当前位置:文档之家› 初中数学不等式试题和答案

初中数学不等式试题和答案

初中数学不等式试题和答案
初中数学不等式试题和答案

初中数学不等式试题及答案

A 卷

1.不等式2(x + 1) -

12

732-≤-x x 的解集为_____________。 2.同时满足不等式7x + 4≥5x – 8和5

23x x -<的整解为______________。 3.如果不等式33131++>+x mx 的解集为x >5,则m 值为___________。 4.不等式2

2)(7)1(3)12(k x x x x ++<--+的解集为_____________。

5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。 6.关于x 的不等式组?

??<->+25332b x x 的解集为-1

8.不等式2<|x - 4| <3的解集为_____________。

9.已知a,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。

10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是9

4>

x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。

B 卷

一、填空题

1.不等式2|43|2+>--x x x 的解集是_____________。

2.不等式|x| + |y| < 100有_________组整数解。 3.若x,y,z 为正整数,且满足不等式?????≥+≥≥1997

213z y y z x 则x 的最小值为_______________。

4.已知M=1

212,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。(填“>”或“<”) 5.设a, a + 1, a + 2为钝角三角形的三边,那么a 的取值范围是______________。

二、选择题

1.满足不等式

43

14||3<--x x 的x 的取值范围是( ) A .x>3 B .x<72- C .x>3或x<72- D .无法确定

2.不等式x – 1 < (x - 1) 2

< 3x + 7的整数解的个数( )

A .等于4

B .小于4

C .大于5

D .等于5

3.?????????=++=++=++=++=++)

5()4()3()2()1(52154154

354324321321a x x x a x x x a x x x a x x x a x x x

其中54321,,,,a a a a a 是常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是( )

A .54321x x x x x >>>>

B .53124x x x x x >>>>

C .52413x x x x x >>>>

D .24135x x x x x >>>>

4.已知关于x 的不等式mx x >-

2

3的解是4

1, n = 34 C .m = 101, n = 38 D .m = 81, n = 36

三、解答题

1.求满足下列条件的最小的正确整数,n :对于n ,存在正整数k ,使

137158<+

2.已知a,b,c 是三角形的三边,求证:.2<+++++b

a c a c

b

c b a 3.若不等式组?????<+++>--0

5)25(20222k x k x x x 的整数解只有x = -2,求实数k 的取值范围。

初中数学不等式答案

A 卷

1.x ≥2

2.不等式组?????-<-≥+523

8547x x x x 的解集是-6≤x <433,其中整数解为-6,-5,-4,-3,-2,-1,0,1,2,

3.由不等式3

3131++>+x mx 可得(1 – m )·x < -5,因已知原不等式的解集为x >5,则有(1-m)·5 = -5, ∴m = 2.

4.由原不等式得:(7 – 2k)x <2

k +6,当k < 27时,解集为 k k x 2762-+<; 当k >2

7时,解集为k k x 2762-+>; 当k =2

7时,解集为一切实数。 5.要使关于x 的不等式的解是正数,必须5 – 2m<0,即m>

2

5,故所取的最小整数是3。 6.2x + a >3的解集为 x >23a -; 5x – b < 2 的解集为 x <5

2b + 所以原不等式组的解集为23a - < 52b +。且23a - < 5

2b +。又题设原不等式的解集为 –1 < x <1,所以23a -=-1, 52b +=1,再结合23a - < 52b +,解得:a = 5, b = 3,所以ab = 15

7.当x ≥0时,|x| - x = x –x = 0,于是(|x| - x )(1 + x ) = 0,不满足原式,故舍去x ≥0

当x < 0时,|x| - x = - 2x >0,x 应当要使(|x| - x )(1 + x )<0,满足1 + x < 0,即x < -1,所以x 的取值范围是x < - 1。

8.原不等式化为?

??<->-)3(3|4|)1(2|4|x x 由(1)解得或x <2 或x > 6,由(2)解得 1 < x < 7,原不等式的解集为1 < x < 2或6 < x < 7.

