当前位置:文档之家› 三率值对熟料的影响

三率值对熟料的影响

三率值对熟料的影响

水泥率值:硅酸率(硅率,SM),铝酸率(铝率,IM),饱和比(KH或LSF)

硅率(SM):熟料中SiO2含量与Al2O3、Fe2O3之和的比。SM值越高,表示硅酸盐矿物多,铁、铝等熔剂矿物少,对熟料强度有利。但SM值过高时,熟料较难烧成,煅烧时液相量较少,不易挂窑皮;随SM值的降低,液相量增加,对熟料的易烧性和操作有利,但SM值过低,熟料强度低,窑内易结圈,结大块,操作困难。一般控制在左右。

铝率(IM):熟料中Al2O3含量Fe2O3含量之比。反映煅烧过程中液相的性质。IM过大,液相粘度大,不利于A矿的形成,易引起熟料快凝;IM过低,液相粘度小,对A矿的形成有利,但窑内烧结范围窄,易使窑内结大块,对煅烧不利,不易掌握煅烧操作。一般控制在左右。

饱和比:有两种叫法,一般KH叫饱和比,LSF叫石灰饱和系数。国内用KH的较多(注意,这个不能按英文字母念,KH来自原苏联)。

KH表示熟料中二氧化硅被氧化钙饱和成A矿的程度。KH越大熟料强度越高,越难烧。一般控制在左右。

KH、SM、IM对煅烧的影响在实际生产中KH过高,工艺条件难以满足需要,f-CaO会明显上升,熟料质量反而下降,KH过低,C3S 过少熟料质量也会差,SM过高,硅酸盐矿物多,对熟料的强度有利,但意味着熔剂矿物较少,液相量少,将给煅烧造成困难,SM过低,则对熟料温度不利,且熔剂矿物过多,易结大块炉瘤,结圈等,也不利于煅烧。IM的高低也应视具体情况而定。在C3A+C4AF含量一定时,IM 高,意味着C3A量多,C4AF量少,液相粘度增加,C3S形成困难,且熟料的后期强度,抗干缩等影响,相反,IM过低,则C3A量少,C4AF量多,液相粘度降低,这对保护好窑的窑皮不利

影响水泥强度检验的主要因素_百度文库.

影响水泥强度检验的主要因素.. 目录 一、仪器因素.. 二、试验条件因素.. 三、操作因素.. 所谓水泥强度是指水泥胶砂硬化试体所能承受外力破坏的能力。水泥强度是水泥重要的物理力学性能之一,根据受力形式的不同,水泥强度通常分为抗压、抗折、抗拉三种。强度检验的规范性和准确性直接影响到水泥产品的品质指标。..所谓水泥强度是指水泥胶砂硬化试体所能承受外力破坏的能力。水泥强度是水泥重要的物理力学性能之一,根据受力形式的不同,水泥强度通常分为抗压、抗折、抗拉三种。强度检验的规范性和准确性直接影响到水泥产品的品质指标。 、仪器设备的影响..计量器具的影响..GB/17671—1999规定,称量天平的精度为±1g,加水器精度±1ml,如检验用天平和加水器的精度不够,会使水泥用量和加水量不准确,导致水泥胶砂的水灰比和灰砂比误差较大,必然影响水泥强度检验结果,试验表明,加水量波动1%,抗压强度相应波动2%左右。 仪器设备的影响 ..下表为加水量波动对抗压强度的影响:加水量三天抗压强度MPa 二十八天抗压强度MPa 221ml 33.2 59.6 223ml 32.7 59.4 225ml 31.1 57.4 227ml 30.8 57.4 229ml 30.2 5 一、、仪器设备的影响..行星式水泥胶砂搅拌机..JC/T681—1997规定,叶片与 锅底、锅壁之间的间隙为3±1mm,也就是说必须执行“2过4不过”原则。 ISO679: 1989《水泥试验方法—强度测定》要求标准砂的粒度范围0.08~2.0 mm,间隙<

2 mm,搅拌机会挤压砂粒,使水泥抗压强度偏高;间隙>4 mm时,胶砂浆体不 均匀,试体强度跳差大。、仪器设备的影响..行星式水泥胶砂搅拌机..JC/T681—1997规定,叶片与锅底、锅壁之间的间隙为3±1mm,也就是说必须执行“2过4不过”原则。ISO679:1989《水泥试验方法—强度测定》要求标准砂的粒度范围0.08~2.0 mm,间隙<2 mm,搅拌机会挤压砂粒,使水泥抗压强度偏高; 间隙>4 mm时,胶砂浆体不均匀,试体强度跳差大。 二、、仪器设备的影响..GB/17671GB/17671GB/17671GB/17671———— 1999199919991999要求行星式水泥胶砂搅拌机伴随着慢速和快速旋转完成搅拌过程,搅拌叶片高速与低速时的自转和公转速度高低直接影响水泥胶砂拌和的均匀程度,所以水泥胶砂搅拌机要定期计量检定和校验。、仪器设备的影 响..GB/17671GB/17671GB/17671GB/17671————1999199919991999要求行星式水泥胶砂搅拌机伴随着慢速和快速旋转完成搅拌过程,搅拌叶片高速与低速时的自转和公转速度高低直接影响水泥胶砂拌和的均匀程度,所以水泥胶砂搅拌机要定期计量检定和校验。 三、、仪器设备的影响..振实台..振实台的振动部分重量是影响振幅大小的主 要因素,“台盘上装上空试模后包括臂杆、模套和卡具的总质量”要求符合 JC/T682—1997规定:(20±0.5kg,振幅大小又直接影响到试体的密实程度,从而影响水泥强度检验结果。振动部分重量增加,会使振幅变小,使试体中的空气不能充分排出,致使试体不密实,导致强度检验结果偏低,反之会偏高。 所以振实台必须定期计量检定和校验。..振实台的安装若不按标准要求进行,也不能正确反应水泥强度检验结果。、仪器设备的影响..振实台..振实台的振动部分重量是影响振幅大小的主要因素,“台盘上装上空试模后包括臂杆、模套和卡具的总质量”要求符合JC/T682—1997规定:(20±0.5kg,振幅大小又

