当前位置:文档之家› 直流电机工作原理

直流电机工作原理

直流电机工作原理
直流电机工作原理

第三章直流电机的原理

本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。本章共有10节课,内容和时间分配如下:

1.掌握直流电机的结构及工作原理。(2节)

2.掌握直流电机绕组有关的结构。(2节)

3.掌握直流电机绕组的电枢反应。(1节)

4.掌握直流电机的电枢电动势和电磁转矩。(1节)

5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。( 2.5节)

6.掌握直流电动机的基本方程式和运行特性。( 1.5节)

第一节直流电机的基本工作原理

一直流电机的用途

直流电动机的优点:

1 调速范围广,易于平滑调节

2 过载、启动、制动转矩大

3 易于控制,可靠性高

4 调速时的能量损耗较小

缺点: 换向困难,容量受到限制,不能做的很大。

应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。

直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。

二、直流电机的工作原理

原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。

为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。(一)直流发电机的工作原理

1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。

e=Blv。

B:磁密l:导体长度;v:导体与磁场的相对速度。

正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。

理解:电磁感应原理的变形(变化的磁通产生感应电动势)

2 发电机工作过程分析:两磁极直流发电机的工作原理图。

(1)构成:

磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。

励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。

电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。

换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。

电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

(2)工作过程:

P1:电动势产生

当电枢被原动机以恒速驱动,按逆时针方向转动时,用右手定则可以判定,线圈ab和cd边切割磁力线产生的感应电动势的方向,则在负载与线圈构成的回路中产生电流Ia,其方向与电动势方向相同。电流由电刷A流出,由电刷B流回。

*电动势与电流关系:同向

P2:换向

当电枢转到上图b所示位置时,ab边转到了S极下,cd边转到了N极下。这时线圈中感应电动势的方向发生了改变,但由于换向器随同一起旋转,使得电刷A总是接触N极下的导线,而电刷B总是接触S极下的导线,故电流仍由A流出 B流回,方向不变。

*虽然有换向器的作用,将线圈内的交变电动势在两电刷间变换为方向不变的电动势,但它的大小仍然是脉动的。欲获得在方向和量值上均为恒定的电动势,则应把电枢铁心上的槽数和线圈匝数增多,同时换向器上的换向片数也要相应地增加。

(3)电磁转矩与能量转换分析:

电磁转矩:电枢电流Ia与磁场相互作用而产生的电磁力形成了电磁转矩T。

用左手定则可以判定,电磁转矩T的方向与电枢旋转方向相反。因此,在电枢等速旋转时,原动机的驱动转矩T1必须与发电机的电磁转矩 T和空载损耗转矩T0相平衡( T0是发电机轴上的转矩),即T1=T+ T0

*电磁转矩方向与转速方向关系:反向

能量转换:

原动机(机械能)->电磁转矩->发电机负载(电能)

当发电机的负载(即电枢电流)增加时,电磁转矩和输出功率也随之增加,这时原动机的驱动转矩所供给的机械功率亦必须相应增加,以保持转矩之间和功率之间的平衡。可见,发电机向负载输出电功率的同时,原动机却向发电机输出机械功率,发电机起着将机械能转换为电能的作用。

(二)直流电动机的工作原理

1.工作原理:电磁力定律

载流导体在磁场中将会受到力的作用,若磁场与载流导体互相垂直,作用在导体上的电磁力大小为: f = B·l·i

力的方向用左手定则确定

理解:电流产生磁场原理的变形(电流产生磁场)

一个通电线圈相当于一个具有NS极的磁体。形成电磁力。

2电动机工作过程分析:直流电动机的工作原理图。

(1)构成:

磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。

励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。

电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。

换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。

电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

(2)工作过程:

P1:电磁转矩产生

电枢绕组通过电刷接到直流电源上,绕组的旋转轴与机械负载相联。电流从电刷A流入电枢绕组,从电刷B流出。电枢电流Ia与磁场相互作用产生电磁力F,其方向可用左手定则判定。这一对电磁力所形成的电磁转矩T,使电动机电枢逆时针方向旋转。

*电磁转矩与电枢旋转方向关系:同向

P2:换向

当电枢转到上图b所示位置时,ab边转到了S极下,cd边转到了N极下。这时线圈电磁转矩的方向发生了改变,但由于换向器随同一起旋转,使得电刷A总是接触N极下的导线,而电刷B总是接触S极下的导线,故电流流动方向发生改变,电磁转矩方向不变。(3)电动势与能量转换分析:

电动势:电枢转动时,割切磁力线而产生感应电动势,这个电动势(用右手定则判定)的方向与电枢电流Ia和外加电压U的方向总是相反的,称为反电动势Ea。

它与发电机的电动势E的作用不同。发电机的电动势是电源电动势,在外电路产生电流。而Ea是反电动势,电源只有克服这个反电动势才能向电动机输入电流。

可见,电动机向负载输出机械功率的同时,却向电动机输入电功率,电动机起着将电能转换为机械能的作用。

*电动势方向与电流方向关系:反向

能量转换:

电源(电能)->电磁转矩->负载(机械能)

比较:

发电机和电动机两者的电磁转矩T、电动势的作用是不同的。

发电机的电磁转矩是阻转矩,它与原动机的驱动转矩T1的方向是相反的。电动机的电磁转矩是驱动转矩,它使电枢转动。电动机的电磁转矩T必须与机械负载转矩T2及空载损耗转矩T0相平衡,即T=T2十T0。

发电机的电动势是电源电动势。电动机的电动势是反电动势,电源只有克服这个反电动势才能向电动机输入电流。

直流电机作发电机运行和作电动机运行时,虽然都产生电动势和电磁转矩,但两者作用截然相反。

第二节直流电机的结构

目的:了解它们各主要部件的名称、作用、相互组装及动作关系。以利正确选用和使用。电机的结构要求:

1 电磁要求: 产生磁场,感应出电动势,通过电流,产生电磁转矩

2机械要求:传递转矩,保持坚固稳定,冷却的要求,检修,运行可靠。

从电机的基本工作原理知道,电机的磁极和电枢之间必须有相对运动,因此,任何电机都有固定不动的定子和旋转的转子两部分组成,在这两部分之间的间隙叫空气隙。

一、定子

定子的作用是产生磁场和作为电机机械支撑。它由主磁极、换向磁极、电刷、机座、端盖和轴承等组成。

(一)主磁极——产生主磁通υ。

主磁极铁心包括极心和极掌两部分。极心上套有励磁绕组,各主磁极上的绕组一般都是串联的。直流电机的磁极如图所示。极掌的作用是使空气隙中磁感应强度分布最为合适。

改变励磁电流If的方向,就可改变主磁极极性,也就改变了磁场方向。

(二)换向磁极——产生附加磁场,改善电机的换向,减小电刷与换向器之间的火花,不致使换向器烧坏。

在两个相邻的主磁极之间中性面内有一个小磁极,这就是换向磁极。它的构造与主磁极相似,它的励磁绕组与主磁极的励磁绕组相串联。

主磁极中性面内的磁感应强度本应为零值,但是,由于电枢电流通过电枢绕组时所产生的电枢磁场,使主磁极中性面的磁感应强度不能为零值。于是使转到中性面内进行电流换向的绕组产生感应电动势,使得电刷与换向器之间产生较大的火花。

