当前位置:文档之家› STOCHASTIC LIMIT THEORY 随机的极限理论

STOCHASTIC LIMIT THEORY 随机的极限理论

STOCHASTIC LIMIT THEORY 随机的极限理论
STOCHASTIC LIMIT THEORY 随机的极限理论

STOCHASTIC LIMIT THEORY

随机的极限理论

Preface 前言

Mathematical Symbols and Abbreviations 数学符号和简称

Part I : Mathematics 第一部分:数学

1.Sets and Numbers 集合与数字

1.1 Basic Set Theory 集合理论基础

1.2 Corntable Sets 可数集

1.3 The Real Continuum 实数连续?

1.4 Sequences of Sets集合序列

1.5 Classes of Subsets子集类

1.6 Sigma Fields σ-代数

2.Limits and Continuity 极限与连续

The Topology of the Real Line 实直线的拓扑

Sequences and Limits 序列与极限

Functions and Continuity 函数与连续

Vector Sequences and Functions 向量序列与函数

Sequences of Functions 函数序列

Summability and Order Relations 可加性与序关系

Arrays 数组、阵列?

3.Measure 测度

Measure Spaces 可测空间

The Extension Theorem 推广定理

Non-measurability 不可测性

Product Spaces 积空间

Measurable Thansformations 可测性变换

Borel Functions 博雷尔函数

4.Integration 积分

Construction of the Integral 积分的构造

Properties of the Integral 积分的性质

Product Measure and Multiple Integrals 积测量与多维积分?

The Radon-Nikodym Theorem 拉东-尼科迪姆定理

5.Metric Spaces 度量空间

Distances and Metrics 距离和度量

Separability and Completeness 可分性和完整性

Examples 举例

Mappings on Metric Spaces 度量空间上的映射

Function Spaces 函数空间

6.Topology 拓扑

Topological Spaces 拓扑空间

Countability and Compactness 可数性和紧性

Separation Properties 可分的性质

Weak Topologies 弱拓扑

The Topology of Product Spaces 积空间的拓扑

Embedding and Metrization 嵌入与量化

Part II: Probability 第二部分:概率

7.Probability Spaces 概率空间

Probability Measures 概率测度

Conditional Probability 条件概率

Independence 独立性

Product Spaces 积空间

8.Random Variables 随机变量

Measures on the Line 直线上的测度

Distribution Functions 分布函数

Examples 举例

Multivariate Distributions 多维分布

Independent Random Variables 独立随机变量

9.Expectations 期望

Averages and Integrals 平均数与积分

Expectations of Functions of X X的函数的期望

Theorems for the Probabilist’s Toolbox 概率?的定理

Multivariate Distributions 多维分布

More Theorems for the Toolbox ?的更多定理

Random Variables Depending on a Parameter 依赖单参数的随机变量10.Conditioning 调节?

Conditioning in Product Measures 积度量的调节

Conditioning on a Sigma Field σ-代数上的制约

Conditional Expectations 条件期望

Some Theorems on Conditional Expectations 条件期望的一些定理Relationships between Subfields 子域间的相关

Conditional Distributions 条件分布

11.Characteristic Functions 特征函数

The Distribution of Sums of Random Variables 随机变量的和的分布Complex Numbers 复数

The Theory of Characteristic Functions 特征函数的性质

The Inversion Theorem 反演定理

The Conditional Characteristic Function 条件特征函数

Part III: Theory of Stochastic Processes 随机过程理论

12.Stochastic Processes 随机过程

Basic Ideas and Terminology 基本思想和术语

Convergence of Stochastic Sequences 随机序列的收敛

The Probability Model 概率模型

The Consistency Theorem 一致性定理

Uniform and Limiting Properties 一致性和极限性质

Uniform Integrability 一致可积性

13.Dependence 相关

Shift Transformations 移位变换

Independence and Stationarity 独立和平稳性

Invariant Events 不变事件

Ergodicity and Mixing 遍历性和混合

Subfields and Regularity 子域和规律

Strong and Uniform Mixing 强的一致的混合

14.Mixing 混合

Mixing Sequences of Random Variables 随机变量的混合序列

Mixing Inequalities 混合不平等性

Mixing in Linear Processes 线性过程中的混合

Sufficient Conditions for Strong and Uniform Mixing 强的一致性混合的充分条件15.Martingales 鞅

Sequential Conditioning 序列的条件

Extensions of the Martingale Concept 鞅概念的推广

Martingale Convergence 鞅收敛

Convergence and the Conditional variances 收敛和条件方差

Martingale Inequalities 鞅不等

16.Mixingales 混合性

Definition and Examples 定义和示例

Telescoping Sum Representations 套叠和的表示形式?

