不含腐蚀性液体,易于操作和维护,成本 低廉,将来需要中国发展。 1.2风电/光电电解水制氢 使用化石原料制氢具有能耗高,污染大,工艺流程长,氢气纯度低的缺点, 因此电解制氢技术几乎零排放,产品纯度高。由于其优点,从电解水中生产氢气 一直是该行业的主要研究之一。然而,由于使用电解水的氢生产消耗大量电力, 因此在氢燃料电池车辆的最新发展中,将氢用于大规模氢生产以及低成本大规模 氢生产是不经济的。在风能和太阳能制氢领域,德国首先引入了可再生能源来生 产氢的概念,并将其转化为气体燃料技术(P2G)。许多国家,例如德国和美国,已开始对该技术的商业化进行早期探索。目前,欧洲有45个P2G项目正在运营 中并且正在建设中。由于节省了化石资源,较低的发电成本和低碳的环境保护程序,因此产生了诸如风能和太阳能之类的过剩电力(即削峰用电和无法连接到电 网以通过电解水产生氢的富电)的使用是当前并且在业界中被广泛认可的一种将 电解水技术结合起来以实现大规模制氢的理想方法。

水电解制氢的最新进展与应用

水电解制氢的最新进展与应用 一、绿色能源氢能及其电解水制氢技术进展 摘要:随着环境污染日益严重,越来越多的研究关注于绿色无污染能源,其中氢能清洁无污染、高效、可再生,是未来最有潜力的能源载体。利用电解水技术制氢是目前最有潜力的技术,也是一种经济有效的技术。绍了氢能的研究现状和水电制氢技术,着重介绍了碱性电解槽、子交换膜电解技术以及固体氧化物水电解技术,对现有技术进行了总结。 1.氢能的研究现状 美国: 1990年,美国能源部(DOE)启动了一系列氢能研究项目。 2001年以来,美国政府制订了《自有车协作计划》、《美国氢能路线图》。 2004年2月,美国能源部出台的“氢态势计划”,并提出2040年美国将实现向氢经济的过渡。 美国能源部、国防部、交通部、国家科学基金、美国宇航局和商务部以及8个国家实验室、2所大学和19 个公司签署了研发合同。 欧盟: 2001 年11 月启动的“清洁能源伙伴计划”,欧盟拨款1850万欧元支持汉堡、伦敦等10个城市的燃料汽车示范项目。 2008年11 月初欧盟、欧洲工业委员会和欧洲研究社团联合制订了2020年氢能与燃料电池发展计划。 日本: 1993年就制订了“新阳光计划”,预计到2020年投资30亿美元用于氢能关键技术的研发。并计划在2020年实现燃料电池汽车500 万辆,建成燃料电池发电系统10000MW。 我国: 2003年11月我国加入了“氢能经济国际合作伙伴(IPHE)”,成为IPH首批成员国之一。《国家中长期科学和技术发展规划纲要(2006-2020年)》和《国家“十一五”科学技术发展规划》中都列入了发展氢能和燃料电池的相关内容。 相对而言,我国在氢能和燃料电池汽车领域的技术研发工作开始得较晚,这方面的标准体系尚未形成,然而通过国内研究单位的协作努力,在材料、基础设施、燃料电池堆、整车集成等方面都已取得阶段性进展,目前已有多家企业与联合国发展计划署和全球环境基金合作,开展燃料电池客车的公交线路试运行。 2 水电解氢能的制备技术进展 发展到现在,已有三种不同种类的电解槽,分别为碱性电解槽#聚合物薄膜电解槽和固体氧化物电解槽。 ①碱性电解槽 碱性电解槽是发展时间最长、技术最为成熟的电解槽,具有操作简单、#成本低的优点,其缺点是效率最低,槽体示意图如图1 所示。国外知名的碱性电解水制 氢公司有挪威留坎公司、格洛菲奥德公司和冰岛雷克雅维克公司等。电解槽一般采 用压滤式复极结构或箱式单极结构,每对电解槽压在1.8~2.0V,循环方式一般采用 混合碱液循环方式。