用换向磁极的附加磁场来抵消电枢磁场,使主磁极中性面内的磁感应强度接近于零,这样就改善了电枢绕组的电流换向条件,减小了电刷与换向器之间的火花。

(三)电刷装置

电刷装置主要由用碳一石墨制成导电块的电刷、加压弹簧和刷盒等组成。固定在机座上(小容量电机装在端盖上)不动的电刷,借助于加压弹簧的压力和旋转的换向器保持滑动接

触,使电枢绕组与外电路接通。

电刷数一般等于主磁极数,各同极性的电刷经软线汇在一起,再引到接线盒内的接线板上,作为电枢绕组的引出端。

(四)机座——用来固定主磁极、换向磁极和端盖,是电机磁路的一部分。

机座用铸钢或铸铁制成。机座上的接线盒有励磁绕组和电枢绕组的接线端,用来对外接线。

(五)端盖

端盖由铸铁制成,用螺钉固定在底座的两端,盖内有轴承用以支撑旋转的电枢。

二、转子

转子又称电枢,是电机的旋转部分。它由电枢铁心、绕组、换向器等组成。如右图所示。

(一)电枢铁心

电枢铁心由硅钢片冲制迭压而成,在外圆上有分布均匀的槽用来嵌放绕组。铁心也作为电机磁路的一部分。

(二)绕组

绕组是产生感应电动势或电磁转矩,实现能量转换的主要部件。它是由许多绕组元件构成,按一定规则嵌放在铁心槽内和换向片相连,使各组线圈的电动势相加。绕组端部用镀锌钢丝箍住,防止绕组因离心力而发生径向位移。

(三)换向器

换向器由许多铜制换向片组成,外形呈圆柱形,片与片之间用云母绝缘。

三、铭牌和额定值

为了使电机安全而有效地运行,制造厂对电机的工作条件都加以技术规定。按照规定的工作条件进行运行的状态叫做额定工作状态。电机在额定工作时的各种技术数据叫做额定值,一般加下标e表示。这些额定值都列在电机的铭牌上,使用电机前,应熟悉铭牌。使用中的实际值,一般不应超过铭牌所规定的额定值。

(一)型号:它表示电机的类别。例如:Z2--12

Z:直流;2:设计序号;1:铁心长度;2:机座号

(二)额定电流Ie

这是指发电机长期运行时电枢输出给负载的允许电流。对于电动机则是指电源输入到电动机的允许电流。

(三)额定电压Ue

这是指发电机输出的允许端电压。对于电动机则指输入到电动机端钮上的允许电压。

(四)额定转速ne

这是指电机在额定工作状态时,应达到的转速。

(五)额定功率(额定容量) Pe

对于发电机来说,这是指在额定电压下,输出额定电流时,向负载提供的电功率Pe,Pe=UeIe

对于电动机来说,则是指在额定电压,额定电流和额定转速下,电动机轴上输出的机械功率Pe=UeIeη e

(六)额定效率ηe

额定功率与输入功率之比,称为电机的额定效率,即ηe=(额定功率/输入功率)×100 %

四、电枢绕组

1 有关术语

1)极轴线——主磁极的中轴线。

2) 几何中性线——相邻两个主磁极之间的几何分界线。

3) 极距τ:

相邻两磁极中心线间的距离称为极距τ,常用槽数表示,

τ=z/2p

其中z为槽数,p为极对数。

4)绕组元件——两端分别与两个换向器片联接的单匝或多匝线圈,每个元件由两个放在电枢槽中可以产生感应电动势的有效边,叫元件边。槽外部分只起连接作用,叫端接部分。

5)节距——绕组元件的宽度和元件之间的连接规律。

第一节距:一个线圈的两个边所跨定子圆周上的距离称为节距,用y1 表示,一般用槽数计. 线圈可范围分为:

整距绕组: y1 = τ

短距绕组: y1 < τ

长距绕组: y1 > τ

换向节距:一个元件的两个边在换向器上的距离称为换向节距,用yk 表示.

第三节直流电机的磁场

一、直流电机的励磁方式

按励磁方式不同,电机可分为

(一)他励直流电机电枢和励磁绕组由两个独立的直流电源供电。

(二)并励直流电机电枢和励磁绕组并联后由一个独立的直流电源供电。

(三)串励直流电机电枢和励磁绕组串联后由一个独立的直流电源

供电

(四)复励直流电机复励电机有两个绕组,一个并励绕组,一个串励

绕组,并励绕组和电枢并联,和串励绕组串联后由

一个独立的直流电源供电。

直流发电机的主要励磁方式是他励式、并励式和复励式

二、直流电机的空载磁场

磁场的基本物理量

(1) 磁路:磁通Φ经过的路径。

(2) 磁通Φ: 磁场中穿过某一截面积的总磁感线数称为通过该面积的磁通

单位韦伯Wb 。

(3) 磁感应强度B: 描述磁介质中实际的磁场强弱和方向的物理量,矢量, 有大小和方向,单位特斯拉T 。B= Φ/A(磁通除以截面积)

(4) 磁场强度 H: 是计算磁场时常用的物理量,也是矢量。它与磁感应强度矢量的关系为 H=B/μ

(5) 磁通势:某一线圈的电流I 与其匝数N 的乘积。磁通势F 的方向由产生 它的线圈电流按右手定则确定。单位:(A )

1.直流电机的磁场构成

直流电机工作时的磁场是由各绕组的总磁动势共同产生的(包括励磁 绕组,电枢绕组,换向极绕组,补偿绕组等)。励磁绕组的磁动势起 最主要的作用。

1)主磁通 Φm 所有那些由N 极经过气隙到转子,再由另一个气隙返回S 极的磁通,同时与励磁绕组和电枢绕组相交链,是直流电机中起有效作用的磁通,称为主磁通,它能够在旋转的电枢绕组中感应出电动势,并和电枢绕组的磁动势相互作用产生电磁转矩。

2)漏磁通 Φ1σ 交链励磁绕组本身,不和电枢绕组相交链,只能增加磁极和定子磁轭的饱和程度,不产生电动势和转矩。

2.直流电机的空载磁场

直流电机的空载是指电枢电流等于零或者很小,且可以不计其影响 的一种运行状态。

磁场的计算

全电流定律:在磁路中,沿任一闭合路径,磁场强度的线积分等于与该闭和路径交链的电流的代数和。

上式左侧为磁场强度矢量沿闭合回线的线积分;右侧是穿过由闭合回线所围面积的电流的代数和。电流的符号规定为:闭合回线的围绕方向与电流成右旋系时为正,反之为负。 由励磁磁通势单独建立的磁场,以一台四极直流电机空载时为例,由励磁电流单独建立的磁场分布如图。

l

H dl I

?=∑?

空载磁密分布

不计齿槽影响,直流电机空载时,其气隙磁场(主磁场)的磁密分布波形如图所示

三.直流电机负载时的磁场和电枢反应

1.负载时磁场

电机带上负载以后,电枢绕组内流过电流,还会形成磁通势,该磁通称为电枢磁通势。所以,负载时电机中气隙磁场是由励磁磁通势和电枢磁通势共同建立。

由此可知,在直流电机中,从空载到负载,其气隙磁场是变化的

2.电枢反应

1)电枢磁通势

电枢磁通势对励磁磁通势所产生气隙磁场的影响称为电枢反应。

为画图简单起见,元件边只画一层,认为电枢是光滑的,并考虑某一极性下元件中流过电流同一方向,得电枢磁场分布。

电枢反应磁通势轴线的位置与电刷轴线重合,当电刷处于几何中性线时,电枢反应磁通势与磁极轴线互相垂直。

●电枢反应使气隙磁场发生了畸变

电枢磁场使主磁场一半削弱,另一半加强,并使电枢表面磁密等于零处(物理中心线)离开了几何中性线。

●电磁反应呈去磁作用

* 在磁路不饱和时主磁场削弱的量与加强的量恰好相等。

* 在磁路临界饱和时

增磁会使半个极下饱和程度提高,铁心磁阻增大,另外半个极下饱和程度减小,铁心磁阻减小,因磁路临界饱和,从而使实际的合成磁场曲线要比不饱和时略低。增加的磁通数量就会小于磁通减少的数量。