Maximal Inequalities 极大不等式

Uniform Square-integrability 一致平方可积性

17.Near-Epoch Dependence 近周期相关

Definition and Examples 定义和示例

Near-Epoch Dependence and Mixingales 近周期相关和混合性

Near-Epoch Dependence and Transformations 近周期相关和变换

Approximability 可逼近性

Part IV: The Law of Large Numbers 大数定律

18.Stochastic Convergence 随机收敛

Almost Sure Convergence 几乎必然收敛

Convergence in Probability 概率的收敛

Transformations and Convergence 变换和收敛

Convergence in Lp Norm Lp范数的收敛

Examples 举例

Laws of Large Numbers 大数定律

19.Convergence in Lp-Norm Lp范数的收敛

Weak Laws by Mean-Square Convergence

Almost Sure Convergence by the Method of Subsequences

A Martingale Weak Law

A Mixingale Weak Law

Approximable Processes

20.The Strong Law of Large Numbers

Technical Tricks for Proving LLNs

The Case of Independence

Martingale Strong Laws

Conditional Variances and Random Weighting

Two Strong Laws for Mixingales

Near-Epoch Dependent and Mixing Processes 21.

芝诺悖论的极限分析

芝诺悖论的极限分析 学生姓名:王慧文指导教师:岳进 摘要:古希腊哲学家芝诺提出了著名的“二分法”,其结论的荒谬性不言而喻,可是对他的论证我们 似乎很难找出毛病,好像是可以接受的。其结论之所以不可以接受,源于在他的论证中隐藏着一些 谬论。在极限方面过程中把带有统一度量单位的“无穷”混为一谈。在哲学方面违反了辩证法的客观 性原则、全面性原则和对立统一性原则;但芝诺悖论的提出,对辩证法的方法,以及运动过程中诸 要素的多种矛盾,通过逻辑运算对芝诺悖论的荒谬性进行反驳,对数学的发展起了很大的作用。 同时本文利用数学求极限的方法,通过逻辑运算,揭示阿基里斯永远追不上乌龟结论的错误。 关键词:悖论;无穷与有穷;运动与静止;连续与间断 引言: 数学悖论是数学发展过程中的一个重要的存在形态,它是数学体系中出现的一种尖锐的矛盾,对于这一矛盾的处理与研究,丰富了数学的内容,促进了数学的发展。 芝诺是公元五世纪古希腊埃利亚学派的代表人物。芝诺“二分法”悖论是说,你不能在有限的时间内穿过无穷的点。在你穿过一定的距离的全部之前,你必须穿过这个距离的一半。这样做下去就会陷入无止境,所以在任何一定的空间中都有无穷个点,你不能在有限的时间中一个接一个地接触无穷个点。运动只是假象,不动不变才是真实。假如承认有运动,就得承认速度最快的赶不上速度最慢的”,即快的“只能无限地接近但永远不能赶上”慢的。因为,快的要追上慢的,总要到达慢的所处,的所经过的每个出发点,而当它到达第一个出发点时,慢的已经往前走了“一段,即阿基里斯追赶乌龟的赛跑。 芝诺的哲学观点虽然不对,但是,他如此尖锐地提出了空间和时间是连续还是离散的问题,引起人们长期的讨论和发展,不能不说是巨大的贡献。本论文就是通过极限与哲学的分析,对芝诺悖论进行剖析。 1、悖论对数学产生的作用 1.1从悖论说起 什么是悖论?它既属于逻辑矛盾、语义矛盾,也属于思想方法上的矛盾。简单地说,悖论一般表现为这样的命题:如果你认为它真,则可以推出它为假;如果你认为它假,则可以推出它为真[1]。悖论往往以逻辑推理为手段,深入到原理论的基础之中深刻地揭露出该理论体系中的无法回避的矛