水泥生产中硅酸盐水泥熟料成份说明

水泥生产中硅酸盐水泥熟料成份说明 硅酸盐水泥熟料是以适当成分的生料烧到部分熔融,所得以硅酸钙为主要成分的烧结块。碳酸盐水泥生产主要使用水泥成套设备完成最重要的设备是回转窑设备。因此,在硅酸盐水泥熟料中CaO,SiO2,A1203,Fe2O3 不是以单独的氧化物存在,而是以两种或两种以上的氧化物经高温化学反应而生成的多种矿物的集合体。其结晶细小,一般为30^-60Icm 。因此可见,水泥熟料是一种多矿物组成的结晶细小的人工岩石。它主要有以下四种矿物:硅酸三钙一~3Ca0 .'3i02 ,可简写为C3S ; 硅酸二钙2Ca0 ?Si02 ,可简写为C2S ; 铝酸三钙3Ca0 ?A1203 ,可简写为C 3 A ; 铁相固溶体通常以铁铝酸四钙4Ca0 . A1203 . Fe203 作为代表式,可简写成 C 4 AF, 此外,还有少量游离氧化钙(.f-Ca0 ) 、方镁石(结晶氧化镁)、含碱矿物及玻璃体。通常熟料中C3S 和C2S 含量约占75 %左右,称为硅酸盐矿物。C3-ft 和C,AF 的理论含量约占22 %左右。在水泥熟料锻烧过程中,C 3 A 和C,AF 以及氧化镁、碱等在1250 ^ - 12800C 会逐渐熔融形成液相,促进硅酸三钙的形成,故称熔剂矿物。 一、硅酸三钙 C3S 是硅酸盐水泥熟料的主要矿物。其含量通常为50 %左右,有时甚至高达60 %以上。纯C3S 只有在2065^ 12500C 温度范围内才稳定。在2065℃以上不一致熔融为Ca0 和液相;在1250℃以下分解为CZS 和Ca0 ,但反应很慢,故纯C,S 在室温可呈介稳状态存在。C,S 有三种晶系七种变型: 1070 0 C 1060 0 C 990 0 C 960 0 C 920 0 C 520 0 C R ←――→M Ⅲ←――→M Ⅱ←――→M Ⅰ←――→~T Ⅲ←――→T Ⅱ←――→T Ⅰ R 型为三方晶系,M 型为单斜晶系,T 型为三斜晶系,这些变型的晶体结构相近。但有人认为,R 型和M ,型的强度比T 型的高。 在硅酸盐水泥熟料中, C3S 并不以纯的形式存在,总含有少量氧化镁、氧化铝、氧化铁等形成固溶液,称为阿利特(Alite )或A 矿。 纯C3S 在常温下,通常只能为三斜晶系(T 型),如含有少量Mg0, A1203 , Fe2O3 ,

浅析影响水泥胶砂强度的因素

浅析影响水泥胶砂强度的因素 作者:合阳县文章来源:合阳县点击数:1068 更新时间:2010-8-31 浅析影响水泥胶砂强度的因素 在影响水泥胶砂强度检验的诸多因素中,最重要的是检验人员操作技能的影响,所以必须进行重点控制,同时加强对计量器具、仪器设备的管理,加强对环境的管理,减少因人员、设备、环境、方法等方面的缺失造成的系统误差,提高检验水平,使其真正起到控制进场水泥产品质量的作用。 1、试验操作方法产生误差的理论分析 检验水泥强度等级时,各种不规范的操作方法对水泥强度等级的检验结果均有一定的影响,其中搅拌锅升不到位,搅拌叶片与搅拌锅间隙过大对水泥强度检验的结果影响较大,3d抗折强度最大可降低24%、抗压强度最大可降低12%;28d抗折强度可降低11%~13%、抗压强度可降低10%~12%。经试验分析,其中原因是搅拌机叶片与搅拌锅间隙标准应为(3±1)mm,使用一段时间后,由于机械部分的磨损,使搅拌锅常常升不到位,间隙逐渐变大,当搅拌叶片与搅拌锅间隙达7mm时,叶片与搅拌锅间未被搅起的胶砂料中水灰比小(<0.5),被搅起的胶砂料中水灰比大(>0.5),在振实成型的过程中未被搅起的胶砂料往往装在试模第2层上表面,最终被刮抹掉,实际装入试模中的胶砂料中用水量增大,水泥量减小,导致强度降低;或锅底未搅起的胶砂料不均匀地装入三联试模中,使试体强度离散性变大,导致数据无效。 当采用振实台成型时,第1层装入胶砂料比第2层多1/3时,测得有些水泥3d抗折强度比标准方法低5%~8%,抗压强度比标准方法低2%~3%;28d抗折强度与标准方法接近,抗压强度比标准方法稍有提高。分析其中原因,3d强度较低可能是由于第1层胶砂料较厚,胶砂中一些微小的气孔未被振出,3d水泥水化不充分,这些微小气孔未被水化产物填充,试体中孔隙率较大;28d后水泥水化较为充分,所以强度有所提高。另一些水泥2次振动成型装料厚度不等对强度影响不大,原因可能是这些水泥胶砂料中本身含气量较少或微气孔较易被振出。 当钢尺斜刮水泥胶砂试体时,钢尺变形向上鼓起,导致试体尺寸偏大,试验测得斜刮试体比标准试模高1.6~2.4mm,所以钢尺斜刮试体测得强度偏高。 加水量不准导致胶砂水灰比改变,水灰比大,强度低,反之则强度高。采用自动加砂时,由于仪器的原因,加砂漏斗提前关闭,一部分标准砂被截留,测得水泥强度变低。如中截留20g标准砂,则3d抗折强度降低4%~5%、抗压强度降低1%~3%;28d抗折、抗压强度均降低2%~3%。原因是胶砂试体中骨料减少,骨料吸水量减少,有效水灰比增大且骨料对胶砂试体起的强度作用也就减少了。 当水养后的水泥浆体在相对湿度为50%的空气中干燥时,其线收缩率可达0.2%~0.3%。当水泥胶砂试体从养护池中取出,不用湿抹布覆盖,又未及时破型,干燥收缩使其产生微裂纹,导致抗折强度下降,试验测得3d抗折强度降低4%~6%,28d抗折强度降低5%~7%。