第四节感应电动势和电磁转矩的计算

一.感应电动势的计算

1.运行时感应电动势始终存在

直流电机无论作电动机运行还是作发电机运行,电枢绕组内都感应产生电动势。这个感应电动势是指一条支路的电动势。

2.如何计算感应电动势

要计算支路电动势,可先求出每个元件电动势的平均值,然后乘上每条支路串联元件数,就可得出支路电动势。

元件平均电势

B为每一个磁极下的平均磁感应强度,等于每极磁通除以每极的面积τl, B= Φ/τl

电磁感应定律: e=Blv

式中:v为导体切割磁力线的线速度v=2πRn/60= 2pτn/60(2πR= 2pτ)

n - 电枢的转速(r/min)

p - 极对数

τ - 极距

每条支路总导体数2N,则电枢感应电动势的平均值为:

E=2Ne=2NBlv=4pNΦn/60 如果令4pN/60=CE 则

E= C EΦn

Ce 称为电动势常数

磁通的单位为Wb,转速n 的单位为rpm,感应电动势的单位为V

感生电动势的方向由磁场的方向和转子的旋转方向决定。

在直流电动机中,电动势的方向与电枢电流的方向相反,为反电动势;

在直流发电机中,电动势的方向与电枢电流的方向相同,为电源电动势。

二.电磁转矩的计算

1.元件边所受切线方向电磁力

设气隙中某处的径向磁密为Bdx ,元件数为Ny ;元件边中电流为ia

根据电磁力定律,此处元件边所受的切线方向的电磁力为:

fx = Blia

B为每一个磁极下的平均磁感应强度,等于每极磁通除以每极的面积τl, Bdx= Φ/τl

2.元件边所产生电磁转矩

设电枢的直径2R ,因为2πR=2pτ,所以R=pτ/π.

元件数为N,a为并联支路对数,则电枢表面共有元件边数为4aN ,则电磁力产生的电磁转矩为:

Te = 4aNfxR= 4aNBdx·l·ia R=2pN Φia/π

若令C T= 2pN /π, 则

T e= CTΦia

电磁转矩由磁场的方向和电枢电流的方向决定。

在直流电动机中,电磁转矩的方向与转子的旋转方向相同,为拖动转矩

在直流发电机中,电磁转矩的方向与转子的旋转方向相反,为制动转矩

第四节直流电动机运行分析

教学目的

掌握直流电动机的励磁方式 掌握直流电动机的方程

教学重点 直流电动机的励磁方式 教学难点 直流电动机的电路方程 一、直流电动机的基本方程

在这里我们将讨论直流电动机的电压、功率和转矩的平衡方程,说明其能量关系。 (一)电枢电路电压平衡方程 1.电动机的反电势

在电机工作原理的讨论中,我们知道电枢旋转时,电枢中的载流导体割切磁力线产生感应电动势Ea=Ce υn 。这个电动势的方向与电枢电流的方向相反,抵制电枢电流的流入,故称为反电动势。因此,电源要向电枢输入电流,就必须克服反电动势的作用,即必须使加在电枢绕组两端的电压U>Ea 。l

2.电压平衡方程

Ea=U –IaRa 式中,Ia 为电枢电流(A ); Ra 为电枢绕组电阻(Ω)

上式改写后即得电压平衡方程为

U=Ea+IaRa 上式表明,电枢绕组两端的电压U 可分为两部分,一部分用来平衡反电动势Ea ,另一部分就是电枢绕组的电阻压降IaRa 。

3.电枢电流 由U=Ea+IaRa 可导出电枢电流公式,即

(二)功率平衡方程

(三)转矩平衡方程

直流无刷电机

P

P

P P P P M

cu M 2

1

+=+

=

n

P

T

T

T

T M

o

55

.92

=+=

R

E

I

a

a

a

U -

=

使用的是直流电仅仅是没有电刷而已至于具体是靠电子线路实现了电刷的功能。当然有些种类的直流无刷电机的机械部分和交流电机几乎一样这种类型就可以认为是先用电子线路把直流电变成交流电再通给电机

直流电机虽然是供直流电但转子内部的线圈还在交流电路的。带电刷的直流电机是通过电刷换向。而无刷电机是通过逆变电路把直流变成交流,然后共给线圈。常见的是12V散热风扇等。在电脑主机里常用。交流电机不需要换向片(电刷)。

直流无刷电机的定子绕组是星形连接的,他的转子是永磁体做成的并且转子上有一个位置传感器用于检测转子位置反馈给控制器,控制器是直流电源,它根据位置传感器反馈的信号分别使定子绕组通电,形成旋转磁场,直流无刷电机的机械特性比较硬。

有刷直流电机原理应用及实用控制方案探讨

有刷直流电机原理应用及实用控制方案探讨时间:2008-11-14 来源:51chaoban 作者:Jenny 点击:476 有刷直流(BDC)电机的工作原理 图1示出的是BDC电机的基本构造。图中画出的组件包括定子、转子、电刷和换向器。定子和转子磁场相互作用驱动电机旋转。有刷直流电机的类型根据电机定子或外壳中磁场的产生方式来划分。根据有刷直流电机的类型,定子磁场可以由永磁铁或定子中的绕组产生。对于后一种情况,定子绕组与转子绕组可以是并行、串行、或混合方式连接。这三种有刷直流电机分别称为并激电动机、串激电动机和复激电动机。 定子产生静止磁场。这一静止磁场围绕在电枢(或称转子)的周围。外加电源激发出电枢磁场。BDC电机轴上还有两个圆弧形的铜片,称为换向片。电机转动时,碳质的电刷在换向器上滑动。这样就可以产生一个与定子的静止磁场相吸引的旋转磁场。电枢和定子绕组中的电流由电池或其它直流电源供给(永磁BDC电机没有定子绕组)。电池(或直流电源)提供恒定的直流电压。电压幅度决定了电机的转速,因此是电池或直流电源是一个线性激励源。改变BDC电机速度的最有效方式是采用脉宽调制(PWM)技术。PWM技术是以固定的频率开关恒压源。改变PWM信号的脉冲宽度可以调节电机的速度。脉冲高低电平间的比例称为PWM信号的占空比。直流电池电平的幅度等于PWM信号的平均幅度。 应用实例:单片机/电机控制实例 单片机设计中带有内建的外设,因此只需要最少量的外部元器件就可以容易地实现BDC电机的速度和方向控制。选用的单片机带有内建的外设,只需要最少量的外部元器件就可以容易地实现BDC电机的速度和方向控制。这款单片机的两大特点对于BDC电机控制非常有用。首先,片上内建有增强捕获/比较/PWM(ECCP)模块,当配置为全桥模式时,可以提供直接驱动H桥电路所需要的PWM信号。H桥电路可以为电机提供双向电流驱动。第二个非常适合电机控制器的特点是可以产生频率高达31.2 kHz的8位PWM信号。对于电机控制应用来说,这一点很重要,因为低于20 kHz的频率会导致电机产生人听觉范围内的噪声。不需要增加任何外部时钟源,可以提供高于听觉频率的8位分辨率。为了获得高出听觉频率范围的频率,此前的单片机需要在运行时降低PWM的分辨率。与其它具备ECCP的单片机相比,它体积小且成本效率高。利用片上