甲烷的应用研究进展

论文目录 摘要 (1) 关键词 (1) 1甲烷在合成领域的应用 (1) 1.1甲烷的直接氧化制合成气 (1) 1.2甲烷催化裂解制氢 (2) 1.3甲烷部分氧化制合成气 (2) 1.4甲烷/CO2重整反应 (3) 1.5甲烷水蒸气转化 (3) 1.6甲烷自热重整技术 (4) 2甲烷在其它领域的应用 (5) 2.1 甲烷探测仪的开发利用 (5) 2.2 甲烷工艺在工业上的应用 (5) 2.3甲烷传感器研究进展 (5) 3甲烷的研究发展展望 (6) 4 致谢...................................................................... 错误!未定义书签。 参考文献 (6) Application Research Progress Of Methane (7) 字数统计(7721字)

甲烷的应用研究进展 摘要:本文简单介绍了我国天然气资源状况,系统阐述了近些年来其在合成及其它领域的应用研究,主要包括甲烷的直接转化制合成气,催化裂解制氢,部分氧化制合成气,与CO2重整反应,水蒸气转化和自热重整技术;甲烷探测器的研究利用。最后,提出了对甲烷应用研究的展望。 关键词:甲烷转化应用进展 甲烷在自然界分布很广,是天然气、沼气、油田气及煤矿坑道气的主要成分,但含量分布不均,根据我国第二轮油气资源调查评论结果,我国152个沉积盆地和地区的常规天然气资源量(不包括溶解气)为380400亿m3,其中陆上大约占78.60%,海上21.40%。我国天然气资源总量约占世界天然气资源总量的10%[1],贮藏量占世界第17位,它集中分布在我国中部、西部和海域,埋深超过3500m和自然地理环境恶劣的黄土高原、山地和沙漠的天然气超过了总量的59%[2]。天然气的主要成分是甲烷,是人们生活中的主要燃料,其实甲烷的应用远不止简单的燃烧,它在很多领域都发挥着重要作用,因此对于甲烷应用的研究有着重大意义。 1甲烷在合成领域的应用 甲烷的转化和利用包括以甲烷为原料合成燃料和基础化学品的一切过程,从已有的天然气化工利用技术来看,甲烷的转化包括直接转化和间接转化[3]。 1.1甲烷的直接氧化制合成气 在甲烷的直接氧化利用中,研究较多的技术是甲烷直接氧化制甲醇,甲烷氧化偶联制烯烃等。 甲醇是重要的基础化工产品和化工原料,由甲烷合成甲醇的方法有多相催化氧化法、均相催化氧化法、熔盐氧化法、等离子体转化法、酶催化氧化法和光催化氧化法等[4]。陈立宇等[5]以V2O5为催化剂,在发烟硫酸中进行了甲烷液相选择性氧化的研究工作,考察了V2O5催化剂用量、反应温度、反应时间、发烟硫酸浓度等工艺条件对反应收率的影响,进行了甲烷液相选择性氧化的催化机理探讨和宏观动力学推导。甲烷在部分氧化反应中首先转化为硫酸甲酯,后者进一步水解得到甲醇。甲烷转化率可达54.5%,选择性45.5%。桑丽霞等[6]在固定床环隙反应器中,150℃MoO3-TiO2/SiO2光催化气相甲烷和水合成了甲醇和氢,甲醇的选择性达到了87.3%。 甲烷直接转化制烯烃是天然气直接转化利用中重要的方法之一,在关于制作工艺的研究之外,王凡,郑丹星等[7]在甲烷氧化偶联制烯烃时的热力学平衡限度有了一定研究,其实验结果表明,在甲烷氧化偶联制烯烃体系中,H2、CO的生成相对容易,C2产物(C2H4、C2H6)不容易生成。通过计算,得到了该体系有利于烯烃生成的反应条件,500℃-800℃、1.5MPa、烷氧摩尔比为7。魏迎旭等[8]合成了具有CHA结构的SAPO- 34和具有金属杂原子的MeAPSO-34(Me=Mn,Co和Mg)分子筛。采用