水泥的三个率值

硅酸盐水泥熟料中各氧化物之间的比例关系的系数称作率值。硅酸盐水泥熟料中各氧化物并不是以单独状态存在,而是由各种氧化物化合成的多矿物集合体。因此在水泥生产中不仅控制各氧化物含量,还应控制各氧化物之间的比例即率值。在一定工艺条件下,率值是质量控制的基本要素。因此,国内外水泥厂都把率值作为控制生产的主要指标,我国主要采用石灰饱和系数(KH)、硅率(n)、铝率(p)三个率值。 2.5.1 硅酸率 硅酸率表示水泥熟料中SiO2与Al2O3、Fe2O3之和的比值,也表示熟料中硅酸盐矿物与熔剂矿物的比例。常用n或SM表示。 硅酸率高,硅酸盐矿物含量多,熟料质量高,但烧成困难;硅酸率低,液相量多,易烧性好,但熔剂矿物高,硅酸盐矿物减少,会降低熟料强度,n过低时易结大块。硅酸盐水泥熟料的n波动在1.7~2.7的范围内。 2.5.2 铝氧率 又称铝率或铁率,表示熟料中氧化铝和氧化铁之比,也表示熟料熔剂矿物中C3A 与C4AF的比例。用p或IM表示。 p值的大小,一方面关系到熟料水化速度的快慢,同时又关系到熟料液相的粘度,从而影响以熟料煅烧的难易。p高,C3A高,C4AF降低,水泥趋于早凝早强,但液相粘度大,不利于C3S形成;p低,C3A低,C4AF提高,水泥趋于缓凝,早强低,煅烧时液相粘度小,有利于C3S形成,但过低时易结大块。 硅酸盐水泥熟料的p值波动在0.9~1.7范围内。AM=1.5-1.7 2.5.3 石灰饱和系数(KH) 石灰饱和系数表示熟料中全部氧化硅生成硅酸钙的需的氧化钙含量与氧化硅生成硅酸三钙所需氧化钙最大含量的比值,也即表示熟料中氧化硅被氧化钙饱和形成硅酸三钙的程度。p新标准KH=0.89-0.91 当熟料p大于0.64时,熟料中的矿物为C3S、C2S 、C3A、C4AF;当p小于0.64时熟料中的矿物为C3S、C2S 、C4AF、C2F。 当p<0.64时,石灰饱和系数的表达式为: 实际生产的熟料中还可能有f-CaO和f-SiO2,则石灰饱和系数表示为:一般工厂熟料的f-SiO2和SO3含量很少,略去f-CaO时,石灰饱和系数表达式可简化为: KH=1时,熟料中硅酸盐矿物全部为C3S,KH=2/3=0.667时,硅酸盐矿物全部为C2S,故KH值介于0.667~1之间。KH高,C3S含量多,有利于提高水泥质量,但煅烧困难,热耗高,易产生f-CaO。KH低则C2S高,易烧性好,水化热低,但水泥凝结硬化慢,早期强度低。为保证熟料质量,同时不出现过量f -CaO,通常KH值控制在0.82~0.96之间。 石灰饱和率(LSF) 在国外,尤其是欧美国家大多采用石灰饱和率LSF来控制生产,用于限定水泥中的最大石灰含量,其表达式为: LSF的含义是熟料中CaO的含量与全部酸性组分需要结合的CaO含量之比,一般LSF高,水泥强度也高。 硅酸盐水泥熟料的LSF波动在0.66~1.02,一般在0.85~0.95。

通用硅酸盐水泥的标准

前言 本标准第、、条为强制性条款,其余为推荐性条款。 本标准参照欧洲水泥试行标准ENV 197-1:2000《通用波特兰水泥》修订。 本标准代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。与GB175-1999、GB1344-1999、GB12958-1999相比,主要变化如下: ——全文强制改为条文强制(本版前言); ——增加通用硅酸盐水泥的定义(本版第条); ——将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章);——将组成与材料合并为一章,材料中增加了硅酸盐水泥熟料(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第4章); ——普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%,≤20%,其中允许用不超过水泥质量5%符合本标准第条的窑灰或不超过水泥质量8%符合本标准第条的非活性混合材料代替”。(原版GB175-1999中第条,本版第条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%,≤70%”(原版GB1344-1999中第条,本版第条、条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%,≤40%”(原版GB1344-1999中第条,本版第条); ——将粉煤灰硅酸盐水泥中粉煤灰掺量由“20%~40%”改为“>20%,≤40%”(原版GB1344-1999中第条,本版第条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%,≤50%”(原版GB12958-1999中第3章,本版第条); ——材料中增加了粒化高炉矿渣粉(本版第、条); ——取消了粒化精铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第条、第条和附录A) ——增加了M类混合石膏(原版GB175-1999、GB1344-1999和GB12958-1999中第3章,本版第条); ——助磨剂允许掺量由“不超过水泥质量的1%”改为“不超过水泥质量的%”(原版GB175-1999、GB1344-1999和GB12958-1999中第条,本版第条); ——普通水泥强度等级中取消和(原版GB175-1999中第5章,本版第5章); ——增加了氯离子含量的要求,即水泥中氯离子含量不大于%(本版第条); ——取消了细度指标要求,但要求在试验报告中给出结果(原版GB175-1999第条、GB1344-1999、GB12958-1999中第条,本版条); ——将复合硅酸盐水泥的强度等级改为和矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥一致(原版GB12958-1999中第条,本版第条) ——增加了水泥组分的试验方法(本版第条); ——强度试验方法中增加了“掺火山灰混合材料的普通硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥在进行胶砂强度检验时,其用水量按水灰比和胶砂流动度不小于180mm来确定。当流动度小于180mm时,须以的整倍数递增的方法将水灰比调整至胶砂流动度不小于180mm”(原版GB1344-1999第条,本版第条); ——将“水泥出厂编号按水泥厂年生产能力规定”改为“水泥出厂编号按单线年生产能力规定”(原版GB175-1999、GB1344-1999、GB12958-1999中第条,本版第条);