直流电机工作原理

第二章 直流电机 2.1 概述 2.1.1 直流电机的工作原理 首先,复习e=B δlv 公式,说明e 正比于B δ。结合图2.1解释v=2πRn/60 (m/s , n (r/min)); 机械角速度Ω=v/R=2πn /60 ( r/s); 电角速度ω=p Ω=p2πn/60 (rad/s) (记下来);导体或线圈。 将直流电机的简单工作原理图结构介绍清楚。包括:N 、S 磁极和A 、B 电刷静止,换向片、线圈(导体)以及电枢逆时针旋转。将其抽象成一个平面图。 假设磁力线进入磁极为正方向,离开磁极的磁通方向为负。得气隙磁密在空间得分布曲线 B δ(θ)(0≤θ=ωt ≤2π)。进而得到导体电势e(ωt)和线圈电势e AB (ωt)。 经过合理的多个线圈均匀分布设计,按照一定规律连接起来就组成电枢绕组,便可以获得近似直流电动势。 工作原理: (1) 发电机:电枢绕组中感应的交变电势,依靠换向器的换向作用,利用静止 的电刷把同一磁极 下导体电势引出,变为直流电势输出。(发电机惯例) (2) 电动机:通过电刷和换向器的共同作用,使得同磁极下的导体边流过的电 流方向不变,导体 受力方向不变,进而产生方向恒定的电磁转矩,使电机连续转动。 结论:(1)电机内部(电刷为界),线圈中产生的感应电势、流过的电流是交流量。 (2)电机外部(电刷两端),电动机运行外加直流电;发电机运行输出直流电 (3) 从原理上讲,同一台电机既可以作电动机运行又可以作发电机运行,是可逆的。 (4)电动机惯例 发电机惯例 i i u Motor u Generator

2.1.2 直流电机的主要结构部件 定子——起机械支撑,产生磁场的作用 机座、端盖、电刷、 轴承 直流电机结构 气隙——耦合磁场 转子——产生电磁转矩、产生感应电势 电枢铁心和电枢绕组 换向器、转轴、风扇 2.1.3 直流电机的额定值 额定值:指电机正常运行时各物理量的数值。此时亦称电机满载运行。否则为欠载或过载 额定功率:指输出功率W, kW 。 发电机P N =U N I N 电动机P N =ηU N I N 额定电压U N (V), 额定电流I N (A), 额定励磁电压U fN (V), 额定励磁电流I fN (A), 额定转速n N (r/min)

直流电机调速器的工作原理

一、什么是直流调速器? 直流调速器就是调节直流电动机速度的设备, 由于直流电动机具有低转速大力矩的特点,是交流电动机无法取代的, 因此调节直流电动机速度的设备—直流调速器,具有广阔的应用天地。 二、什么场合下要选择使用直流调速器? 下列场合需要使用直流调速器: 1.需要较宽的调速范围。 2. 需要较快的动态响应过程。 3. 加、减速时需要自动平滑的过渡过程。 4. 需要低速运转时力矩大。 5. 需要较好的挖土机特性,能将过载电流自动限止在设定电流上。 以上五点也是直流调速器的应用特点。 三、直流调速器应用: 直流调速器在数控机床、造纸印刷、纺织印染、光缆线缆设备、包装机械、电工机械、食品加工机械、橡胶机械、生物设备、印制电路板设备、实验设备、焊接切割、轻工机械、物流输送设备、机车车辆、医设备、通讯设备、雷达设备、卫星地面接受系统等行业广泛应用。 四、直流调速器工作原理简单介绍: 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 五、直流电机的调速方案一般有下列3种方式:1、改变电枢电压;2、改变激磁绕组电压;3、改变电枢回路电阻。 最常用的是调压调速系统,即1(改变电枢电压). 六、一种模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。

直流电机工作原理

第二章直流电机的基本结构和运行分析 直流电机是电能和机械能相互转换的旋转电机之一。将机械能转换为直流电能的电机称为直流发电机;将直流电能转换为机械能的电机称为直流电动机。直流发电机可作为各种直流电源;直流电动机具有宽广的调速范围,较强的过载能力和较大的起动转矩等特点,广泛应用于对起动和调速要求较高的生产机械,如电力机车、内燃机车、工矿机车、城市电车、电梯、轧钢机等的拖动电机。 本章介绍直流电机的工作原理和基本结构;分析直流电机的磁路系统、电路系统和电磁过程;导出感应电势和电磁转矩的一般计算方法;得出直流电机在不同运行状态的各种平衡方程式和运行特性。 第一节直流电机基本工作原理 直流电机是直流发电机和直流电动机的总称。直流电机具有可逆性,既可作直流发电机使用,也可作直流电动机使用。作直流发电机使用时,将机械能转换成直流电能输出;作直流电动机使用时,则将直流电能转换成机械能输出。 一、直流电机的模型结构 图2—1所示为一台直流电机简单模型图。N、S为定子上固定不动的两个主磁极,主磁极可以采用永久磁铁,也可以采用电磁铁,在电磁铁的励磁线圈上通以方向不变的直流电流,便形成一定极性的磁极。 图2-1 直流发电机工作原理

在两个主磁极N 、S 之间装有一个可以转动的、由铁磁材料制成的圆柱体,圆柱体表面嵌有一线圈(称为电枢绕组),线圈首末两端分别连接到两个弧形钢片(称为换向片)上。换向片之间用绝缘材料构成一整体,称为换向器,它固定在转轴上(但与转轴绝缘),随转轴一起转动,整个转动部分称为电枢。为了接通电枢内电路和外电路,在定子上装有两个固定不动的电刷A 和B ,并压在换向器上,与其滑动接触。 二、直流发电机的工作原理 1.感应电势的产生 当直流发电机的电枢被原动机拖动,并以恒速v逆时针方向旋转时,如图2-2(a)所示,线圈两个有效边ab 和cd 将切割磁力线,而感应产生电势e。其方向用右手定则确定,导体ab 位于N 极下,导体cd 位于S 极下,产生电势方向分别为b →a ,d →c 。若接通外电路,电流从换向片1→A →负载→B →换向片2。电流从电刷A 流出,具有正极性,用“+”表示;从电刷B 流入,具有负极性,用“一”表示。 当电枢转到90o 时,线圈有效边ab 和cd 转到N 、S 极之间的几何中心线上,此处磁密为零,故这一瞬时感应电势为零。 当电枢转到180o 时,导体ab 和cd 及换向片1、2位置互换,如图2-1(b)所示。导体加位于S 极下,导体cd 位于N极下,线圈两个有效边产生的感应电势方向分别为a →b ,c →d ,电势方向恰与开始瞬时相反。外电路中流过的电流从换向片2→A →负载→B →换向片1。由此可见,电刷A(B)始终与转到N(S)极下的有效边所连接的换向片接触,故电刷极性始终不变A 为“+”,B 为“―”。 由以上分析可知,线圈内部为一交变电势,但电刷引出的电势方向始终不变,为一单方向的直流电势。 2.电势的波形 根据电磁感应定律,每根导体产生的感应电势e为: Lv B e X = (V ) (2-1) 式中x B ——导体所在位置的磁通密度(T ); L ——导体切割磁力线的有效长度(m); v ——导体切割磁力线的线速度(m/s)。 要想知道电势的波形,先得找出磁密的波形,前已设电枢以恒速v 旋转,v=常数,L 在电机中不变,则x B e ∝,即导体电势随时间的变化规律与气隙磁密的分布规律相同。设想将