硼氢化钠催化水解制氢研究进展

硼氢化钠催化水解制氢研究进展 梁艳戴洪斌**王平 ( 中国科学院金属研究所沈阳材料科学国家(联合)实验室沈阳110016 ) 摘要硼氢化钠(NaBH4)催化水解制氢是一项具备车载氢源应用前景的储氢/制氢一体化技术,该技术具有储氢效率高、安全、方便、对环境友好等特点,目前,它已成为各种储氢/制氢技术研究的热点。介绍了NaBH4催化水解制氢的原理,综述了制氢催化剂、反应动力学、反应机理、反应装置的设计和反应副产物偏硼酸钠(NaBO2)的再生最新研究进展,并对该技术的应用前景进行了展望。 关键词硼氢化钠储氢/制氢催化剂反应动力学制氢装置 中图分类号: TM911.4;TQ116.2文献标识码:A文章编号:1005-281X(2008)-0000-00 Progress in Study of Hydrogen Generation from Catalytic Hydrolysis of Sodium Borohydride Solution Liang Yan Dai Hongbin**Wang Ping (Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyan 110016, China) Abstract Hydrogen generation (HG) from catalytic hydrolysis of sodium borohydride (NaBH4) solution is a promising on-board hydrogen storage/generation integrated technology in the practical application. Currently, attention is being extensively paid to NaBH4-based catalytic hydrolysis system due to its advantages of high hydrogen capacity, safety, convenience, the environmentally benign hydrolysis production and so forth. This perspective presents the principle of HG from NaBH4 solution, and reviews the current progresses in HG system of the hydrolysis of the catalyst, reaction kinetics, reaction mechanism, design of reaction generator and recycle of hydrolysis production, aiming at providing an outline of forefront of the technology for the practical application. Keywords Sodium borohydride; Hydrogen storage/generation; Catalyst; Reaction kinetics; Hydrogen generator 能源是人类生存和发展的基础,当前主要依靠的化石能源终将耗竭,能源价值凸现,为向可持续能源系统过渡,发展大规模可再生能源是主要方法。其中氢能被公认为是未来可再生清洁能源之一,因为它可以直接用于内燃机,或者作为燃料电池的燃料来驱动车辆或作为其它用途的电源。但是,用氢气作为燃料也存在许多困难,主要是缺乏安全、方便、高效和经济的储氢/制氢技术[1–4]。 发展高性能储氢系统为氢燃料电池车及各种军用﹑民用便携式电源提供移动氢源是氢能应用的关键环节。相比于高压和低温液化储氢,材料基固态储氢在操作安全性﹑能源效率及储氢容量方面具有显著优势,被公认为最具发展前景的储氢方式。但多年研究表明:已知储氢材料在温和操作温 收稿:2008年10月。收修改稿:××××年××月

新型含能体能源:氢能与储氢技术的最新进展

论文关键词:氢能制氢技术储氢技术 论文摘要:氢能是21世纪解决化石能源危机和缓解环境污染问题的绿色能源。实现氢能的利用,氢的储运是目前要解决的关键问题。文章综述了氢气制备技术和储备技术的最新研究进展,并探讨了制氢与储氢技术的关键问题。最后对进一步的研究进展进行展望,提出了可供研究的课题方向。 0 引言 资源减少、能源短缺、环境污染日益严重。为了我国经济可持续发展的战略国策,寻找洁净的新能源和可再生能源来替代化石能源已经迫在眉睫。氢能以其热值高、无污染、来源丰富等优点,越来越受到人们的重视,被称为21世纪的理想能源。是人类能够从自然界获取的、储量非常丰富而且高效的含能体能源。 作为能源,氢能具有无可比拟的潜在开发价值:氢是自然界最普遍存在的元素,它主要以化合物的形态储存于水中,而水是地球上最广泛的物质;除核燃料外,氢的发热值在所有化石燃料、化工燃料和生物燃料中最高;氢燃烧性能好,点燃快,与空气混合时有广泛的可燃围,而且燃点高,燃烧速度快;氢本身无毒,与其他燃料相比氢燃烧时最清洁。氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的燃机稍加改装即可使用。所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,在能源工业中氢是极好的传热载体。所以,研究利用氢能已成为国外学者研究的热点[1、2、3、4]。 1国外氢能发展状况 2003年11月19-21日在美国首都华盛顿欧米尼·西海姆大酒店举行“国际氢能经济合作伙伴组织”[The International Partnership For The Hydrogen Economy( IPHE)]成立大会,共有澳大利亚、巴西、加拿大、中国、法国、德国、冰岛、印度、意大利、日本、国、俄罗斯、英国、美国和欧盟的政府代表团及工商业界代表数百人出席会议。IPHE是一种新的氢能国际合作关系,这种合作将支持未来的氢能和电动汽车技术,建设一个安全、有效和经济的世界围的氢能生产、储存、运输、分配和使用设施的大系统。氢能作为解决当前人类所面临困境的新能源而成为各国大力研究的对象。 氢能广泛应用的关键,在于研制出成本低的制氢技术。目前,氢能利用技术开发已在世界主要发达国家和发展中国家启动,并取得不同程度的成果。美国已研制成功世界上第一辆以氢为燃料的汽车,可将60%-80%的氢能转换成动能,其能量转换率比普通燃机高一倍。1989年,美国太平洋能源公司发明了能大量生产廉价氢燃料的新技术。可用于水分解的一种化学催化剂。用这种方法分解出来的氢成本很低,因而成为世界上最便宜的燃料[1-3,6]。 欧盟(EU)也加紧对氢能的开发利用。在2002-2006年欧盟第6个框架研究计划中,对氢能和燃料电池研究的投资为2,500万-3,000万欧元,比上一个框架计划提高了1倍。北欧国家2005年成立了“北欧能源研究机构”,通过生物制氢系统分析,提高生物生产氢能力。2005年7月,德国宝马( BMW)汽车公司推出了一款新型氢燃料汽车,充分利用了氢不会造