硅酸盐水泥、普通硅酸盐水泥(GB175-92)

硅酸盐水泥、普通硅酸盐水泥(GB175-92) 来源:发布日期:2006-01-10 标准名称:硅酸盐水泥、普通硅酸盐水泥 标准类型:中华人民共和国国家标准 标准号:GB175-92 标准发布单位:国家技术监督局发布 标准正文: 1 主题内容与适用范围 本标准规定了硅酸盐水泥和普通硅酸盐水泥的定义、组分材料、技术要求、试验方法、检验规则等。 本标准适用于硅酸盐水泥和普通硅酸盐水泥的的生产和检验。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 203 用于水泥中的粒化高炉矿渣 GB 750 水泥压蒸安定性试验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 1596 用于水泥和混凝土中的粉煤灰 GB 2847 用于水泥中的火山灰质混合材料 GB 5483 用于水泥中的石膏和硬石膏 GB 8074 水泥比表面积测定方法(勃氏法) GB 9774 水泥包装用袋 GB 12573 水泥取样方法 ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义与代号

3.1 硅酸盐水泥 凡由硅酸盐水泥熟料、0 ̄5%石灰石或粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料,称为硅酸盐水泥(即国外通称的波特兰水泥)。硅酸盐水泥分两种类型,不掺加混合材料的称Ⅰ型硅酸盐水泥,代号P·Ⅰ。在硅酸盐水泥熟料粉磨时掺加不超过水泥重量5%石灰石或粒化高炉矿渣混合材料的称Ⅱ型硅酸盐水泥,代号P·Ⅱ。 3.2 普通硅酸盐水泥 凡由硅酸盐水泥熟料、6%--15%混合材料、适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥(简称普通水泥),代号P·0。 掺活性混合材料时,最大掺量不得超过15%,其中允许用不超过水泥重量5%的窑灰或不超过水泥重量10%的非活性混合材料来代替。 掺非活性混合材料时最大掺量不得超过水泥重量10%。 4 材料要求 4.1 石膏 天然石膏:应符合GB5483的规定。 工业副产石膏:工业生产中以硫酸钙为主要成分的副产品。采用工业副产石膏时,应经过试验,证明对水泥性能无害。 4.2 活性混合材料 符合GB1596的粉煤灰,符合GB2847的火山灰质混合材料和符合GB203的粒化高炉矿渣。 4.3 非活性混合材料 活性指标低于GB1596、GB2847和GB203标准要求的粉煤灰,火山灰质混合材料和粒化高炉矿渣以及石灰石和砂岩。石灰石中的三氧化二铝含量不得超过2.5%。 4.4 窑灰 应符合ZBQ12001的规定。

(整理)水泥生产相关率值

水泥熟料是多种矿物的集合体,这些矿物都是由CaO ,SiO2,Al2O3,Fe2O3四种氧化物组成。在生产中不仅要控制单个氧化物的含量,还要控制其比例,因为该比例直接决定了熟料中各矿物含量。各矿物含量的比例即为率值。 首先是1868年,德国人米夏埃利斯提出了水硬率(Hydraulic Modulus )作为控制熟料中氧化钙与酸性氧化物的比值,即 3 2322a O Fe O Al SiO O C HM ++= 但是上式假定各酸性氧化物结合CaO 的能力相同,实际并不是这样。因此,需要同时控制各酸性氧化物的比例。即库尔提出的硅率(Silica Modulus )(SM)和铝率(又称铁律)(Iron Moduls )(IM)。 32322 O Fe O Al SiO SM += 3 232O Fe O Al IM = 如上所述,在一方面提出各酸性氧化物比例控制的同时,因水硬率假设CaO 结合各酸性氧化物能力相同的问题,各国科学家在考虑CaO 结合各酸性氧化物能力的前提下提出了石灰最大限量的概念,即CaO 完全与各酸性氧化物结合时所需量的多少。 但因当时对熟料矿物成分看法不同,先后存在了三种公式(KSt ,LSF ,KH )来对石灰最大限量进行描述。 斯波恩假设熟料矿物为硅酸三钙,“铝酸二钙”和铁酸二钙。根据各矿物中酸性氧化物结合CaO 的能力,即三者分别需要结合CaO 的比例(氧化钙与酸性氧化物的比)为2.8、 1.1和0.7,则KSt (称为石灰标准值): 32*7.032*1.12*8.2a 100O Fe O Al SiO O C HM ++= 在确定熟料矿物为硅酸三钙、硅酸二钙、铝酸三钙和铁铝酸四钙组成后,李和派克提出不能直接按上述矿物成分确定它的石灰含量,因为熟料在实际冷却过程中不可能是平衡冷却,这可能析出游离氧化钙,因此要控制石灰含量于较低数值。据此,提出了石灰饱和系数(Lime Saturation Factor ),即LSF 。LSF 的提出是基于对钙、硅、铝、铁四元相图的研究,确定石灰最大含量不超过某一平面所得到的。 32*65.032*18.12*8.2a O Fe O Al SiO O C LSF ++= 而古特曼和杰耳则选择根据四种矿物中酸性氧化物与氧化钙的结合能力来确定石灰理论极限含量。为便于计算,将铁铝酸四钙写成铝酸三钙和铁酸一钙之和。苏联学者金德根据上述两者的理论极限含量提出了石灰饱和系数(KH ),认为实际生产中氧化铝和氧化铁始终为氧化钙所饱和,只有二氧化钙可能会不完全被氧化钙饱和生成C3S,而是C2S 。因此,提出:

通用硅酸盐水泥规范标准

前言 本标准第7.1、7.3.1、7.3.2、7.3.3、8.4为强制性条款,其余为推荐性条款。 本标准与欧洲水泥标准ENV197-1:2000《通用波特兰水泥》的一致性程度为非等效。 本标准自实施之日起代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、 GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、 GB12958-1999《复合硅酸盐水泥》三个标准。 与GB175-1999、GB1344-1999、GB12958-1999相比,本标准主要变化如下:全文强制改为条文强制;增加了通用硅酸盐水泥的定义;将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章;将组分与材料合并为一章(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第5章);普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%且≤20%,其中允许用不超过水泥质量8%且符合本标准第5.2.4条的非活性混合材料或不超过水泥质量5%且符合本标准第5.2.5条的窑灰代替”(原版GB175-1999中第3.2条,本版第5.1条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%且≤70%”,并分为A型和B型。A型矿渣掺量>20%且≤50%,代号P.S.A;B型矿渣掺量>50%且≤70%,代号P.S.B(原版GB1344-1999中第3.1条,本版第5.1条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%且≤40%”(原版GB1344-1999中第3.2条,本版第5.1条);

影响水泥混凝土强度的因素

影响水泥混凝土强度的因素 商品混凝土是目前世界上用途最广、用量最大的建筑材料。它在建筑工程、公路工程、桥梁和隧道工程、水利及特种结构的建设领域中发挥着不可替代的作用。任何商品混凝土结构物主要都是用于承受荷载或抵抗各种作用力,强度是商品混凝土最重要的力学性能。通常用强度来评定和控制商品混凝土的质量以及评价各种因素影响程度的指标。本文就影响水泥商品混凝土强度的因素做简单的分析。 1、水泥对商品混凝土强度的影响 水泥商品混凝土中的活性成分,其强度大小直接影响着商品混凝土强度的高低。商品混凝土抗压强度与商品混凝土使用的水泥强度成正比,在配合比相同的情况下,所使用的水泥强度越高,制成的商品混凝土强度越高。水泥商品混凝土的影响取决于水泥的化学成分及细度。水泥强度主要来自于早期强度及后期强度,而且这些影响贯穿于商品混凝土中。用早期强度较高的水泥来制作商品混凝土,其强度增长较快,但在后期可能以较低的强度而告终。而无论通过改变成分、养护条件或者利用外加剂而比较缓慢地水化,都可使水泥产生较高的最终强度。 水泥细度对商品混凝土强度的影响也很大。随着细度增加,水化速率增大,就导致较高的强度增长率。但应避免细磨粉的含量。因为当颗粒很细时,间隙水可引起一些高W/C区域。 而水泥质量的波动对商品混凝土强度的影响,应引起注意。水泥厂生产的同一品种同一标号的水泥,不可避免地会在质量上有波动。水泥质量的波动,毫无疑问地在商品混凝土强度上反映出来。采用具有相同平均强度而离散系数小的水泥,可以降低商品混凝土的水泥用量。水泥质量波动大多是由于水泥细度和早期强度的差异引起的。而这些因素在早期的影响最大。随着时间的延长其影响就不再是最重要的了。即水泥质量波动引起的商品混凝土强度的标准离差,不随龄期

硅酸盐水泥熟料的煅烧:什么是硅酸盐水泥

硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程

5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥

熟料的煅烧,简称煅烧。结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化 生料在加热过程中,依次进行如下物理化学变化 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土 (Al2O3·2SiO2·2H2O)发 生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2 Al2O3 + 2SiO2 + 2H2 (无定形)(无定形)

三率值对熟料的影响

水泥率值:硅酸率(硅率,SM),铝酸率(铝率,IM),饱和比(KH或LSF) 硅率(SM):熟料中SiO2含量与Al2O3、Fe2O3之和的比。SM值越高,表示硅酸盐矿物多,铁、铝等熔剂矿物少,对熟料强度有利。但SM值过高时,熟料较难烧成,煅烧时液相量较少,不易挂窑皮;随SM值的降低,液相量增加,对熟料的易烧性和操作有利,但SM值过低,熟料强度低,窑内易结圈,结大块,操作困难。一般控制在左右。 铝率(IM):熟料中Al2O3含量Fe2O3含量之比。反映煅烧过程中液相的性质。IM过大,液相粘度大,不利于A矿的形成,易引起熟料快凝;IM过低,液相粘度小,对A矿的形成有利,但窑内烧结范围窄,易使窑内结大块,对煅烧不利,不易掌握煅烧操作。一般控制在左右。 饱和比:有两种叫法,一般KH叫饱和比,LSF叫石灰饱和系数。国内用KH的较多(注意,这个不能按英文字母念,KH来自原苏联)。 KH表示熟料中二氧化硅被氧化钙饱和成A矿的程度。KH越大熟料强度越高,越难烧。一般控制在左右。 KH、SM、IM对煅烧的影响在实际生产中KH过高,工艺条件难以满足需要,f-CaO会明显上升,熟料质量反而下降,KH过低,C3S过少熟料质量也会差,SM过高,硅酸盐矿物多,对熟料的强度有利,但意味着熔剂矿物较少,液相量少,将给煅烧造成困难,SM过低,则对熟料温度不利,且熔剂矿物过多,易结大块炉瘤,结圈等,也不利于煅烧。IM的高低也应视具体情况而定。在C3A+C4AF含量一定时,IM高,意味着C3A量多,C4AF量少,液相粘度增加,C3S形成困难,且熟料的后期强度,抗干缩等影响,相反,IM过低,则C3A量少,C4AF量多,液相粘度降低,这对保护好窑的窑皮不利