永磁无刷直流电动机的基本工作原理

永磁无刷直流电动机的基本工作原理 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。 1. 电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 无刷直流电动机的原理简图如图一所示: 永磁无刷直流电动机的基本工作原理 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ调制波的对称交变矩形波。 永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组件处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组通电,依次改变一种状态,定子绕组产生的磁场轴线在空间转动60°电角度,转子跟随定子磁场转动相当于60°电角度空间位置,转子在新位置上,使位置传感器U、V、W按约定产生一组新编码,新的编码又改变了功率管的导通组合,使定子绕组产生的磁场轴再前进60°电角度,如此循环,无刷直流电动机将产生连续转矩,拖动负载作连续旋转。正因为无刷直流电动机的换向是自身产生的,而不是由逆变器强制换向的,所以也称作自控式同步电动机。 2. 无刷直流电动机的位置传感器编码使通电的两相绕组合成磁场轴线位置超前转子磁场轴线位置,所以不论转子的起始位置处在何处,电动机在启动瞬间就会产生足够大的启动转矩,因此转子上不需另设启动绕组。 由于定子磁场轴线可视作同转子轴线垂直,在铁芯不饱和的情况下,产生的平均电磁转矩与绕组电流成正比,这正是他励直流电动机的电流-转矩特性。 电动机的转矩正比于绕组平均电流: Tm=KtIav (N·m) 电动机两相绕组反电势的差正比于电动机的角速度: ELL=Keω (V) 所以电动机绕组中的平均电流为: Iav=(Vm-ELL)/2Ra (A) 其中,Vm=δ·VDC是加在电动机线间电压平均值,VDC是直流母线电压,δ是调制波的占空比,Ra为每相绕组电阻。由此可以得到直流电动机的电磁转矩: Tm=δ·(VDC·Kt/2Ra)-Kt·(Keω/2Ra) Kt、Ke是电动机的结构常数,ω为电动机的角速度(rad/s),所以,在一定的ω时,改变占空比δ,就可以线性地改变电动机的电磁转矩,得到与他励直流电动机电枢电压控制相同的控制特性和机械特性。

直流无刷电机工作原理

直流无刷电机工作原理 直流电机简介 无刷直流电机(BLDC)是永磁式同步电机的一种,而并不是真正的直流电机,英文简称BLDC。区别于有刷直流电机,无刷直流电机不使用机械的电刷装置,采用方波自控式永磁同步电机,以霍尔传感器取代碳刷换向器,以钕铁硼作为转子的永磁材料,性能上相较一般的传统直流电机有很大优势,是当今最理想的调速电机。 工作原理 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。 直流发电机的工作原理就是把电枢线圈中感应的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 感应电动势的方向按右手定则确定(磁感线指向手心,大拇指指向导体运动方向,其他四指的指向就是导体中感应电动势的方向)。 导体受力的方向用左手定则确定。这一对电磁力形成了作用于电枢一个力矩,这个力矩在旋转电机里称为电磁转矩,转矩的方向是逆时针方向,企图使电枢逆时针方向转动。如果此电磁转矩能够克服电枢上的阻转矩(例如由摩擦引起的阻转矩以及其它负载转矩),电枢就能按逆时针方向旋转起来。 无刷电机优缺点 直流电动机具有快速响应,大起动转矩,从零速到额定转速,额定转矩可提供的性能,但直流电机的优点也是它的缺点,因为DC额定负载机密生产性能不断转移的时刻,电枢与转子磁场须保持恒定90度,这将用刷子和换向器。碳刷,换向器,继而引发电机,碳粉,所以除了元件造成损害的,有限的场合使用。交流无碳刷及整流子,免维护,可靠,应用范围广,但直流电机马达的特点,实现同等性能的必须使用复杂的控制得以实现。今天,功率半导体开关频率成分的快速发展,加快了许多,提升驱动电机的性能。微处理器的速度也越

无刷直流电机工作原理详解

无刷直流电机工作原理详解 日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 2.1 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图2.1.1。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。

BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图2.1.2和图 2.1.3所示。

三相无刷直流电机系统结构及工作原理

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

直流电机工作原理和有刷直流电机的模型建立

直流电机工作原理和有刷直流电机的模型建立 一、直流电机的基本结构 直流电机可概括地分为静止和转动两大部分。静止部分称为定子;转动部分称为转子。定、转子之间由空气隙分开,如图。 图a所示为直流电机结构,图b所示为直流电机剖面图。 1. 定子部分 定子由主磁极、换向极、机座和电刷装置等组成。 (1)主磁极它的作用是产生恒定的主极磁场,由主磁极铁心和套在铁心上的励磁绕组组成。 (2)换向极换向极的作用是消除电机带负载时换向器产生的有害火花,以改善换向。 (3)机座机座的作用有两个,一是作为各磁极间的磁路,这部分称为定子磁轭;二是作为电机的机械支撑。 (4)电刷装置其作用,一是使转子绕组能与外电路接通,使电流经电刷输入电枢或从电枢输出;二是与换向器相配合,获得直流电压。 2. 转子部分

转子是直流电机的重要部件。由于感应电势和电磁转矩都在转子绕组中产生.是机械能与电能相互转换的枢纽,因此称作电枢。电枢主要包括电枢铁心、电枢绕组、换向器等。另外转子上还有风扇、转轴和绕组支架等部件。 (1)电枢:铁心电枢铁心的作用有两个,一是作为磁路的一部分,二是将电枢绕组安放在铁心的槽内。 (2)电枢绕组:电枢绕组的作用是产生感应电势和通过电流,使电机实现机电.能量转换它由许多形状完全相同的线圈按一定规律连接而成。每一线圈的两个边分别嵌在包枢铁心的槽里,线圈的这两个边也称为有效线圈边。 (3)换向器:换向器又称整流子,在直流电动机中,是将电刷上的直流电流转换为绕组内的交变电流,以保证同一磁极下电枢导体的电流方向不变,使产生的电磁转矩恒定;在直流发电机中,是将绕组中的交流感应电势转换为电刷上的直流电势,所以换向器是直流电机中的关键部件。 换向器由许多鸽尾形铜片(换向片)组成。 换向片之间用云母片绝缘,电枢绕组每一个线圈 的两端分别接在两个换向片上,换向器的结构如 图1-2所示。 直流电机运行时在电刷与换向器之间往往会 产生火花。微弱的火花对电机运行并无危害,若 换向不良,火花超过一定程度,电刷和换向器就 会烧坏,使电机不能继续运行。 此外,在静止的主磁极与电枢之间,有一空气隙,它的大小和形状对电机的性能影响很大。空气隙的大小随容量不同而不同。空气隙虽小,但由于空气的磁阻较大,因而在电机磁路系统中有着重要的影响。