制氢工艺技术比较分析

制氢工艺技术比较分析 发表时间:2018-12-05T20:54:23.827Z 来源:《电力设备》2018年第22期作者:艾腾筐[导读] 摘要:随着国家的发展,制氢工艺技术的应用受到广泛关注,但是,由于制氢工艺技术种类很多,应用效果与效益存在差异,因此,在应用之前应重视各类工艺技术之间的对比分析,并采用科学化与合理化的方式开展综合研究工作,探索新时期的主要制氢工艺技术方式,为产业化的发展夯实基础。 (新疆美克化工股份有限公司新疆维吾尔自治区巴音郭楞蒙古自治州 841000)摘要:随着国家的发展,制氢工艺技术的应用受到广泛关注,但是,由于制氢工艺技术种类很多,应用效果与效益存在差异,因此,在应用之前应重视各类工艺技术之间的对比分析,并采用科学化与合理化的方式开展综合研究工作,探索新时期的主要制氢工艺技术方式,为产业化的发展夯实基础。 关键词:制氢;工艺技术;比较 氢气属于我国重要工业产品之一,广泛应用在石油领域、化工领域、建材领域、冶金领域、电子领域、医药领域、电力领域、轻工业领域、气象领域与交通领域,在不同领域应用中对氢气的纯度与杂质含量要求不同。因此,为了结合各个领域的氢气需求,应筛选效率较高的制氢工艺与相关配套装置,提升经济效益并保证生产工作灵活性,满足安全管理需求,加大新工艺技术的应用力度。 一、制氢工艺技术方式分析 第一,电解水制氢工艺技术。对于此类工艺技术而言,属于我国常用且发展成熟的制氢方法,主要将水作为原材料,形成氢气与氧燃料生成水的逆过程,达到制氢的目的。因此,在实际制作的过程中,需要提供一定能量,并促进水分解,例如:提供电能,可以促进水分解,制氢效率为86%左右,工艺的应用较为简单,没有污染问题,且经济效益较高,但是,在实际应用过程中,对配电功率的要求很大,单套装置难以完成任务,因此,在很多区域中受到限制。 第二,天然气转化制氢工艺技术。此类方式就是在催化剂的作用之下,使得水蒸气转化成为氢气,通常反应温度为810摄氏度左右。此类工艺技术所制成的氢气含量在74%左右,很多大型加工厂中都在使用天然气作为燃料,对蒸汽进行催化,制取氢气。但是,此类工艺技术在实际应用期间,流程较为繁琐,需要投入的成本很高,消耗的能源也很多,对生态环境会产生一定影响。因此,我国已经开始针对此类工艺技术进行整改,开发间歇式的天然气蒸汽制作工艺技术,在小型设备的支持下,降低制取成本。但是,由于原材料的分布不均匀,导致此类方式的应用受到一定限制。 第三,没碳化制氢工艺技术。此类技术将煤设置在与空气相互隔绝的环境中,温度为950摄氏度左右,制取焦炭,副品就是焦虑煤气,其中含有60%左右的氢气。对于焦炉煤气而言,在去除杂质之后,可以进行氢气的提取,但是,此类工艺技术的应用流程较为复杂,需要投入的资金量较高,存在制约。 第四,煤气化制氢工艺技术。此类技术就是创建固定床类型的汽化炉设备,所制取的煤气中含有40%氢气。在煤气杂质处理之后,可以使用相关装置进行氢气的制取,且费用很低,氢气的提取效率较高,可以应用在生产中。 第五,甲醇水蒸气转化制氢工艺技术。