白色硅酸盐水泥标准

白色硅酸盐水泥标准 1 主题内容与适用范围 本标准规定了白色硅酸盐水泥的组成、技术要求、试验方法、检验规则、包装与标志、贮存与运输等。 本标准适用于白色和彩色灰浆、砂浆及混凝土用白色硅酸盐水泥。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 1345 水泥细度检验方法(80μm筛筛析法) GB 1346 水泥标准稠度用水量、凝结时间、安定性检验方法 GB 5483 用于水泥中的石膏和硬石膏 GB 5950 建筑材料与非金属矿产品白度试验方法通则 GB 9774 水泥包装用袋 GSBA 67001 氯化镁粉末状物质白度实物标准 ZB Q12 001 掺入水泥中的回转窑窑灰 3 定义 由白色硅酸盐水泥熟料加入适量石膏,磨细制成的水硬性胶凝材料称为白色硅酸盐水泥(简称白水泥)。 磨制水泥时,允许加入不超过水泥重量5%的石灰石或窑灰作为外加物。 水泥粉磨时允许加入不损害水泥性能的助磨剂,加入量不得超过水泥重量的1%。 4 组分材料 4.1 白色硅酸盐水泥熟料 以适当成分的生料烧至部分熔融,所得以硅酸钙为主要成分,氧化铁含量少的熟料。 4.2 石膏 天然二水石膏应符合GB5483的规定。 4.3 石灰石 作为外加物的石灰石中的三氧化二铝含量不得超过2.5%。 4.4 窑灰 窑灰应符合ZBQ12001的规定,且白度不得低于70%。 5 技术要求 5.1 氧化镁熟料中氧化镁的含量不得超过4.5%。 5.2 三氧化硫水泥中三氧化硫的含量不得超过3.5%。 5.3 细度0.080mm方孔筛筛余不得超过10%。 5.4 凝结时间初凝不得早于45min,终凝不得迟于12h。 5.5 安定性用沸煮法检验必须合格。 5.6 强度各标号各龄期强度不得低于表1的数值。

三率值对熟料的影响

三率值对熟料的影响公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

水泥率值:硅酸率(硅率,SM),铝酸率(铝率,IM),饱和比(KH或LSF) 硅率(SM):熟料中SiO2含量与Al2O3、Fe2O3之和的比。SM值越高,表示硅酸盐矿物多,铁、铝等熔剂矿物少,对熟料强度有利。但SM值过高时,熟料较难烧成,煅烧时液相量较少,不易挂窑皮;随SM值的降低,液相量增加,对熟料的易烧性和操作有利,但SM值过低,熟料强度低,窑内易结圈,结大块,操作困难。一般控制在左右。 铝率(IM):熟料中Al2O3含量Fe2O3含量之比。反映煅烧过程中液相的性质。IM过大,液相粘度大,不利于A矿的形成,易引起熟料快凝;IM 过低,液相粘度小,对A矿的形成有利,但窑内烧结范围窄,易使窑内结大块,对煅烧不利,不易掌握煅烧操作。一般控制在左右。 饱和比:有两种叫法,一般KH叫饱和比,LSF叫石灰饱和系数。国内用KH的较多(注意,这个不能按英文字母念,KH来自原苏联)。 KH表示熟料中二氧化硅被氧化钙饱和成A矿的程度。KH越大熟料强度越高,越难烧。一般控制在左右。 KH、SM、IM对煅烧的影响在实际生产中KH过高,工艺条件难以满足需要,f-CaO会明显上升,熟料质量反而下降,KH过低,C3S过少熟料质量也会差,SM过高,硅酸盐矿物多,对熟料的强度有利,但意味着熔剂矿物较少,液相量少,将给煅烧造成困难,SM过低,则对熟料温度不利,且熔

剂矿物过多,易结大块炉瘤,结圈等,也不利于煅烧。IM的高低也应视具体情况而定。在C3A+C4AF含量一定时,IM高,意味着C3A量多,C4AF量少,液相粘度增加,C3S形成困难,且熟料的后期强度,抗干缩等影响,相反,IM过低,则C3A量少,C4AF量多,液相粘度降低,这对保护好窑的窑皮不利

熟料的矿物组成对强度影响

熟料矿物组成对水泥强度的影响 在硅酸盐水泥熟料中,四种主要矿物C3S、C2S、C3A、C4AF每一种都以单独的相存在,并在水化反应中显示各自不同的特征。因此,矿物组成及相对含量对水泥的水化速度、水化物的形态和尺寸有决定性影响,对水泥强度的形成和发展有着至关重要的作用。可以说,矿物组成是水泥早期强度、强度增长速度和后期强度高低位重要的影响因素。 表1和表2是水泥熟料四种单矿物质强度的测定结果。由于试验条件的差异,各方面所测单矿物的绝对强度不一样,但就其基本规律却是一致的,即硅酸盐矿物的含量是决定水泥强度的主要因素。 表1 四种主要矿物的抗压强度(一)单位:Mpa