无刷直流电机的组成及工作原理

无刷直流电机的组成及工作原理 2.1 引言 直流无刷电动机一般由电子换相电路、转子位置检测电路和电动机本体三部分组成,电子换相电路一般由控制部分和驱动部分组成,而对转子位置的检测一般用位置传感器来完成。工作时,控制器根据位置传感器测得的电机转子位置有序的触发驱动电路中的各个功率管,进行有序换流,以驱动直流电动机。下文从无刷直流电动机的三个部分对其发展进行分析。 2.2 无刷直流电机的组成 2.2.1 电动机本体 无刷直流电动机在电磁结构上和有刷直流电动机基本一样,但它的电枢绕组放在定子上,转子采用的重量、简化了结构、提高了性能,使其可*性得以提高。无刷电动机的发展与永磁材料的发展是分不开的,磁性材料的发展过程基本上经历了以下几个发展阶段:铝镍钴,铁氧体磁性材料,钕铁硼(NdFeB)。钕铁硼有高磁能积,它的出现引起了磁性材料的一场革命。第三代钕铁硼永磁材料的应用,进一步减少了电机的用铜量,促使无刷电机向高效率、小型化、节能的方向发展。 目前,为提高电动机的功率密度,出现了横向磁场永磁电机,其定子齿槽与电枢线圈在空间位置上相互垂直,电机中的主磁通沿电机轴向流通,这种结构提高了气隙磁密,能够提供比传统电机大得多的输出转矩。该类型电机正处于研究开发阶段。 2.2.2 电子换相电路 控制电路:无刷直流电动机通过控制驱动电路中的功率开关器件,来控制电机的转速、转向、转矩以及保护电机,包括过流、过压、过热等保护。控制电路最初采用模拟电路,控制比较简单。如果将电路数字化,许多硬件工作可以直接由软件完成,可以减少硬件电路,提高其可靠性,同时可以提高控制电路抗干扰的能力,因而控制电路由模拟电路发展到数字电路。 驱动电路:驱动电路输出电功率,驱动电动机的电枢绕组,并受控于控制电路。驱动电路由大功率开关器件组成。正是由于晶闸管的出现,直流电动机才从有刷实现到无刷的飞跃。但由于晶闸管是只具备控制接通,而无自关断能力的半控性开关器件,其开关频率较低,不能满足无刷直流电动机性能的进一步提高。随着电力电子技术的飞速发展,出现了全控型的功率开关器件,其中有可关断晶体管(GTO)、电力场效应晶体管(MOSFET)、金属栅双极性晶体管IGBT 模块、集成门极换流晶闸管(IGCT)及近年新开发的电子注入增强栅晶体管(IEGT)。随着这些功率器件性能的不断提高,相应的无刷电动机的驱动电路也获得了飞速发展。目前,全控型开关器件正在逐渐取代线路复杂、体积庞大、功能指标低的普通晶闸管,驱动电路已从线性放大状态转换为脉宽调制的开关状态,相应的电路组成也由功率管分立电路转成模块化集成电路,为驱动电路实现智能化、高频化、小型化创造了条件。 2.2.3 转子位置检测电路

直流电机工作原理和有刷直流电机的模型建立

直流电机工作原理与有刷直流电机得模型建立 一、直流电机得基本结构 直流电机可概括地分为静止与转动两大部分。静止部分称为定子;转动部分称为转子.定、转子之间由空气隙分开,如图。 图a所示为直流电机结构,图b所示为直流电机剖面图。 1、定子部分 定子由主磁极、换向极、机座与电刷装置等组成。 (1)主磁极它得作用就是产生恒定得主极磁场,由主磁极铁心与套在铁心上得励磁绕组组成。 (2)换向极换向极得作用就是消除电机带负载时换向器产生得有害火花,以改善换向。 (3)机座机座得作用有两个,一就是作为各磁极间得磁路,这部分称为定子磁轭;二就是作为电机得机械支撑。 (4)电刷装置其作用,一就是使转子绕组能与外电路接通,使电流经电刷输入电枢或从电枢输出;二就是与换向器相配合,获得直流电压。 2、转子部分

转子就是直流电机得重要部件。由于感应电势与电磁转矩都在转子绕组中产生.就是机械能与电能相互转换得枢纽,因此称作电枢。电枢主要包括电枢铁心、电枢绕组、换向器等.另外转子上还有风扇、转轴与绕组支架等部件. (1)电枢:铁心电枢铁心得作用有两个,一就是作为磁路得一部分,二就是将电枢绕组安放在铁心得槽内. (2)电枢绕组:电枢绕组得作用就是产生感应电势与通过电流,使电机实现机电.能量转换它由许多形状完全相同得线圈按一定规律连接而成。每一线圈得两个边分别嵌在包枢铁心得槽里,线圈得这两个边也称为有效线圈边。 (3)换向器:换向器又称整流子,在直流电动机中,就是将电刷上得直流电流转换为绕组内得交变电流,以保证同一磁极下电枢导体得电流方向不变,使产生得电磁转矩恒定;在直流发电机中,就是将绕组中得交流感应电势转换为电刷上得直流电势,所以换向器就是直流电机中得关键部件. 换向器由许多鸽尾形铜片(换向片)组成。换 向片之间用云母片绝缘,电枢绕组每一个线圈得 两端分别接在两个换向片上,换向器得结构如图 1-2所示. 直流电机运行时在电刷与换向器之间往往会 产生火花。微弱得火花对电机运行并无危害,若换 向不良,火花超过一定程度,电刷与换向器就会烧 坏,使电机不能继续运行。 此外,在静止得主磁极与电枢之间,有一空气隙,它得大小与形状对电机得性能影响很大.空气隙得大小随容量不同而不同。空气隙虽小,但由于空气得磁阻较大,因而在电机磁路系统中有着重要得影响。 二、直流电机得基本工作原理

无刷直流电机的工作原理(带霍尔传感器)

无刷直流电机的工作原理 无刷直流电机的控制结构 无刷直流电机是同步电机的一种,也就是说电机转子的转速受电机定子旋转磁场的速度及转子极数(P)影响: N=120.f / P。在转子极数固定情况下,改变定子旋转磁场的频率就可以改变转子的转速。无刷直流电机即是将同步电机加上电子式控制(驱动器),控制定子旋转磁场的频率并将电机转子的转速回授至控制中心反复校正,以期达到接近直流电机特性的方式。也就是说无刷直流电机能够在额定负载范围内当负载变化时仍可以控制电机转子维持一定的转速。 无刷直流驱动器包括电源部及控制部如图 (1) :电源部提供三相电源给电机,控制部则依需求转换输入电源频率。 电源部可以直接以直流电输入(一般为24V)或以交流电输入(110V/220 V),如果输入是交流电就得先经转换器(converter)转成直流。不论是直流电输入或交流电输入要转入电机线圈前须先将直流电压由换流器(inverter)转成3相电压来驱动电机。换流器(inverter)一般由6个功率晶体管(Q1~Q6)分为上臂(Q1、Q3、Q5)/下臂(Q2、Q4、Q6)连接电机作为控制流经电机线圈的开关。控制部则提供PWM(脉冲宽度调制)决定功率晶体管开关频度及换流器(inverter)换相的时机。无刷直流电机一般希望使用在当负载变动时速度可以稳定于设定值而不会变动太大的速度控制,所以电机内部装有能感应磁场的霍尔传感器(hall-sensor),做为速度之闭回路控制,同时也做为相序控制的依据。但这只是用来做为速度控制并不能拿来做为定位控制。

(图一) 无刷直流电机的控制原理 要让电机转动起来,首先控制部就必须根据hall-sensor感应到的电机转子目前所在位置,然后依照定子绕线决定开启(或关闭)换流器(inverter)中功率晶体管的顺序,如 下(图二) inverter中之AH、BH、CH(这些称为上臂功率晶体管)及AL、BL、CL(这些称为下臂功率晶体管),使电流依序流经电机线圈产生顺向(或逆向)旋转磁场,并与转子的磁铁相互作用,如此就能使电机顺时/逆时转动。当电机转子转动到hall-sensor感应出另一组信号的位置时,控制部又再开启下一组功率晶体管,如此循环电机就可以依同一方向继续转动直到控制部决定要电机转子停止则关闭功率晶体管(或只开下臂功率晶体管);要电机转子反向则功率晶体管开启顺序相反。 基本上功率晶体管的开法可举例如下: AH、BL一组→AH、CL一组→BH、CL一组→BH、AL一组→CH、AL一组→CH、BL 一组, 但绝不能开成AH、AL或BH、BL或CH、CL。此外因为电子零件总有开关的响应时间,所以功率晶体管在关与开的交错时间要将零件的响应时间考虑进去,否则