通常情况下,在甲醇与脱盐水蒸汽相互混合之后,将其放置在加压加热的的容器中,可以形成催化与转化作用,生成75%的氢气。在变压吸附的过程中,应使用吸附剂,根据压力变化对吸附剂的剂量进行动态化调整,在高压环境中对原料中杂质进行吸附,在低压环境中对杂质进行脱附处理,保证吸附剂的再生应用。此类技术的使用可以进行脱盐水与循环液缓冲罐中的甲醇、水等混合在一起,在循环液体升压泵的支持下,进行加压处理,将其与甲醇冲关升压泵加压之后的甲醇原料混合在一起,然后设置在换热器设备中,形成自转化器的转化作用,完成第一次热交换。在此之后,将原料液体放置在汽化塔设备中,然后在沸腾器与导热油的作用之下实现二次加热,进行汽化处理。在转化之后进入到脱碳的程度中,在八塔七次均压环境之下,进行真空变压吸附处理,制取出相关气体,将杂质排放在大气中。对于半成品气体而言,还需进入到PSA制氢工艺环节中,实现提纯处理目的,此时的氢气纯度甚至可以达到99.99%。在使用甲醇水蒸气转化制氢工艺技术的过程中,工艺流程较为简单,需要支付的成本很少,且操作灵活性很高,制氢规模在8000nm3/小时左右,有利于进行精细化生产与制作,因此,在实际生产的过程中,应合理使用此类工艺技术,遵循科学化与合理化的工作原则,编制完善的计划方案,在提升整体工作质量与制氢工艺技术应用水平的基础上,更好的完成当前任务,达到预期的工作目的。 二、制氢工艺技术比较 对于电解水制氢工艺技术而言,主要使用的原材料为水,制取规模为300nm3/小时,装置在使用过程中规模很小,建设的周期很多,使用便利性高,操作灵活,但是存在耗电量大的缺点[1]。 天然气转化制氢工艺技术的应用原材料为天然气与水,制取规模为4000nm3/小时左右,工艺流程较为复杂,配套装置的安装与建设时间长,需要支付较高投资成本。 煤焦化制氢工艺技术在应用期间,原材料为煤与水,制取规模为10000nm3/小时左右,但是,煤炭的资源分布不均匀,煤焦化的工艺流程会受到一定影响[2]。 煤气化制取技术在应用过程中,原材料为煤与水,制取规模为10000nm3/小时左右,工艺流程较为复杂,对生态环境会产生污染[3]。 甲醇水蒸气转化技术的原材料为甲醇与水,制取规模为8000nm3/小时左右。在生产过程中,甲醇原材料容易获取,运输与存储便利性高,需要投入的资金成本很低,且基础设施的建设时间很短,能耗较少。同时,此类技术在应用期间的工艺流程很简单,灵活性符合要求[4]。 综合对比分析可以发现,甲醇水蒸气转化制氢工艺技术的应用效果较高,能够打破传统工艺技术局限性,降低成本提升制氢工艺技术应用效果,因此,需予以足够重视,广泛进行推广应用[5]。 结语: 综上所述,对比分析各类制氢工艺技术,甲醇水蒸气转化制氢技术的应用效果较为良好,因此,在实际生产期间应总结丰富经验,合理应用此类工艺技术开展工作,确保满足当前的时代发展需求。 参考文献: [1]杨小彦,陈刚,殷海龙,等.不同原料制氢工艺技术方案分析及探讨[J].煤化工,2017(6):40-43. [2]刘晓丽.制氢工艺技术比较[J].当代化工研究,2016(5):78-79.