其中C3S的早期强度最大,28天强度基本上依赖于C3S,C3S含量高,水泥的早期强度高,但以后强度增长不大。而C2S高的水泥虽然早期强度不高,但长期强度增幅大,到1年以后可以赶上甚至超过C3S高的水泥。C3S、C2S的相对含量对强度发展的影响如图2所示。 表2 四种主要矿物的抗压强度(二)单位:Mpa C3A的早期强度增长很快,一般认为,C3A主要对早期强度有利,但强度绝对值不高,而后期强度增长随龄期延长逐渐减少,甚至有倒缩现象。实验表明,当水泥中C3A含量较低时,水泥强度随C3A的增多而提高,但超过某一最佳含量后,强度反而降低,同时龄期越短,C3A的最佳含量越高。C3A的含量对1d、3d 的早期强度影响最大,如果超过最佳含量,则将对后期产生不利影响。 关于C4AF的强度,目前国内外有关实验证明,C4AF不仅对早期强度有利,而且有助于后期强度的发展,由表1和表2数据可知,其3d、7d、28d抗压强度远比C2S和C3A高,其一年强度甚至还能超过C3S。由此可知,C4AF也是一种

硅酸盐水泥___论文

河南大学土木建筑学院课题:硅酸盐水泥

硅酸盐水泥 胶凝材料是指在物理、化学作用下,从具有可塑性的浆体逐渐变成坚固石状体的过程,能将其他物料胶结为整体并具有一定机械强度的物质。因其具有原料丰富、生产成本低、耐久性好、适应性强、耐火性好等众多优点而广泛应用于工业、民用建筑、水利工程等建设之中,成为在国民经济及人民生活中不可缺少的重要材料。 胶凝材料一般可分为有机和无机两类。有机胶凝材料是指各种树脂和沥青等;无机胶凝材料又可分为水硬性和非水硬性。水硬性胶凝材料在拌水后技能在空气中硬化一,又能在水中硬化并具有强度,通常称为水泥,如硅酸盐水泥、铝酸盐水泥、硫酸盐水泥等;非水硬性胶凝材料是指不能在水中硬化,但能在空气中或其他条件下硬化,如石灰、石膏、镁质胶凝材料等等。 在众多的胶凝材料中,水泥占有尤为突出的,它是基本建设的主要原料之一,广泛应用于工业、农业、国防、交通、城市建设、水利及海洋开发等工程建设。水泥工业的发展对保证国家建设和提高生活水平具有十分重要的意义。水泥按其主要矿物组成可分为硅酸盐水泥、铝酸盐水泥、铁铝酸盐水泥、氟铝酸盐水泥、少熟料或无熟料水泥。水泥的主要技术特征是:水硬性(分为快硬和特快硬两类);水化热(分为中热和低热两类);抗硫酸盐性(分中抗硫酸盐腐蚀和高抗硫酸盐腐蚀);膨胀性(分为膨胀和自应力);耐高温性(铝酸盐水泥的耐高温性以水泥中氧化铝含量分级)。 在水泥诸多品种中,硅酸盐水泥是应用最广泛和研究最多的。在此从硅酸盐水泥的分类、生产、技术要求、性能及应用等方面对硅酸盐水泥进行简单的研究分析。 所谓硅酸盐水泥是指从黏土和石灰石为原料,经高温煅烧得到以硅酸盐钙为主要成分的熟料,加入0—5%的混合材料和适量石膏磨细制成的水硬性胶凝材料,国际上统称为波特兰水泥。 硅酸盐水泥的分类 硅酸盐水泥包括纯熟料硅酸盐水泥和掺混合材料硅酸盐水泥两类,我国按其混合材料的掺加情况,共分为如下五类:纯熟料硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸盐水泥粉煤灰硅酸盐水泥。 纯熟料硅酸盐水泥在硅酸盐水泥熟料中加入适量石膏,磨细而成的水泥,分425、525、625、725四个标号。其早期强度比其他几种硅酸盐水泥高5~10%,抗冻性和耐磨性较好,适用于配制高标号混凝土,用于较为重要的土木建筑工程。 普通硅酸盐水泥简称普通水泥。由硅酸盐水泥熟料掺加少量混合材料和适量石膏磨细而成。混合材料的加入量根据其具有的活性大小而定。普通水泥分为275、325、425、525、625和725六个标号,广泛用于制做各种砂浆和混凝土。 矿渣硅酸盐水泥简称矿渣水泥。由硅酸盐水泥熟料和粒化高炉矿渣,加

GB175~2007通用硅酸盐水泥标准

GB 175-2007 通用硅酸盐水泥 前言 本标准与欧洲水泥标准ENV197-1:2000《通用波特兰水泥》的一致性程度为非等效。本标准自实施之日起代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。 ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%且≤40%”(原版GB1344-1999中第3.2条,本版第5.1条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%且≤50%”(原版GB12958-1999中第3章,本版第5.1条); ——取消了复合硅酸盐水泥中允许掺加粒化精炼铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第4.2、4.3条和附录A); ——普通水泥强度等级中取消了32.5和32.5R(原版GB175-1999中第5章,本版第6章); ——增加了氯离子限量的要求,即水泥中氯离子含量不大于0.06%(本版第7.1条); ——增加了选择水泥组分试验方法的原则和定期校核要求(本版第8.1条); ——将“按0.50水灰比和胶砂流动度不小于180mm来确定用水量”的规定的适用水泥品种扩大为火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥和掺火山灰质混合材料的普通硅酸盐水泥(原版GB1344-1999第7.5条,本版第8.5条);

——编号与取样中增加了年生产能力“200×104t以上”的级别,即:200×104t以上,不超过4000t为一个编号;将“120万吨以上,不超过1200吨为一个编号”改为“120×104t~200×104t,不超过2400t为一个编号”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.1条,本版第9.1条); ——将“出厂水泥应保证出厂强度等级,其余技术要求应符合本标准有关要求”改为“经确认水泥各项技术指标及包装质量符合要求时方可出厂”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.2条,本版第9.2条); ——增加了出厂检验项目(本版第9.3条); ——取消了废品判定(原版GB175-1999、GB1344-1999、GB12958-1999中第9.3条); ——检验报告中增加了“合同约定的其他技术要求”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.4条,本版第9.5条); ——包装标志中将“且应不少于标志质量的98%”改为“且应不少于标志质量的99%”(原版GB175-1999、GB1344-1999、GB12958-1999中第9.1条,本版第10.1条); ——包装标志中将“火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥包装袋的两侧印刷采用黑色”改为“火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥包装袋的两侧印刷采用黑色或蓝色”(原版GB1344-1999、GB12958-1999中第9.2条,本版第10.2条)。 本标准由中国建筑材料工业协会提出。 本标准由全国水泥标准化技术委员会(SAC/TC184)归口。