9.若a,b,c ,中某个值小于2,比如a < 2,但b ≤2, c ≤2,所以a + b + c <6 ,与题设条件a + b + c = 6矛盾,所以只能a = 2,同理b = 2, c = 2,所以abc=8。

10.因为解为x >9

4的一元一次不等式为 – 9 x + 4 < 0与(2a – b )x + 3a – 4b <0比较系数,得 ???=--=-4

4392b a b a ???-=-=7

8b a 所以第二个不等式为20x + 5 > 0,所以x > 41-

B 卷

1.原不等式化为|(x + 1) (x - 4) | > x + 2,若(x + 1) (x - 4) ≥0,即x ≤-1或x ≥4时,有 064,24322>--+>--x x x x x ∴3131102102+<<-+>-

2.∵|x| + |y| < 100,∴0≤|x|≤99, 0≤|y|≤99,于是x,y 分别可取-99到99之间的199个整

所以满足不等式的整数解的组数为:

198 + 2 (1 + 3 + … + 99) + 2(100 + 102 + … + 196)

197022

49)196100(2250)991(2198=?+?+?+?+= 3.?????≥+≥≥)

2(1997)1(213z y y z x 由(1)得y ≤2z (3)

由(3)(2)得3z ≥ 1997 (4)

因为z 是正整数,所以z ≥6661]3

1997[=+ 由(1)知x ≥3z ,∴z ≥1998,取x = 1998, z = 666, y = 1332满足条件 所以x 的最小值是1998。

4.令n =19982,则1

412121,42,2222200019981999++÷++=∴==?=n n n n N M n n 11

441144154)12()14)(1(2222>+++=++++=+++=n n n n n n n n n n ∴M>N

5.钝角三角形的三边a, a + 1, a + 2满足:

?

??>-->???+<+++>++03221)2()1(2)1(222a a a a a a a a a 即

∴313

11<a a a 故

二、选择题 1.当x ≥0且x ≠3时,

,43533143314||3<--=--=--x x x x x ∴)1(135->-x 若x>3,则(1)式成立

若0≤x < 3,则5 < 3-x ,解得x < -2与0≤x < 3矛盾。

当x < 0时,

,43143314||3<--=--x x x x 解得x < 7

2-(2) 由(1),(2)知x 的取值范围是x >3或x < 72-,故选C 2.由,12)1(2

2+-=-x x x 原不等式等价于,0)6()1(,0)1()2(<-?+>-?-x x x x 分别解得x < 1或x >2,-1< x < 6,原不等式的整数解为0,3,4,5,故应选A

3.方程组中的方程按顺序两两分别相减得 5

42443133

2522141,,a a x x a a x x a a x x a a x x -=--=--=--=-

因为54321a a a a a >>>> 所以24135241,,,x x x x x x x x >>>>,于是有52413x x x x x >>>>故应选C

4.令x =a (a ≥0)则原不等式等价于0232<+-a ma 由已知条件知(1)的解为2< a < n 因为2和n 是方程0232=+-a ma 的两个根,所以???

????==+m n m n 23

212解得m = 36,81=n 故应选D

三、解答题

1.由已知得

8

776,7131815,713815<<∴>+>>+>n k n k n k n 即 n , k 为正整数 显然n>8,取n = 9则8

63754<

98784<

105790<

等式:

c b a a a c b a a c b a ++=+++<+2,同理c

b a

c b a c c b a b c a b ++<+++<+2,2 ∴2)(2222=++++=++++++++<+++++c b a c b a c b a c c b a b c b a a b a c c a b c b a

3.因为x = -2是不等式组的解,把x = - 2代入第2个不等式得

(2x + 5) (x + k) = [2·(-2) + 5]·(-2 + k ) < 0,解得k < 2,所以 – k > -2 > 25-

,即第2个不等式的解为2

5- < x < k ,而第1个不等式的解为x < -1或x > 2,这两个不等式仅有整数解x = -2,应满足???????-<<->???????-<<--<.