氢能利用与制氢储氢技术研究现状

氢能利用与制氢储氢技术研究现状上海大学陈哲 关键字:氢能制氢储氢技术 目前世界各国都在因地制宜的发展核能、太阳能、地热能、风能、生物能、海洋能和氢能等新型能源,其中氢能以资源丰富、热值高、无污染等优点被认为是未来最有希望的能源之一。 一、氢能的利用与未来发展 氢能的利用方式主要有三种:(1)直接燃烧;(2)通过燃料电池转化为电能;(3)核聚变。其中最安全高效的使用方式是通过燃料电池将氢能转化为电能。目前,氢能的开发正在引发一场深刻的能源革命,并将可能成为21世纪的主要能源。 美、欧、日等发达国家都从国家可持续发展和安全战略的高度, 制定了长期的氢能源发展战略。美国的氢能发展路线图从时间上分为4个阶段:技术、政策和市场开发阶段;向市场过渡阶段;市场和基础设施扩张阶段;走进氢经济时代。从2000 年至2040年, 每10年实现一个阶段。而欧盟划分为三个阶段,即短期,从2000 年到2010 年;中期,从2010 年到2020年;中远期,从2020年到2050年。第一阶段将开发小于500 kW的固定式高温燃料电池系统(MCFCPSOFC);开发小于300kW 的固定式低温燃料电池系统( P EM) 。第二阶段是新的氢燃料家用车比例要达到5%,其他氢燃料交通工具比例达到2%。所有车的平均二氧化碳排放量减少2.8g/km,二氧化碳年排放量减少1500万t 。第三阶段是新的氢燃料家用车比例要达到35%,其他氢燃料交通工具比例达到32%。所有车的平均二氧化碳排放量减少44.8g/km,二氧化碳年排放量减少2.4亿t 。 二、制氢技术 1、矿物燃料制氢 在传统的制氢工业中,矿物燃料制氢是采用最多的方法,并已有成熟的技术及工业装置。其方法主要有重油部分氧化重整制氢,天然气水蒸气重整制氢和煤气化制氢。虽然目前90% 以上的制氢都是以天然气和煤为原料。但天然气和煤储量有限,且制氢过程会对环境造成污染,按照科学发展观的要求,显然在未来的制氢技术中该方法不是最佳的选择。

硼氢化钠制氢燃料电池能量管理系统设计

目录 摘要............................................................................................................................ I Abstract......................................................................................................................... II 第1章绪论 (1) 1.1 课题背景 (1) 1.2 国内外研究现状 (2) 1.2.1 硼氢化钠制氢燃料电池 (2) 1.2.2 氢氧燃料电池控制系统 (4) 1.2.3 自供氢燃料电池系统商业化现状 (6) 1.2.4 国内外研究现状简析 (8) 1.3 课题的目的及意义 (8) 1.4 主要研究内容 (8) 第2章硼氢化钠制氢燃料电池能量管理系统原理 (10) 2.1 引言 (10) 2.2 硼氢化钠制氢燃料电池工作原理 (10) 2.2.1 质子交换膜燃料电池工作原理 (10) 2.2.2 空气自呼吸PEMFC工作原理 (12) 2.2.3 硼氢化钠水解制氢原理 (13) 2.2.4 硼氢化钠制氢燃料电池 (14) 2.3 硼氢化钠制氢燃料电池能量管理系统工作原理 (15) 2.3.1 硼氢化钠制氢燃料电池系统 (15) 2.3.2 能量管理系统架构 (16) 2.3.3 控制系统原理 (17) 2.3.4 电源管理系统原理 (18) 2.4 本章小结 (21) 第3章硼氢化钠制氢燃料电池能量管理系统硬件设计与实现 (22) 3.1 引言 (22) 3.2 控制系统的硬件设计与实现 (22) 3.2.1 主控芯片的选择及电路设计 (22) 3.2.2 温度控制模块 (25) 3.2.3 压力控制模块 (27) 3.2.4 人机交互模块 (28) -IV -

制氢技术比较分析报告.doc

制氢技术综述 &制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯 碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含 量高、纯度较低,不能达到 GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢

(B)甲醇制氢 (C)水电解制氢 3.天然气制氢 制氢种类制氢方法特点 天然气水蒸汽重 1. 需吸收大量的热,制氢过程能耗高,燃料成本占生产成本的52- 整制氢68%; 2.反应需要昂贵的耐高温不锈钢管作反应器; 3.水蒸汽重整是慢速反应,因此该过程制氢能力低,装置规模大和 投资高。 天然气部分氧化 1. 优点: 制氢 1)廉价氧的来源;2)催化剂床层的热点问题; 3)催化材料的反应稳定性;4)操作体系的安全性问题 2.缺点:因大量纯氧增加了昂贵的空分装置投资和制氧成本 天然气制氢 天然气自热重整 1. 同重整工艺相比,变外供热为自供热,反应热量利用较为合 理;制氢 2.其控速步骤依然是反应过程中的慢速蒸汽重整反应; 3.由于自热重整反应器中强放热反应和强吸热反应分步进行,因此 反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重 整反应过程具有装置投资高,生产能力低。 天然气绝热转化 1. 大部分原料反应本质为部分氧化反应,控速步骤已成为快速部分 制氢氧化反应,较大幅度地提高了天然气制氢装置的生产能力。 2.该新工艺具有流程短和操作单元简单的优点,可明显降低小规模 现场制氢装置投资和制氢成本。

光解水制氢半导体光催化材料的研究进展

光解水制氢半导体光催化材料的研究进展 田蒙奎1 ,2 ,上官文峰2 ,欧阳自远1 ,王世杰1 (1. 中国科学院地球化学研究所,贵州贵阳550002 ; 2. 上海交通大学机械与动力学院燃烧与环境技术研究中心,上海200030) 摘要: 自从Fujishima2Honda 效应发现以来,科学研究者一直努力试图利用半导体光催化剂光分解水来获得既可储存而又清洁的学能———氢能。近一二十年来,光催化材料的研究经历了从简单氧化物、复合氧化物、层状化合物到能响应可见光的光催化材料。本文重点描述了这些光催化材料的结构和光催化特性,阐述了该课题的意和今后的研究方向。关键词: 光解水;氢能;半导体光催化剂中图分号: X13 文献标识码:A文章编号:100129731 (2005) 1021489204 1 引言 在能源危机和环境问题的双重压力下,氢能因其燃烧值高、储量丰富、无污染而成为最有希望替代现有化石能源的清洁能源,因而氢能的开发成了能源领域的研究热点。自从Fujishima 和Honda 于1972 年发现了TiO2 光电化学能分解水产生H2 和O2 以来[1 ] ,科学研究者实现太阳能光解水制氢一直在作不懈的努力。普遍接受的光解水制氢原理是:半导体光催化剂在能量等于或大于其禁带宽度的光辐射时,电子从最高电子占据分子轨道( HOMO ,即价带) 受激跃迁至最低电子占据分子轨道(LUMO ,即导带) ,从而在价带留下了光生空穴( h + ) , 导带中引入了光生电子(e - ) 。光生空穴和光生电子分别具有氧化和还

原能力。要实现太阳能光解水制氢和氧,光生电子的还原能力必须能还原H2O 产生H2 ,而光生空穴的氧化能力必须能氧化H2O 产生O2 ,即半导体光催化剂的导带底要在H2O/ H2 电位( E0 = 0V ,p H = 0) 的上面(导带位置越高,电位越负,还原能力越强) ;而价带顶在O2 / H2O 电位( ENHE = + 1. 23V ,p H = 0) 的下面(价带位置越低,电位越正,氧化能力越强) 。近一二十年来, TiO2 以外的光催化剂的相继发现,特别是能响应可见光的光催化材料的出现,使得光解水制氢研究进入了非常活跃时期。本文就近期太阳能光解水制氢研究进展中的半导体光催化材料作一综述。 2 简单半导体氧化物,硫化物系光催化剂目前广泛研究的简单化合物半导体材料的能带结构如图1 所示: 图1 部分半导体材料的能带结构示意图 Fig 1 Schematic diagram of band st ructure for some semiconductor s TiO2 光催化剂由于光照不发生光腐蚀、耐酸碱性好、化学性质稳定、对生物无毒性、来源丰富等优点而被广为利用。具有代表性的

天然气制氢的基本原理及工业技术经验进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO 2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下: 1)可逆反应在一定的条件下,反应可以向右进行生成CO和H2,称为正 反应;随着生成物浓度的增加,反应也可以向左进行,生成甲烷和水蒸气,