高等数学求极限的常用方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii )A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (iii) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 ) (lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通 项之后,就能变成(i)中的形式了。即)(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0 ∞”对于幂指函数,方法主要是取指数还取对数的方法,即e x f x g x g x f ) (ln )()()(=, 这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

概率极限理论

随机微分方程基本理论 1、引言 随机微分方程(SDE )的诞生有其一定的应用背景。随机微积分和随机微积分方程起源于马氏过程的构造和柯尔莫哥洛夫的分析方法与费尔的半群方法。常微分方程在物理、工程技术、生物和经济等领域中的应用是众所周知的,然而随着科学技术的发展,要求对实际问题的描述越来越精确。因此,随机因素的影响就不能轻易地被忽略,于是对于某些实际过程的分析也就有必要从通常的确定性观点转到随机的观点,从而对这些实际系统的描述,也就自然地从确定性的常微分方程转到随机常微分方程,简称随机微分方程。 随机微分方程是一种针对生物、化学、医药、机电、经济等领域中的随机现象而建立的数学模型,其广泛应用于自然科学、工程技术和经济学等领域。伊藤型随机微积分方程就是指带有白噪声的微分方程。自从爱因斯坦建立了布朗运动和随机分子扩散的数学理论以来,各种不同的领域内,如分子物理学、院子物理学、化学动力学、固态理论、结构稳定性、群体遗传学、通信以及自然科学、社会科学和工程的许多其他分支中开展了一系列理论的科学研究。在随机微分方程理论研究的早期阶段,爱因斯坦、斯莫路苏斯基、郎之万、奥伦斯坦、乌伦贝克和克拉美等人做了许多卓有成效的工作,这些工作综合在查德瑞赛卡1943男的主要论文中。随着随机微分方程的数学理论的发展数学研究人员在这一领域中发展了一些及其重要的结果,随着伊藤积分概念的引入,随机微分方程的理论向更深纵发展。 2、基础理论和线性方程 0)0( , )()),(()),(()(x x x dw t t x b dt t t x a t dx =+= (2.1) 是由伊藤积分方程 )() ),(()),(()(0 0s dw s s x b s s x a x t x t t ??+ + = (2.2) 定义。

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理

中心极限定理 中心极限定理(Central Limit Theorems) 什么是中心极限定理 大数定律揭示了大量随机变量的平均结果,但没有涉及到随机变量的分布的问题。而中心极限定理说明的是在一定条件下,大量独立随机变量的平均数是以正态分布为极限的。 中心极限定理是概率论中最著名的结果之一。它提出,大量的独立随机变量之和具有近似于正态的分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释为什么有很多自然群体的经验频率呈现出钟形(即正态)曲线这一事实,因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使正态分布有了广泛的应用。 中心极限定理的表现形式 中心极限定理也有若干个表现形式,这里仅介绍其中四个常用定理: (一)辛钦中心极限定理 设随机变量相互独立,服从同一分布且有有限的数学期望a和方差σ2,则 随机变量,在n无限增大时,服从参数为a和的正态分布即n→∞时, 将该定理应用到抽样调查,就有这样一个结论:如果抽样总体的数学期望a和方差σ2是有限的,无论总体服从什么分布,从中抽取容量为n的样本时,只要n足够大,其样本平均数的分布就趋于数学期望为a,方差为σ2 / n的正态分布。 (二)德莫佛——拉普拉斯中心极限定理 设μ n是n次独立试验中事件A发生的次数,事件A在每次试验中发生的概率为P,则当n 无限大时,频率设μ n / n趋于服从参数为的正态分布。即:

该定理是辛钦中心极限定理的特例。在抽样调查中,不论总体服从什么分布,只要n充分大,那么频率就近似服从正态分布。 (三)李亚普洛夫中心极限定理 设是一个相互独立的随机变量序列,它们具有有限的数学期望和方 差:。 记,如果能选择这一个正数δ>0,使当n→∞时, ,则对任意的x有: 该定理的含义是:如果一个量是由大量相互独立的随机因素影响所造成的,而每一个别因素在总影响中所起的作用不很大,则这个量服从或近似服从正态分布。 (四)林德贝尔格定理 设是一个相对独立的随机变量序列,它们具有有限的数学期望和方差满足林德贝尔格条件,则当n→∞时,对任意的x,有 。 中心极限定理案例分析 案例一:中心极限定理在商业管理中的应用 水房拥挤问题:假设西安邮电学院新校区有学生5000人,只有一个开水房,由于每天傍晚打开水的人较多,经常出现同学排长队的现象,为此校学生会特向后勤集团提议增设水龙头。假

(完整版)大数定律及中心极限定理

第五章大数定律及中心极限定理 【基本要求】1、了解切比雪夫不等式; 2、了解切比雪夫大数定律,Bernoulli大数定律和辛钦大数定律成立的条件及结论; 3、了解独立同分布的中心极限定理(列维—林德伯格定理)和德莫佛—拉普拉斯 中心极限定理(二项分布以正态分布为极限分布)的应用条件和结论,并会用 相关定理近似计算有关随机事件的概率。 【本章重点】切比雪夫不等式,切比雪夫大数定理及Bernoulli大数定理。 【本章难点】对切比雪夫大数定理及独立同分布的中心极限定理的理解。 【学时分配】2学时 【授课内容】 §5.1 大数定律 0.前言 在第一章我们提到过事件发生的频率具有稳定性,即随着试验次数的增加,事件发生的频率逐渐稳定于某个常数,这一事实显示了可以用一个数来表征事件发生的可能性大小,这使人们认识到概率是客观存在的,进而由频率的三条性质的启发和抽象给出了概率的定义,而频率的稳定性是概率定义的客观基础。在实践中人们还认识到大量测量值的算术平均值也具有稳定性,而这种稳定性就是本节所要讨论的大数定律的客观背景,而这些理论正是概率论的理论基础。 下面介绍三个定理,它们分别反映了算术平均值及频率的稳定性。 一、切比雪夫大数定律 1

2 事件的频率稳定于概率,能否有p n lim n n =μ∞→,答案是否定的。而是用)(0}{ ∞→→ε≥-μn p n P n [依概率收敛]来刻划 (弱)。或者用{}1n n P p n →∞ μ???→=[a.e.收敛] 来刻划(强)。 1.定义:设ΛΛ,,,,21n X X X 是一个随机变量序列,a 是一个常数,若对于任意正数ε,有 ()1lim =<-∞ →εa X P n n , 则称序列ΛΛ,,,,21n X X X 依概率收敛于a .记为a X P n ?→? . 2.切比雪夫不等式 设随机变量ξ具有有限的期望与方差,则对0>?ε,有 2 ) ())((ε ξεξξD E P ≤ ≥-或2 ) (1))((ε ξεξξD E P - ≥<- 证明:我们就连续性随机变量的情况来证明。设~()p x ξ,则有 2 2 ()()(())(())()()x E x E x E P E p x dx p x dx ξ ε ξ ε ξξξεε -≥-≥--≥= ≤ ?? 22 2 1 () (())()D x E p x dx ξξεε+∞ -∞ ≤ -= ? 该不等式表明:当)(ξD 很小时,))((εξξ≥-E P 也很小,即ξ的取值偏离)(ξE 的可能性很小。这再次说明方差是描述ξ取值分散程度的一个量。 切比雪夫不等式常用来求在随机变量分布未知,只知其期望和方差的情况下,事件 {}E ξξε-≥概率的下限估计;同时,在理论上切比雪夫不等式常作为其它定理证明的工具。 3.定理1(切比雪夫大数定律) 设}{n ξ是相互独立的随机变量序列,每一随机变量都有有限的方差,且一致有界,即存在 常数C ,使Λ,2,1)(=≤i C D i ξ,则对任意的0>ε,有01111 =ε≥ξ-ξ∑∑==∞→})(E n n {P lim n i n i i i n [即

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

极限的常用求法及技巧.