2

52)2(251)1(为整数或为整数x k x x x k x x

对于(1)因为x < 2,所以仅有整数解为 x = -2此时为满足题目要求不等式组(2)应无整数解,这时应有-2 < -k ≤3, -3≤k < 2

综合(1)(2)有-3≤k < 2

初中数学专题 不等式及其解集试题及答案

第九章不等式与不等式组 9.1 不等式 9.1.1 不等式及其解集 要点感知1 用__________表示大小关系的式子,叫做不等式,用__________表示不等关系的式子也是不等式. 预习练习1-1 下列式子中是不等式的有__________. ①3<4;②2x2-3>0;③5y2-8;④2x+3=7;⑤3x+1<7. 1-2 “b的1 2 与c的和是负数”用不等式表示为__________. 要点感知2使不等式__________的未知数的__________叫做不等式的解. 预习练习2-1以下所给的数值中,是不等式-2x+3<0的解的是( ) A.-2 B.-1 C.3 2 D.2 2-2 不等式3x<9的解的个数有( ) A.1个 B.3个 C.5个 D.无数多个 要点感知3一个含有未知数的不等式的__________,组成这个不等式的解集.求不等式的解集的过程叫做__________. 预习练习3-1(20**·宿迁)如图,数轴所表示的不等式的解集是__________. 知识点1 不等式 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 3.用不等式表示: (1)x的2倍与5的差不大于1; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5; (4)a的20%与a的和大于a的3倍. 知识点2 不等式的解集 4.下列说法中,错误的是( )

A.x=1是不等式x<2的解 B.-2是不等式2x-1<0的一个解 C.不等式-3x>9的解集是x=-3 D.不等式x<10的整数解有无数个 5.用不等式表示如图所示的解集,其中正确的是( ) A.x>-2 B.x<-2 C.x≥-2 D.x ≤-2 6.如图所示,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“15 cm”分别对应数轴上的-3.6和x,则( ) A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13 7.在下列各数:-2,-2.5,0,1,6中,不等式2 3 x>1的解有__________;不等式- 2 3 x>1的 解有__________. 8.由于小于6的每一个数都是不等式1 2 x-1<6的解,所以这个不等式的解集是x<6.这种说法 对不对? 9.x与3的和的一半是负数,用不等式表示为( ) A.1 2 x+3>0 B. 1 2 x+3<0 C. 1 2 (x+3)<0 D.1 2 (x+3)>0 10.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 11.下列说法正确的是( ) A.2是不等式x-3<5的解集 B.x>1是不等式x+1>0的解集 C.x>3是不等式x+3≥6的解集 D.x<5是不等式2x<10的解集 12.下列不等式中,4,5,6都是它的解的不等式是( ) A.2x+1>10 B.2x+1≥9 C.x+5≤10 D.3-x>-2 13.(20**·长春改编)不等式x<-2的解集在数轴上表示为( )