直流无刷和有刷电机优缺点对比

直流无刷和有刷电机优缺点对比 直流无刷电机的原理是在有刷电机的基础上开发和演变的。在未来的一段时间里将是有刷的替代品随着世界各地发起的保护地球的口号有刷终终究会被无刷所取代。无刷直流电机的基本原理去掉了碳刷用电子元器件代替。用电子元器件的开关特性取代机械碳刷使换向变得无机械接触。无刷相对有刷的电机来说有如下优点一、运行声音小这将是我们这个文明社会必将行进的方向。另何工具它都要求降低噪声来保护我们的声音环境。现在最关键的是用在一些需要安静的地方如医院、银行、机场学校等等安静的场所。二、无火花在一些场合就可以大显身手了有一些易燃易爆的地方。三、寿命长因为它用控制器代替了换向器和碳刷是有刷电机的几倍甚至十几倍。碳刷的寿命是有一定的限度的比如一千个小时碳刷就会磨损殆尽只能更换电刷可是更换电机。四、速度高因为采用了磁场感应没有实质的接触速度可以做的更快。有了这么多的优点但是也有不好的地方一、造价高控制器的成本增加至少百元拿微电机来说。原来的换向器和碳刷的成本要低的多。二、如果使用的环境是在高磁场的地方或曾经接触或和高磁场很近电机将失去作用。因为电机本身的转子部件是磁体所作是经过充磁才有磁性的经过高磁场将改变转子的磁场或是消掉了部分的磁性电机都将不能正常工作。再给你补全一点 1 有位置传感器控制方式优点①因为有霍尔位置传感器所以电机换相准确转子位置检测的准确度不受电机转速的影响②不需要外加的转子位置检测电路硬件电路简单③电机换相控制编程简单不需要处理滤波延迟等问

题。缺点①增大了电机的体积。安装了位置传感器后一方面电机结构变复杂了另一方面电机的体积相对来说变大了妨碍了电机的小型化②增加了电机成本。容量在数百瓦以下的小容量方波型无刷直流电机常用的霍尔位置传感器的成本相对于电机本体来说所占比例比较大③传感器的输出信号易受到干扰。传感器的输出信号都是弱电信号在高温、冷冻、湿度大、有腐蚀物质、空气污浊等工作环境及振动、高速运行等工作条件下都会降低传感器的可靠性。若传感器损坏还可能连锁反应引起逆变器等器件的损坏④传感器的安装精度对电机的运行性能影响很大相对增加了生产工艺的难度。2 无位置传感器控制方式优点①降低成本减小电机的体积②抗干扰能力强能在高温、湿度大、有腐蚀物质、空气污浊的环境中工作③无传感器安装的问题减小电机的生产难度。缺点①如反电势法等转子位置检测方法在低速时检测准确度都不高需要其他方法辅助电机起动②由于各种滤波、比较电路引起的相位延迟必须在算法中加以补偿所以算法编程难度较大③由于架构了转子位置检测电路所以增加了硬件的复杂性。

无刷直流电机工作原理详解

日期: 2014-05-28 / 作者: admin / 分类: 技术文章 1. 简介 本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如: 能获得更好的扭矩转速特性; 高速动态响应; 高效率; 长寿命; 低噪声; 高转速。 另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 2. BLDC结构和基本工作原理 BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为 广泛的3相BLDC。 定子 BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每 个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。 BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如图和图

直流电动机工作原理

7.2.2 直流电动机工作原理与结构 图7-4 直流电动机模型 图7-4是一个最简单的直流电动机模型。在一对静止的磁极N和S之间,装设一个可以绕Z-Z'轴而转动的圆柱形铁芯,在它上面装有矩形的线圈abcd。这个转动的部分通常叫做电枢。线圈的两端a和d分别接到叫做换向片的两个半圆形铜环1和2上。换向片1和2之间是彼此绝缘的,它们和电枢装在同一根轴上,可随电枢一起转动。A和B是两个固定不动的碳质电刷,它们和换向片之间是滑动接触的。来自直流电源的电流就是通过电刷和换向片流到电枢的线圈里。

图7-5 换向器在直流电机中的作用 当电刷A和B分别与直流电源的正极和负极接通时,电流从电刷A流入,而从电刷B流出。这时线圈中的电流方向是从a流向b,再从c流向d。我们知道,载流导体在磁场中要受到电磁力,其方向由左手定则来决定。当电枢在图7-5(a)所示的位置时,线圈ab边的电流从a流向b,用表示,cd边的电流从c流向d,用⊙表示。根据左手定则可以判断出,ab边受力的方向是从右向左,而cd边受力的方向是从左向右。这样,在电枢上就产生了反时针方向的转矩,因此电枢就将沿着反时针方向转动起来。 当电枢转到使线圈的ab边从N极下面进入S极,而cd边从S极下面进入N极时,与线圈a端联接的换向片1跟电刷B接触,而与线圈d端联接的换向片2跟电刷A接触,如图7-5(b)所示。这样,线圈内的电流方向变为从d流向c,再从b流向a,从而保持在N极下面的导体中的电流方向不变。因此转矩的方向也不改变,电枢仍然按照原来的反时针方向继续旋转。由此可以看出,换向片和电刷在直流电机中起着改换电枢线圈中电流方向的作用。

直流电机工作原理

第三章直流电机的原理 本章主要介绍直流电机的结构和基本工作原理、直流电机绕组的构成、直流电机的电枢反应、直流电机绕组的电动势和电磁转矩、直流发电机和直流电动机的功率转矩等内容。本章共有10节课,内容和时间分配如下: 1.掌握直流电机的结构及工作原理。(2节) 2.掌握直流电机绕组有关的结构。(2节) 3.掌握直流电机绕组的电枢反应。(1节) 4.掌握直流电机的电枢电动势和电磁转矩。(1节) 5.掌握直流发电机的基本方程式和运行特性、并励发电机的条件。( 2.5节) 6.掌握直流电动机的基本方程式和运行特性。( 1.5节) 第一节直流电机的基本工作原理 一直流电机的用途 直流电动机的优点: 1 调速范围广,易于平滑调节 2 过载、启动、制动转矩大 3 易于控制,可靠性高 4 调速时的能量损耗较小 缺点: 换向困难,容量受到限制,不能做的很大。 应用: 轧钢机、电车、电气铁道牵引、造纸、纺织拖动。 直流发电机用作电解、电镀、电冶炼、充电、交流发电机励磁等的直流电源。 二、直流电机的工作原理 原理:任何电机的工作原理都是建立在电磁感应和电磁力这个基础上。 为了讨论直流电机的工作原理,我们把复杂的直流电机结构简化为工作原理图。(一)直流发电机的工作原理 1.工作原理:导体在磁场中运动时,导体中会感应出电势e 。 e=Blv。 B:磁密l:导体长度;v:导体与磁场的相对速度。 正方向:用右手定则判断。电势e正方向表示电位升高的方向,与U相反。如果同一元件上e和U正方向相同时,e= -U。