极限的常用求法及技巧 引言 极限是描述数列和函数在无限过程中的变化趋势的重要概念。极限的方法是微积分中的基本方法,它是人们从有限认识无限,从近似认识精确,从量变认识质变的一种数学方法,极限理论的出现是微积分史上的里程碑,它使微积分理论更加蓬勃地发展起来。 极限如此重要,但是运算题目多,而且技巧性强,灵活多变。极限被称为微积分学习的第一个难关,为此,本文对极限的求法做了一些归纳总结, 我们学过的极限有许多种类型:数列极限、函数极限、积分和的极限(定积分),其中函数极限又分为自变量趋近于有限值的和自变量趋近于无穷的两大类,如果再详细分下去,还有自变量从定点的某一侧趋于这一点的所谓单边极限和双边极限,x 趋于正无穷,x 趋于负无穷。函数的极限等等。本文只对有关数列的极限以及函数的极限进行了比较全面和深入的介绍.我们在解决极限及相关问题时,可以根据题目的不同选择一种或多种方法综合求解,尤其是要发现数列极限与函数极限在求解方法上的区别与联系,以做到能够举一反三,触类旁通 。 1数列极限的常用求法及技巧 数列极限理论是微积分的基础,它贯穿于微积分学的始终,是微积分学的重要研究方法。数列极限是极限理论的重要组成部分,而数列极限的求法可以通过定义法,两边夹方法,单调有界法,施笃兹公式法,等方法进行求解.本章节就着重介绍数列极限的一些求法。 1.1利用定义求数列极限 利用定义法即利用数列极限的定义 设{}n a 为数列。若对任给的正数N,使得n 大于N 时有 ε<-a a n 则称数列{}n a 收敛于a ,定数a 称为数列{}n a 的极限,并记作,lim n a n a =∞ →或 )(,∞→∞→n a n

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

函数极限理论的归纳与解题方法的总结

目录 引言 (1) 一、基本概念与基本理论 (2) (一)函数极限 (2) (二)重要极限 (9) (三)函数的上极限与下极限 (10) (四)Stolz定理的推广定理 (11) 二、习题类型与其解题方法归纳 (11) (一) 根据定义证明函数正常极限与非正常极限的方法。 (12) (二)根据定义与极限性质证题的方法 (14) (三)求函数极限方法 (15) (四)判断函数极限存在与不存在的方法 (20) 参考文献: (24)

函数极限理论的归纳与解题方法的总结 薛昌涛 (渤海大学数学系辽宁锦州121000 中国) 摘要:宇宙中的任何事物都是不断运动变化、相互联系、相互制约的。“函数”的产生正是为了满足刻划这种关系的需要,函数极限理论可谓函数理论重中之重。极限定义24个,性质60个,习题更是千变万化,看上去似乎很繁杂,但经过深入浅出的分析就会很明了。本文旨在化繁为简、总结规律,启示方法。 关键词:函数、极限、方法 The Conclusion of Theory of Function Limit and Methods Summary (Department of math bohai university liaoning jinzhou 121000) Xue Changtao Abstract: Everything in the universe is always moving, varying, intergrating or restricting each other. Function emerged for the need of describing this relation. The thory of function limit plays a key role in function theory. There are Twenty – four definitions to limit, sixty qualties, and the exercises are ever changing. It seems complex very much, but it will be clear after delicate analysis. This text aim at changing complex to simple, suming up the regulars, enlightening the methods. Key words: Function Limit Method 引言 “函数”一词是微积分的创始人之一莱布尼兹(Leibniz)最先使用的,并且把x的函数记为) f 等,但是,直到19世纪初,人们还是把函 x ( ), (x 数理解为“变量和常数组成的解析表达式”。直到1834年,狄里克莱(Dirichlet)指出,函数y与变量x的关系不但不必用统一的法则在全区间上给出,而且不必用解析式给出。至此,函数才被赋予了单值对应的意义。

求极限的常用方法(精髓版)考试必备

求极限的常用方法(精髓版) 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21)x x →- 解 1lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11lim 41--→x x x 解 4221111(1)(1)(1) lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例5 求极限 x →解 01)2x x x →→→=== 5.应用两个重要极限的公式求极限 两个重要极限是1sin lim 0=→x x x 和1lim(1)x x e x →∞+=,下面只介绍第二个公式的例子。 例6 求极限 x x x x ??? ??-++∞→11lim