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

新人教版初一数学不等式练习题

不等式练习题 一、 选择题 1.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个 A 、2 B 、3 C 、4 D 、5 2.下列不等关系中,正确的是( ) A 、 a 不是负数表示为a >0; B 、x 不大于5可表示为x >5 C 、x 与1的和是非负数可表示为x +1>0; D 、m 与4的差是负数可表示为m -4<0 3.若m <n ,则下列各式中正确的是( ) A 、m -2>n -2 B 、2m >2n C 、-2m >-2n D 、2 2n m > 4.下列说法错误的是( ) A 、1不是x ≥2的解 B 、0是x <1的一个解 C 、不等式x +3>3的解是x >0 D 、x =6是x -7<0的解集 5.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x +3>2成立的数有( )个. A 、2 B 、3 C 、4 D 、5 6.不等式x -2>3的解集是( )A 、x >2 B 、x >3 C 、x >5 D 、x <5 7.如果关于x 的不等式(a +1)x >a +1的解集为x <1,那么a 的取值范围是( ) A 、a >0 B 、a <0 C 、a >-1 D 、a <-1 8.已知关于x 的不等式x -a <1的解集为x <2,则a 的取值是( ) A 、0 B 、1 C 、2 D 、3 9.满足不等式x -1≤3的自然数是( ) A 、1,2,3,4 B 、0,1,2,3,4 C 、0,1,2,3 D 、无穷多个 10.下列说法中:①若a >b ,则a -b >0;②若a >b ,则ac 2>bc 2;③若ac >bc ,则a >b ;④若ac 2>bc 2,则a >b.正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 11.下列表达中正确的是( ) A 、若x 2>x ,则x <0 B 、若x 2>0,则x >0 C 、若x <1则x 2<x D 、若x <0,则x 2>x 12.如果不等式ax <b 的解集是x < a b ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 二、 填空题 1.不等式2x <5的解有________个. 2.“a 的3倍与b 的差小于0”用不等式可表示为_______________. 3.如果一个三角形的三条边长分别为5,7,x ,则x 的取值范围是______________. 4.在-2<x ≤3中,整数解有__________________. 5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x +3=0的解; _______是不等式x +3>0的解;___________________是不等式x +3>0. 6.不等式6-x ≤0的解集是__________.

初中数学不等式专题复习

初中数学不等式专题复 习 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一、不等式的基本性质 1.若x>y,则下列等式不一定成立的是() A.x+4>y+4 B.﹣3x<﹣3y C.D.x2>y2 2.下列命题中,正确的是() A.若a>b,则ac2>bc2 B.若a>b,c=d则ac>bd C.若ac2>bc2,则a>b D.若a>b,c<d则 3.下列不等式变形正确的是() A.由a>b得ac>bc B.由a>b得﹣2a>﹣2b C.由a>b得﹣a<﹣b D.由a>b得a﹣2<b﹣2 4.若a<﹣1,那么不等式(a+1)x>a+1的解集为()二、不等式(组)的解集和整数解 1.如图,数轴所表示的不等式的解集是. 2.不等式2(1﹣x)<4的解集表示正确的是() A. B.C.D. 3.不等式x﹣3≤3x+1的解集在数轴上表示正确的是()A.B. C.D. 4.不等式组的解集是() 5.不等式11﹣3x>1的所有非负整数解的和为. 6.不等式组的最小整数解为() 7.不等式组的所有整数解的积是() 8.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为. 三、解不等式(组) 1.解不等式,并把解集表示在数轴上. ①2x+9≥3(x+2)②③≤ ﹣1 2

2.解不等式组,并把它的解集在数轴上表示出来(注意原点和单位长度的比例). (1)(2) (3)(4) 四、可转化为不等式(组) 1.“x的2倍与3的差不大于8”列出的不等式是() 2.如果点P(2x+6,x﹣4)在平面直角坐标系的第四象限内,那么x的取值范围是 . 3.若代数式的值不小于1,则t的取值范围是.4.已知(x﹣2)2+|2x﹣3y﹣m|=0中,y为正数,则m的取值范围为 . 5.不等式组的解集为﹣1<x<1,求(a+1)(b+1)的值. 6.关于x,y的方程组的解满足x+y>2,求m的取值范围. 7.若方程组中,x是正数,y是非正数.求k的正整数解. 3

初中数学竞赛专题:不等式

初中数学竞赛专题:不等式 §5.1 一元一次不等式(组) 5.1.1★已知2(2)3(41)9(1)x x x ---=-,且9y x <+,试比较1π y 与 10 31 y 的大小. 解析 首先解关于x 的方程得10x =-.将10x =-代入不等式得109y <-+,即1y <-.又因为110π 31 <,所以110π 31 y y > 5.1.2★解关于x 的不等式 233122x x a a +--> . 解析 由题设知0a ≠,去分母并整理得 (23)(23)(1)a x a a +>+-. 当230a +>,即3 (0)2 a a >-≠时,1x a >-; 当230a +=,即32 a =-时,无解; 当230a +<,即32 a <-时,1x a <-. 评注 对含有字母系数的不等式的解,也要分情况讨论. 5.1.3★★已知不等式(2)340a b x a b -+-<的解为49 x >,求不等式(4)230a b x a b -+->的解. 解析 已知不等式为(3)43a b x b a -<-.由题设知 20, 434.29a b b a a b -等价于 721 ()2028 a a x a a -+->, 即5528ax a ->,解得14 x >-. 所求的不等式解为14 x >-.