理解:电磁感应原理的变形(变化的磁通产生感应电动势) 2 发电机工作过程分析:两磁极直流发电机的工作原理图。 (1)构成: 磁场:图中N和 S是一对静止的磁极,用以产生磁场,其磁感应强度沿圆周为正弦分布。 励磁绕组——容量较小的发电机是用永久磁铁做磁极的。容量较大的发电机的磁场是由直流电流通过绕在磁极铁心上的绕组产生的。用来形成N极和S极的绕组称为励磁绕组,励磁绕组中的电流称为励磁电流If。 电枢绕组:在N极和 S极之间,有一个能绕轴旋转的圆柱形铁心,其上紧绕着一个线圈称为电枢绕组(图中只画出一匝线圈),电枢绕组中的电流称为电枢电流Ia。 换向器:电枢绕组两端分别接在两个相互绝缘而和绕组同轴旋转的半圆形铜片——换向片上,组成一个换向器。换向器上压着固定不动的炭质电刷。 电枢:铁心、电枢绕组和换向器所组成的旋转部分称为电枢。

直流风扇电机的基本工作原理

直流风扇电机的基本工作原理 直流风扇电机的基本工作原理根据供电方式的不同,电机有直流电机和交流电机两种类型。电脑中使用的风扇电机为直流电机,供电电压为+12V 直流电机是将直流电能转换为机械能的旋转机械。它由定子、转子和换向器三个部分组成,如图3。 定子(即主磁极)被固定在风扇支架上,是电机的非旋转部分。 转子中有两组以上的线圈,由漆包线绕制而成,称之为绕组。当绕组中有电流通过时产生磁场,该磁场与定子的磁场产生力的作用。由于定子是固定不动的,因此转子在力的作用下转动。 换向器是直流电动机的一种特殊装置,由许多换向片组成,每两个相邻的换向片中间是绝缘片。在换向器的表面用弹簧压着固定的电刷,使转动的电枢绕组得以同外电路联接。当转子转过一定角度后,换向器将供电电压接入另一对绕组,并在该绕组中继续产生磁场。可见,由于换向器的存在,使电枢线圈中受到的电磁转矩保持不变,在这个电磁转矩作用下使电枢得以旋转,如图4。

液态轴承的结构转子利用轴承与外壳之间实现动配合。风扇的扇叶固定在转子上,因此,当转子旋转时,扇叶将与转子一起转动起来。普通风扇一般采用滚珠轴承(如图5),而高档风扇为了提高运转的稳定性和增加使用寿命,通常采用更为先进的液态轴承(如图6)。 图5 滚珠轴承

图6 液态轴承的结构 无刷直流电机原理图直流电机是利用碳刷实现换向的。由于碳刷存在摩擦,使得电刷乃至电机的寿命减短。同时,电刷在高速运转过程中会产生火花,还会对周围的电子线路形成干扰。为此,人们发明了一种无需碳刷的直流电机,通常也称作无刷电机(brushless motor)。 无刷电机将绕组作为定子,而永久磁铁作为转子(如图7),结构上与有刷电机正好相反。无刷电机采用电子线路切换绕组的通电顺序,产生旋转磁场,推动转子做旋转运动。 无刷电机由于没有碳刷,无需维护寿命长,速度调节精度高。因此,无刷电机正在迅速取代传统的有刷电机,带变频技术的家用电器(如变频空调、变频电冰箱等)就是使用了无刷电机,目前散热风扇中几乎全部使用无刷电机。

无刷直流电机的工作原理

无刷直流电机原理 无刷直流电动机的工作原理 普通直流电动机的电枢在转子上,而定子产生固定不动的磁场。为了使直流电动机旋转,需要通过换向器和电刷不断改变电枢绕组中电流的方向,使两个磁场的方向始终保持相互垂直,从而产生恒定的转矩驱动电动机不断旋转。 无刷直流电动机为了去掉电刷,将电枢放到定子上去,而转子制成永磁体,这样的结构正好和普通直流电动机相反;然而,即使这样改变还不够,因为定子上的电枢通过直流电后,只能产生不变的磁场,电动机依然转不起来。为了使电动机转起来,必须使定子电枢各相绕组不断地换相通电,这样才能使定子磁场随着转子的位置在不断地变化,使定子磁场与转子永磁磁场始终保持左右的空间角,产生转矩推动转子旋转。 无刷直流电动机由电动机主体和驱动器组成,是一种典型的机电一体化产品。●电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷直流电动机的原理简图如图一所示: 主电路是一个典型的电压型交-直-交电路,逆变器提供等幅等频5-26KHZ 调制波的对称交变矩形波。永磁体N-S交替交换,使位置传感器产生相位差120°的U、V、W方波,结合正/反转信号产生有效的六状态编码信号:101、100、110、010、011、001,通过逻辑组建处理产生T1-T4导通、T1-T6导通、T3-T6导通、T3-T2导通、T5-T2导通、T5-T4导通,也就是说将直流母线电压依次加在A+B-、A+C-、B+C-、B+A-、C+A-、C+B-上,这样转子每转过一对N-S极,T1-T6功率管即按固定组合成六种状态的依次导通。每种状态下,仅有两相绕组

无刷电机结构图及里面的霍尔信号工作原理

无刷电机结构图及里面的霍尔信号工作原理 (2009-05-30 17:33:55) 转载 标 签: 教育 霍耳的红线一般接5-12v直流电。推荐5-7v。 霍耳的信号线传递电机里面磁钢相对于线圈的位置,根据三个霍耳的信号控制器能知道此时应该如何给电机的线圈供电(不同的霍耳信号,应该给电机线圈供相对应方向的电流),就是说霍耳状态不一样,线圈的电流方向不一样。 霍耳信号传递给控制器,控制器通过粗线(不是霍耳线)给电机线圈供电,电机旋转,磁钢与线圈(准确的说是缠在定子上的线圈,其实霍耳一般安装在定子上)发生转动,霍耳感应出新的位置信号,控制器粗线又给电机线圈重新改变电流方向供电,电机继续旋转(线圈和磁钢的位置发生变化时,线圈必须对应的改变电流方向,这样电机才能继续向一个方向运动,不然电机就会在某一个位置左右摆动,而不是连续旋转),这就是电子换相。 电动车用无刷直流电机工作原理 摘要: 无刷直流电机因为具有直流有刷电机的特性,同时也是频率变化的装置,所以又名直流变频,国际通用名词为bldc.无刷直流电机的运转效率,低速转矩,转速精度等都比任何控制技术的变频器还要好,所以值得业界关注.本产品已经生产超过55kw,可设计到400kw,可以解决产业界节电与高性能驱动的需求。. 关键词:无刷直流电机永磁同步电机直流变频钕铁硼 abstract: brushless direct current motor has the same dc motor output characteris tics, also named bldc. bldc have higher output torque in low speed, higher efficiency and better speed precision than any control modes of frequency converter drives. this chapte r introduce capacity up to 400kw for the industrial application. key words:brushless direct current motor permanent magnetic synchronous motor bldc ndfeb [中图分类号]tm921 [文献标识码]b 文章编号1561-0330(2003)06-00 1 无刷直流电动机简介 无刷直流电动机的学名叫“无换向器电机”或“无整流子电机”,是一种新型的无级变速电机,它由一台同步电机和一组逆变桥所组成,如图1所示。它具有直流电机那样良好的调速特性,但是由於没有换向器,因而可做成无接触式,具有结构简单,制造方便,不需要经常性维护等优点,是一种现想的变速电机。 在工作原理上有二种不同的工作方式: (1)直流无刷电机:又称“无换向器电机交一直一交系统”或“直交系统”,如图1所示。是将三相交流电源整流后变成直流,再由逆变器转换成频率可调的交流电,但是,注意此处逆变器是工作在直流斩波方式。(2)交流无刷电动机:它是利用交-交变频器向同步机供给交流电。

相关主题
文本预览
相关文档 最新文档