求极限的常用方法

求极限的常用方法 摘要 极限思想是大学课程中微积分部分的基本原理,这显示出极限在高等数学中的重要地位。同时,极限的计算本身也是一个重要内容。 关键词 极限;计算方法 初等数学的研究对象基本上是不变的量,而高等数学的研究对象则是变动的量。极限方法就是研究变量的一种基本方法。极限分为数列的极限和函数的极限,下文研究的是函数的极限,这些方法对于数列的极限同样适用。 1.直接代入数值求极限 例1 求极限1lim(21) x x →- 解 1 lim(21)2111 x x →-=?-= 2.约去不能代入的零因子求极限 例2 求极限11 lim 41--→x x x 解 4221111(1)(1)(1)lim lim lim(1)(1)4 11x x x x x x x x x x x →→→--++==++=-- 3.分子分母同除最高次幂求极限 例3 求极限13lim 3 2 3+-∞→x x x x 解 3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 注:一般地,分子分母同除x 的最高次幂有如下规律 ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 4.分子(母)有理化求极限 例4 求极限) 13(lim 22+-++∞ →x x x 解 1 3) 13)(13(lim )13(lim 2222222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

中心极限定理及其意义

中心极限定理及其意义

————————————————————————————————作者:————————————————————————————————日期:

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

中心极限定理证明

中心极限定理证明 目录 第一篇:中心极限定理证明 第二篇:大数定理中心极限定理证明 第三篇:中心极限定理 第四篇:中心极限定理应用 第五篇:中心极限定理 更多相关范文 正文 第一篇:中心极限定理证明 中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史

上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此 故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次? 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

概率论大数定律与中心极限定理

‘、第五章 大数定律与中心极限定理 第一节 大数定律 在第一章中我们已经指出,人们经过长期实践认识到,虽然个别随机事件在某次试验中可能发生也可能不发生,但是在大量重复试验中却呈现明显的规律性,即随着试验次数的增大,一个随机事件发生的频率在某一固定值附近摆动.这就是所谓的频率具有稳定性.同时,人们通过实践发现大量测量值的算术平均值也具有稳定性.而这些稳定性如何从理论上给以证明就是本节介绍的大数定律所要回答的问题. 在引入大数定律之前,我们先证一个重要的不等式——契比雪夫(Chebyshev )不等式. 设随机变量X 存在有限方差D (X ),则有对任意ε>0, P {|X -E (X )|≥ε}≤2) (εX D .(5.1) 证 如果X 是连续型随机变量,设X 的概率密度为f (x ),则有 P {|X -E (X )|≥ε}= ??≥-≥--≤ εεε)(22)()()()(X E x X E x x x f X E x x x f d d ≤[].)()()(1 222?+∞∞-=-ε εX D x x f X E x d 请读者自己证明X 是离散型随机变量的情况. 契比雪夫不等式也可表示成 P {|X -E (X )|<ε}≥1-2) (εX D . 5.2) 这个不等式给出了在随机变量X 的分布未知的情况下事件{|X -E (X )|<ε}的概率的下限估计,例如,在契比雪夫不等式中,令ε=3)(X D ,4)(X D 分别可得到 P {|X -E (X )|<3)(X D }≥0.8889, P {|X -E (X )|<4)(X D }≥0.9375. 例5.1 设X 是掷一颗骰子所出现的点数,若给定ε=1,2,实际计算P {|X -E (X )|≥ε},并验证契比雪夫不等式成立. 解 因为X 的概率函数是P {X =k }=1/6(k =1,2,…,6),所以 E (X )=7/2, D (X )=35/12, P {|X -7/2|≥1=P {X =1}+P {X =2}+P {X =5}+P {X =6}=2/3; P {|X -7/2|}≥2}=P {X =1}+P {X =6}=1/3. ε=1: 2)(εX D =35/12>2/3, ε=2:2) (εX D =1/4×35/12=35/48>1/3.

相关主题
文本预览
相关文档 最新文档