5.1.4★★如果关于x 的不等式 (2)50a b x a b -+-> 的解集为10 7 x < ,求关于x 的不等式ax b >的解集. 解析 由已知得 (2)5a b x b a ->-,① 710x ->-.② 由已知①和②的解集相同,所以 27, 510, a b b a -=-?? -=-? 解得 5, 3. a b =-?? =-? 从而ax b >的解集是3 5 x <. 5.1.5★求不等式 111 (1)(1)(2)326 x x x +---≥ 的正整数解. 解析 由原不等式可得1736x ≤,所以72 x ≤是原不等式的解.因为要求正整数解,所以原不等式的正整数解为1x =,2,3. 5.1.6★★如果不等式组90, 80x a x b -?? -

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

初中数学不等式知识点

初中数学不等式知识点 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

不等式 性质 ①如果x>y,那么yy;() ②如果x>y,y>z,那么x>z;() ③如果x>y,而z为任意实数或,那么x+z>y+z;(,或叫同向不等式可加性) ④如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,m>n,那么x+m>y+n;() ⑥如果x>y>0,m>n>0,那么xm>yn; ⑦如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n 次幂

不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号) 不等式两边相乘或相除同一个正数,不等号的方向不变。 不等式两边乘或除以同一个负数,不等号的方向改变。(×÷负数要变号) 解集 确定: ①比两个值都大,就比大的还大(同大取大); ②比两个值都小,就比小的还小(同小取小); ③比大的大,比小的小,无解(大大小小取不了); ④比小的大,比大的小,有解在中间(小大大小取中间)。 三个或三个以上成的不等式组,可以类推。 数轴法 把每个不等式的解集在上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。注意实点与空点的区别。 在确定一元二次不等式时,a>0,Δ=b2-4ac>0时,不等式解集可用"大于取两边,小于取中间"求出。 证明方法 比较法 1.作差比较法:根据a-b>0a>b,欲证a>b,只需证a-b>0;

初中数学竞赛专题训练之不等式含答案

初中数学竞赛专项训练(4) (不等式) 一、选择题: 1、若不等式|x+1|+|x-3|≤a 有解,则a 的取值范围是 ( ) A. 0<a ≤4 B. a ≥4 C. 0<a ≤2 D. a ≥2 2、已知a 、b 、c 、d 都是正实数,且 d c b a <,给出下列四个不等式:①d c c b a a +>+ ②d c c b a a +<+ ③d c c b a b +>+ ④d c d b a b +<+其中正确的是 ( ) A. ①③ B. ①④ C. ②④ D. ②③ 3、已知a 、b 、 c 满足a <b <c ,ab+bc+ac =0,abc =1,则 ( ) A. |a+b |>|c| B. |a+b|<|c| C. |a+b|=|c| D. |a+b|与|c|的大小关系不能确定 4、关于x 的不等式组???????+<+->+a x x x x 2 3535 2只有5个整数解,则a 的取值范围是 ( ) A. -6 a C. 7 2- 无解 ③若a ≠0,则方程b ax =有惟一解 ④若a ≠0,则不等式b ax >的解为a b x >,其中 ( ) A. ①②③④都正确 B. ①③正确,②④不正确 C. ①③不正确,②④正确 D. ①②③④都不正确 7、已知不等式①|x-2|≤1 ②1)2(2≤-x ③0)3)(1(≤--x x ④03 1≤--x x 其中解集是31≤≤x 的不等式为 ( ) A. ① B. ①② C. ①②③ D. ①②③④ 8、设a 、b 是正整数,且满足56≤a+b ≤59,0.9<b a <0.91,则b 2-a 2等于 ( ) A. 171 B. 177 C. 180 D. 182 二、填空题: 1、若方程 12 2-=-+x a x 的解是正数,则a 的取值范围是_________ 2、乒乓球队开会,每名队员坐一个凳子,凳子有两种:方凳(四脚)或圆凳(三脚),一个小孩走进会场,他数得人脚和凳脚共有33条(不包括小孩本身),那么开会的队员共有____名。