称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以生成一分子CO 和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使正反应进行的更 快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的参与 的条件下,反应的速度缓慢。只有在找到了合适的催化剂镍,才使得转化 的反应实现工业化称为可能,因此转化反应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率 也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速 率对反应温度升高而加快,扩散作用对反应速率影响明显,采用粒度较小的催化 剂,减少内扩散的影响,也能加快反应速率。 4.影响析炭反应的因素 副反应的产物炭黑覆盖在催化剂表面,会堵住催化剂的微孔,降低催化剂的 活性,增加床层阻力,影响生产力。 在甲烷蒸汽转化反应中影响析炭的主要因素如下: a.转化反应温度越高,烃类裂解析炭的可能性越大。 b.水蒸气用量增加,析炭的可能性越小,并且已经析出的炭黑也会与过量 的水蒸气反应而除去,在一定的条件下,水碳比降低则容易发生析炭现 象。

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

氢能产业政策及技术发展情况分析

氢能产业政策及技术发展情况分析近期,我国氢能产业发展步伐明显加快。包括河北省在内的多个省市政府部门和行业组织相继出台实施意见或发展规划,大力推动氢能产业和技术落地。欧美日等发达国家也均从能源战略高度,积极布局氢能开发利用,产业正处在加速战略突破的关键时期。 一、氢能产业链现状分析 氢能是一种清洁高效的二次能源,具有来源广、热值高、可储存、可转换等优点,是未来清洁能源系统的重要组成部分。从国内外氢能发展情况来看,产业上下游所涉及关键技术正在趋于成熟,市场规模逐步扩大,示范应用取得较大进展,贯穿氢能生产、储运、使用各环节的产业链正在形成。 (一)氢的生产已具规模化,但电解水制氢产能占比低 2018 年,我国氢产能2100 万吨,占全国终端能源总量的2.7%,约占全球氢产能的18%2。现阶段成熟的制氢技术路线包括:化石能源重整制氢、工业副产气制氢、电解水制氢等。化石能源制氢包括煤制氢、天然气制氢等方式,具有生产规模大、技术成熟的特点,是目前主要制氢方式。现阶段电解水制氢产能低(产能占比4%左右)、成本高(电价成本占70%以上),尚不能满足工业化制氢需求;且按照目前中国电力平均碳排放强度计算,现阶段电解水制氢的碳排放量是化石能源重整制氢的3-4 倍,减排效果不理想。但电解水制氢具有气体纯度高、制取灵活和不依赖化石能源的优点,随着未来电能的生产结构逐步清洁低碳化,加之电解水制氢技术进步和成本下降,将逐步

具备规模化应用潜力。特别是低价可再生能源电制氢方式技术竞争力较强。一般认为,若制氢电价不超过0.3 元/千瓦时,则可以使电解水制氢成本接近化石能源制氢的平均成本。电解水制氢主要技术包括:碱性电解水制氢、质子交换膜电解水制氢(PEM)和固态氧化物电解水制氢(SOEC),碱性电解水制氢技术最为成熟,PEM 和SOEC 技术电解效率和成本均较高,PEM 技术在国外已初步实现商业化。P2X 电转其他能源技术5近期受到广泛关注,除电转热、电转冷外,其他各类(电转氢、电转甲烷、电转甲醇、电转氨等)均以电解水制氢为基础。P2X 目前尚处在技术研发和示范阶段,经济性缺乏竞争力。但随着新能源发电成本下降和PEM 电解水技术(可适配波动性电源)的成熟,低价可再生能源电制氢将逐步具备商业价值;此外,电能转化为氢能后可以长时间、大规模存储,有望成为未来电力系统跨季节储能的可行方案,提升系统调节能力并为综合能源服务提供有力支撑。 (二)受技术和成本限制,商业化储运和加注网络尚未形成 氢气储运技术是氢能高效利用的关键,也是限制氢能大规模产业化发展的重要瓶颈。储氢的主要方式包括:高压气态储氢、低温液态储氢、有机液态储氢、物理类固态储氢,前两种技术成熟、应用广泛,后两种尚处于示范阶段。运输方式分别与储氢技术相配套;实践中,美国和欧洲建设了大规模、远距离的输氢管道(里程约占世界90%),实现高效的高压气态输送;日本、美国液态储输技术相对成熟,将液氢罐车作为重要运输方式。我国以高压气态储运为主(液态储运主要

相关主题
文本预览
相关文档 最新文档