影响混凝土强度的主要因素

影响混凝土强度的主要因素 硬化后的混凝土在未受到外力作用之前,由于水泥水化造成的化学收缩和物理收缩引起砂浆体积的变化,在粗骨料与砂浆界面上产生了分布极不均匀的拉应力,从而导致界面上形成了许多微细的裂缝。另外,还因为混凝土成型后的泌水作用,某些上升的水分为粗骨料颗粒所阻止,因而聚集于粗骨料的下缘,混凝土硬化后就成为界面裂缝。当混凝土受力时,这些预存的界面裂缝会逐渐扩大、延长并汇合连通起来,形成可见的裂缝,致使混凝土结构丧失连续性而遭到完全破坏。强度试验也证实,正常配比的混凝土破坏主要是骨料与水泥石的粘结界面发生破坏。所以,混凝土的强度主要取决于水泥石强度及其与骨料的粘结强度。而粘结强度又与水泥强度等级、水灰比及骨料的性质有密切关系,此外混凝土的强度还受施工质量、养护条件及龄期的影响。 1)水灰比 水泥强度等级和水灰比是决定混凝土强度最主要的因素。也是决定性因素。 水泥是混凝土中的活性组成,在水灰比不变时,水泥强度等级愈高,则硬化水泥石的强度愈大,对骨料的胶结力就愈强,配制成的混凝土强度也就愈高。如常用的塑性混凝土,其水灰比均在0.4~0.8之间。当混凝土硬化后,多余的水分就残留在混凝土中或蒸发后形成气孔或通道,大大减小了混凝土抵抗荷载的有效断面,而且可能在孔隙周围引起应力集中。因此,在水泥强度等级相同的情况下,水灰比愈小,水泥石的强度愈高,与骨料粘结力愈大,混凝土强度也愈高。但是,如果水灰比过小,拌合物过于干稠,在一定的施工振捣条件下,混凝土不能被振捣密实,出现较多的蜂窝、孔洞,将导致混凝土强度严重下降。参见图3—1。 图3—1混凝土强度与水灰比的关系 a)强度与水灰比的关系 b)强度与灰水比的关系 2)骨料的影响 当骨料级配良好、砂率适当时,由于组成了坚强密实的骨架,有利于混凝土强度的提高。如果混凝土骨料中有害杂质较多,品质低,级配不好时,会降低混凝土的强度。 由于碎石表面粗糙有棱角,提高了骨料与水泥砂浆之间的机械啮合力和粘结力,所以在原材料、坍落度相同的条件下,用碎石拌制的混凝土比用卵石拌制的混凝土的强度要高。 骨料的强度影响混凝土的强度。一般骨料强度越高,所配制的混凝土强度越高,这在低水灰比和配制高强度混凝土时, 特别明显。骨料粒形以三维长度相等或相近的球形或立方体

开发熟料率值计算器

生产技术Technology 熟料率值KH、N、P和C 3S、C 2S、C 3A、C 4AF、S/R、液相量为水泥企业配方计算的基础指标,质量管理人员将熟料化学成分带入其计算公式计算得出。为了提高工作效率和工作质量,在有电脑的时代,我们都会将这些固定的公式搬进电脑中的Excel工作表,只需输入相应的成分值,便可以快速准确的计算出我们想要的结果。但是如何能够随时随地的快速准确计算我们想要的指标值呢?智能手机作为平板电脑的衍生品,开发一款在智能手机上运行的专业计算器,不管我们在何时何地,只要知道成分值,都可快速准确的计算得出我们想要的结果。 针对三星bada系统,开发熟料率值计算器的步骤简述如下: 1 安装手机软件开发平台 (1)在bada开发者网站(http://https://www.doczj.com/doc/5e15002763.html,)下载 bada SDK(手机软件开发平台),并在电脑上安装见图1。 (2)在bada开发者网站注册一个新的应用程序ID,配置软件权限和最低平台功能,并下载manifest.xml文件见图2。 开发熟料率值计算器 潘 波 (四川星船城水泥股份有限公司,四川 资中 641244) 2 运行软件并建立工程 (1)点击运行软件,在软件File中点击new,新建bada C++项目,在name处输入文件名CementCalculator 见图3。 (2)对工程进行命名如上图Project name,并选择框架bada Frame Based Application。  (3)点击下一步next,直至Finish完成。 3 软件图标的设计和设置 选择窑头火焰图做为软件快捷图标,格式png,像 素值为100×96px(像素)见图4。 在软件中右击项目CementCalculator,选择属性进入Bada Build 应用程序信息设置软件快捷图标。 中图分类号:TQ172;TP323 文献标识码:B 文章编号:1671-8321(2013)11-0094-03 摘要:在开发者网站下载三星手机软件开发平台SDK,并安装和设置软件运行环境变量;通过软件中的UI构建器,构造熟料率值计算器模型;利用高级汇编语言C++,编写运行代码和相关数学公式代码,为计算器按钮添加事件响应代码;编译程序:将代码转化为可手机终端可识别的二进制代码,最后调试封装成能在手机上运行的熟料率值计算器软件。 关键词:智能手机;水泥;熟料;率值;效率 图1 软件开发平台 图2 下载软件配置文件 图3 创建软件文件

相关主题
文本预览
相关文档 最新文档