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

基本不等式练习题(带答案)(优.选)

基本不等式 1. 若 a ∈R ,下列不等式恒成立的是 ( ) A .21a a +> B .2111 a <+ C .296a a +> D .2 lg(1)lg |2|a a +> 2. 若0a b <<且1a b +=,则下列四个数中最大的是 ( ) A. 1 2 B.22a b + C.2ab D.a 3. 设x >0,则1 33y x x =-- 的最大值为 ( ) A.3 B.3- C.3- D.-1 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是( ) A. 10 B. C. D. 5. 若x , y 是正数,且 14 1x y +=,则xy 有 ( ) A.最大值16 B.最小值 116 C.最小值16 D.最大值116 6. 若a , b , c ∈R ,且ab +bc +ca =1, 则下列不等式成立的是 ( ) A .2222a b c ++≥ B .2 ()3a b c ++≥ C . 111a b c + + ≥ D .a b c ++≤ 7. 若x >0, y >0,且x +y ≤4,则下列不等式中恒成立的是 ( ) A .114x y ≤+ B .111x y +≥ C 2≥ D .1 1xy ≥ 8. a ,b 是正数,则 2,2 a b ab a b ++三个数的大小顺序是 ( ) A.22a b ab a b ++ 22a b ab a b +≤≤ + C. 22ab a b a b ++ D.22 ab a b a b +≤ + 9. 某产品的产量第一年的增长率为p ,第二年的增长率为q ,设这两年平均增长率为x ,则有( ) A.2p q x += B.2p q x +< C.2p q x +≤ D.2 p q x +≥ 10. 下列函数中,最小值为4的是 ( ) A.4y x x =+ B.4sin sin y x x =+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 11. 函数y =的最大值为 .

最新初中数学不等式教案

不等式和不等式组 知识点: 一、不等式与不等式的性质 1、不等式:表示不等关系的式子。(表示不等关系的常用符号:≠,<,>)。 2、不等式的性质: (l )不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a > b , c 为实数?a +c >b +c (2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如a >b , c >0?ac >bc 。 (3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如a >b ,c <0?ac <bc. 注:在不等式的两边都乘以(或除以)一个实数时,一定要养成好的习惯、就是先确定该数的数性(正数,零,负数)再确定不等号方向是否改变,不能像应用等式的性质那样随便,以防出错。 3、任意两个实数a ,b 的大小关系(三种): (1)a – b >0? a >b (2)a – b=0?a=b (3)a –b <0?a <b 4、(1)a >b >0? b a > (2)a >b >0?22b a < 二、不等式(组)的解、解集、解不等式 1、能使一个不等式(组)成立的未知数的一个值叫做这个不等式(组)的一个解。 不等式的所有解的集合,叫做这个不等式的解集。 不等式组中各个不等式的解集的公共部分叫做不等式组的解集。 2.求不等式(组)的解集的过程叫做解不等式(组)。

三、不等式(组)的类型及解法 1、一元一次不等式: (l )概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。 (2)解法:与解一元一次方程类似,但要特别注意当不等式的两边同乘以(或除以)一个负数时,不等号方向要改变。 2、一元一次不等式组: (l )概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。 (2)解法:先求出各不等式的解集,再确定解集的公共部分。 注:求不等式组的解集一般借助数轴求解较方便。 典型例题: 1、判断正误: (1)若a >b ,c 为实数,则2ac >2 bc ; (2)若2ac >2bc ,则a >b 2、若a <b <0,那么下列各式成立的是( ) A 、b a 11< B 、ab <0 C 、1 b a 3、如果x -y <0,那么x 与y 的大小关系是x y .(填<或>符号) 4、若x y >,则下列式子错误的是( ) A .33x y ->- B .33x y ->- C .32x y +>+ D .33x y >

人教版初中数学不等式与不等式组知识点及习题总汇-

戴氏教育开县校区年级:初一教师:张苏 初中数学七年级知识点总结09不等式与不等式组(含答案)【编者按】本章内容要求学生经历建立一元一次不等式(组)这样的数学模型并应用它解决实际问题的过程,体会不等式(组)的特点和作用,掌握运用它们解决问题的一般方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识。 一.知识框架 二、知识概念 1.用符号“<”“>”“≤”“≥”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。 5.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组。 6.不等式:用不等号将两个解析式连结起来所成的式子。在一个式子中的数的关系,不全是等号,含不等符号的式子,那它就是一个不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x <3,5x≠5等。不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)≥”“≤”连接的不等式称为非严格不等式,或称广义不等式。 7.解不等式可遵循的一些同解原理

戴氏教育开县校区年级:初一教师:张苏 主要的有: ①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。 ②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)0,那么不等式F(x)H(x)G(x)同解。 ④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解 8.定理与性质 不等式的性质: ①如果x>y,那么yy;(对称性) ②如果x>y,y>z;那么x>z;(传递性) ③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则) ④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xzy,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷zy,m>n,那么x+m>y+n(充分不必要条件) ⑦如果x>y>0,m>n>0,那么xm>yn ⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

初中不等式专题复习知识点及习题

专题二不等式(组) 知识点汇总: 1.不等式:用“>”、“<”、“≥”或“≤”将两个式子连接以表示大小关系的式子。 2.不等式的解:把使不等式成立的未知数的值叫做不等式的解。 3.不等式的解集:使不等式成立的x的取值范围叫做不等式解的集合,简称解集。 4.不等式的基本性质: (1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变。 (2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 (3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 5.解不等式:求不等式解集的过程。其目的实质就是把不等式化为“x>a或x ≥a”、“x<a或x≤a”的形式。 6.用数轴表示不等式:(大于向右画,小于向左画,无等号画圆圈,有等号画实心点) 7.一元一次不等式:不等式左右两边都是整式,只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式。 思考:解一元一次不等式与解一元一次方程有什么异同? 8.一元一次不等式组:把两个或多个一元一次不等式组合起来是一个一元一次不等式组。 9.不等式组的解集:不等式组中每一个解集的公共部分叫做不等式组的解集。记:同大取大,同小取小,大小小大取中间,大大小小无处找。 思考:解一元一次方程组与解一元一次不等式组有什么异同?

随堂练习: 1.已知a<0,则关于x的不等式ax<5的解为________,5x<a的解为________。 2.已知a,b为常数,若ax+b>0的解集为x<3,则bx+a<0的解集为________。 3.若不等式组有解,则k的取值范围是() (A)k<2 (B)k≥2 (C)k<1 (D)1≤k<2 4.若(x+1)(x-1)<0,则x的解集为__________。 5.九年级一个班有几个同学毕业前合影留念,每人交0.7元,一张彩色底片0.68元,扩印一张相片0.50元,每人分一张,在收上来的钱尽量用掉的前提下,这张相片上的同学最少有________个。 6. 7.某城市平均每天产生垃圾700吨,由甲乙两个垃圾处理厂同时处理。已知甲厂每小时可处理垃圾55吨,每吨需要费用10元;乙厂每小时可处理垃圾45吨,每吨需要费用11元。如果规定该城市每天用于处理垃圾的费用不超过7370元,甲厂每天处理垃圾至少多少小时?

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

相关主题
文本预览
相关文档 最新文档